
Increasing Virus Test Capacity via Recursive Pool Testing

with an Application to SARS-CoV-2 Testing

Petra Mutzel∗ Alexander Bertram† Paul Jünger Pauline Jünger

Horst Krieger‡ Stephan Schmitz§ Michael Jünger¶

July 13, 2020

Abstract

In the context of adequate reactions to the current Covid-19 pandemic, Seifried, Ciesek
et al. [6, 5] have proposed the application of SARS-CoV-2 pool testing in the pursuit of
increasing testing capacity. We show how this method can be substantially improved in
realistic scenarios, and we point out a possible impact on the ongoing discussion concerning
the need of increased testing as a complementary measure to relaxed restrictions.

1 Introduction

Seifried, Ciesek, et al. [6, 5] have proposed the application of SARS-CoV-2 pool testing in April
2020, see also [2, 1]. The described procedure uses two aliquots of each sample. The first set of
aliquots is partitioned into pools of a given size and these pools are tested. A negative test result
means that all corresponding samples in the pool are negative, a positive test result requires
testing the corresponding samples in the pool individually using the corresponding second set
of aliquots.

The authors state: “Dabei wird der Abstrichtupfer zunächst in ein Archivröhrchen gegeben
und anschließend in ein Poolgefäß. Da sich bei dieser Poolmethode das Volumen im Poolgefäß
nicht vermehrt, wird auch keine Verdünnung und damit keine Abnahme der Empfindlichkeit
(Sensitivität) beobachtet.”1

According to the article, this pool test procedure was developed and patented by the Goethe
University and the DRK blood donation service and leads to the fact that a constantly de-
manded extension of testing is made possible. The procedure was tested on 50 samples, of
which 5 were SARS-CoV-2 positive. These 50 samples were divided into 10 pools of 5 samples
each.

In a newer article, Lohse et al. [4] report on testing 1,191 samples, 23 of which are positive,
they used pools of size 30 that were again subdivided into subpools of size 10, and they needed

∗Prof. Dr. rer. nat. Petra Mutzel, Chair of Computational Analytics, Computer Science Institute, University
of Bonn, Endenicher Allee 19A, 53115 Bonn, Germany, petra.mutzel@cs.uni-bonn.de
†Dr. med. vet. Alexander Bertram MRCVS, amedes MVZ wagnerstibbe für Laboratoriumsmedizin,

Hämostaseologie, Humangenetik und Mikrobiologie, Georgstraße 50, 30159 Hannover, Germany,
Alexander.Bertram@amedes-group.com
‡Dr. med. Horst Krieger, Godorfer Hauptstraße 105, 50997 Köln, Germany, dr.h.krieger@gmail.com
§Prof. Dr. med. Stephan Schmitz, Hämatologie & Onkologie Köln, MV-Zentrum, Sachsenring 69, 50677 Köln,

Germany, schmitz@oncokoeln.de
¶Prof. Dr. rer. nat. Michael Jünger (retired), Department of Mathematics and Computer Science, University

of Cologne, Albertus-Magnus-Platz, 50923 Köln, Germany, juenger-sfb@informatik.uni-koeln.de
1“Here the swab is first put into an archive tube and subsequently into a pool container. Since this pool

method does not increase the volume in the pool container, no dilution and therefore, no loss of sensitivity is
observed.”

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint
The copyright holder for thisthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.07.02.20144956doi: medRxiv preprint

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.07.02.20144956
http://creativecommons.org/licenses/by-nc-nd/4.0/

only 267 tests. This strategy requires 3 (rather than 2) aliquots of each sample. The authors
state that borderline samples might escape detection in pools of size 30. However, they argue
that those stem from almost recovered persons.

Both research groups emphasize a tremendously increased testing capacity when the infec-
tion rate is low and consequently, many pool tests will have a negative result.

We review the method in [6, 5], henceforth called “the Frankfurt method”, also in view of
the variant in [4], henceforth called “the Saarbrücken variant”, propose a new variant based
on recursive pool testing, demonstrate its potential in comparison to the Frankfurt method as
well as the Saarbrücken variant, and discuss the possible impact on strategies that accompany
the current relaxation of restrictions due to the Covid-19 pandemic.

2 Pool testing methods

The idea is to combine many samples into one combined sample (“pool”) and apply the test to
the combined sample. If the result is negative, all samples in the combined sample are negative.
If the result is positive, further testing is necessary in order to determine negativity/positivity
for all samples in the combined sample. This idea has already been applied for syphilis testing
of soldiers in the 1940s, and is popular for HIV testing since 2009.

2.1 The Frankfurt pool testing method

We are given n samples {s1, s2, . . . , sn} for testing. The Frankfurt pool testing method proceeds
as follows:

1. Prepare to divide each sample si into up to 2 aliquots si,1 and si,2.

2. Partition the set of all n samples into subsets of a given size p < n. (In [6] we have n = 50
and p = 5, in [4] we have n = 1,191 and p = 30.)

3. Make a pool test for each subset using the aliquots si,1. (These tests can be performed
simultaneously.)

4. Declare all samples within each negatively tested subset negative.

5. Test all samples within each positively tested subset individually using the aliquots si,2.

2.2 Our recursive pool testing method

Rather than testing all samples in a positive pool, the idea is to again split this pool subset
into 2 (or more) smaller subsets for pool testing, and keep splitting as long as possible.

In detail, our enhancement concerns steps 1 and 5 of the Frankfurt pool testing method.
For ease of exposition, we assume p to be a power of 2, i.e., p = 2k for some k. (The method
can be easily adapted to arbitrary values of p.) In step 1, we moderately increase the number
of aliquots:

1’. Prepare to divide each sample si into up to a = 1 + log2 p aliquots {si,1, si,2, . . . , si,a}.

Step 5 is replaced by an application of the Divide&Conquer principle that is well-known in
Computer Science:

5’. For each positively tested subset apply the divide&conquer method decribed next.

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint
The copyright holder for thisthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.07.02.20144956doi: medRxiv preprint

https://doi.org/10.1101/2020.07.02.20144956
http://creativecommons.org/licenses/by-nc-nd/4.0/

Divide&conquer method

For ease of exposition, we assume the pool subset to consist of the sample aliquots

sb,1, sb+1,1, sb+2,1, . . . , sb+p−1,1.

These are the p consecutive aliquots starting at index b. E.g., for n = 16 and p = 4, the pool
subsets are

{s1,1, s2,1, s3,1, s4,1} {s5,1, s6,1, s7,1, s8,1} {s9,1, s10,1, s11,1, s12,1} {s13,1, s14,1, s15,1, s16,1}.

Then, with e = b+ p− 1, dc test(b, e, d) stands for “Test the pool of the samples sb, sb+1, sb+2,
. . . , sb+p−1 using aliquots d”.
So our task is dc test(b, e, 1). Here is dc test(b, e, d) in pseudocode:

dc test(b, e, d)

if b = e then
Perform an individual test with sample aliquot sb,d.
if the test is negative then

Declare sample sb negative.
else

Declare sample sb positive.
end if

else
Perform a pool test with the sample aliquots sb,d, sb+1,d, . . . , se,d.
if the test is negative then

Declare all samples sb, sb+1, . . . , se negative.
else

Perform the pool test dc test(b, b+e−1
2 , d + 1).

Perform the pool test dc test(b+e+1
2 , e, d + 1).

// The two test above can be performed simultaneously.
end if

end if

2.3 A small example for illustration

We have n = 16 samples s1, s2, . . . , s16 all of which are negative but two, namely s5 and s15,
which are positive. The pool size is p = 4.

Both methods apply pool tests to the subsets

{s1,1, s2,1, s3,1, s4,1} {s5,1, s6,1, s7,1, s8,1} {s9,1, s10,1, s11,1, s12,1} {s13,1, s14,1, s15,1, s16,1}.

The first and the third will have a negative result, the second and the fourth a positive result.
Up to this point, both methods will have applied 4 tests.

The Frankfurt pool testing method will now apply individual tests to the sample aliquots
s5,2, s6,2, s7,2, s8,2, s13,2, s14,2, s15,2, and s16,2 (8 individual tests) so that a total of 12 tests is
performed.

The recursive pool testing method will replace {s5,1, s6,1, s7,1, s8,1} by {s5,2, s6,2} and
{s7,2, s8,2} and make pool tests for both. It will get a positive result for the first and therefore
test s5,3 and s6,3 individually. Then it will replace {s13,1, s14,1, s15,1, s16,1} by {s13,2, s14,2} and
{s15,2, s16,2}, make pool tests for both and get a negative result for the first and a positive
result for the second. Therefore it will test s15,3 and s16,3 individually. This involves another 4
pool tests plus 4 individual tests, so, again, a total of 12 tests, no improvement in terms of the
number of tests.

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint
The copyright holder for thisthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.07.02.20144956doi: medRxiv preprint

https://doi.org/10.1101/2020.07.02.20144956
http://creativecommons.org/licenses/by-nc-nd/4.0/

Here is an illustration of the actions of both methods (boxes correspond to tests, blue means
“negative”, red means “positive”. Both methods initially divide the entire set of 16 samples

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

into intervals of 4 sample aliquots

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

of 4 samples each that are pool tested: The frame colors indicate negative and positive test
results.
Afterwards the Frankfurt pool testing method performs the individual tests

5 6 7 8 13 14 15 16

while the recursive method proceeds by performing the pool tests

5 6 7 8 13 14 15 16

and finally the individual tests
5 6 15 16

We see that the recursive method requires up to 3 aliquots, namely 1 aliquot for the samples in
{s1, s2, s3, s4, s9, s10, s11, s12}, 2 aliquots for the samples in {s7, s8, s13, s14}, and 3 aliquots for
the samples in {s5, s6, s15, s16}.

2.4 Generalized recursive method

So far we have split each pool into 2 subpools. Of course, we can just as well split into B > 2
subpools. Again, for ease of exposition, we assume that the pool size p is a power of B, i.e.,
p = Bk for some k. In practice, we expect pools in which there is no or only one positive
sample. In the former case, no further test is necessary. In the latter case, the positive sample
is found after 1 + B logB p tests. E.g., let p = 4 and B = 2. Then the pool of size 4 is positive
(first test). One of the two subpools of size 2 (second and third test) is positive and requires
another two individual tests (fourth and fifth test), i.e., a total of 1 + 2 log2 4 = 5 tests. The
situation is illustrated in Figure 1. The case p = 9 and B = 3 with a total of 1 + 3 log3 9 = 7
tests is illustrated in Figure 2.

4

2 2

1 1

Figure 1: 5 tests when p = 4 and B = 2

What would be the ideal B if the pool contains one positive sample? Mathematical calcula-
tions show that the unique minimum of f1(B, p) = 1 +B logB p for B ≥ 2 is B = e = 2.71828...
(Euler’s number) for any given pool size p ≥ 2. The left picture in Figure 3 shows a plot
of the function f1(B, p). But what is the best integer? Since f1(2, p) > f1(3, p) and f1 is
monotonically increasing with increasing B > e, we obtain B = 3 as the best choice.

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint
The copyright holder for thisthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.07.02.20144956doi: medRxiv preprint

https://doi.org/10.1101/2020.07.02.20144956
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

3 3 3

1 1 1

Figure 2: 7 tests when p = 9 and B = 3

The analysis for two or more positive samples in a pool is more involved. If the pool contains
two positive samples, then we can show that the function

f2(B, p) = 1 +
B(logB p)(2p− 1)

p− 1
− B2

B − 1

gives the expected number of tests as a function of B and p. The picture on the right of Figure 3
shows a plot of the function f2(B, p). Again, it turns out that B = 3 is the best choice as long
as p ≥ 13. Indeed, for pool sizes from 7 to 12, it would be optimum to split the pools into 4
pieces, for pool size 6, the value B = 5 would be ideal, and smaller pool sizes should be tested
individually. Three or more positive samples in a pool of size up to 30 are quite unrealistic.
The Appendix contains a detailed mathematical analysis of the above. Our computational tests
confirm that B = 3 is the best choice in realistic scenarios with pool sizes between 25 and 30.
So we restrict our attention in the following to the 3-split version of recursive pool testing.

Figure 3: The functions f1(B, p) (left) and f2(B, p) (right). The green axis is associated with
B and the red axis is associated with p. The blue axis shows the expected number of tests for
the case of exactly one positive (left) and two positive (right) samples, respectively.

2.5 Statistics for some test simulations

According to the Robert Koch Institute (RKI), the number of tests per week from calendar
weeks 2 to 21 varied between 124,000 and 408,000 for about 170 laboratories, which is a total
of about 2, 000 tests per laboratory week on average, i.e., 400 per day. The proportion of
positive tests in Germany has been between 1.5 % and 9 %. In the 21st calendar week, 344,782
laboratory tests for the coronavirus (SARS-CoV-2) were carried out in Germany, 5,116 (1.5 %)
have been positive.

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint
The copyright holder for thisthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.07.02.20144956doi: medRxiv preprint

https://doi.org/10.1101/2020.07.02.20144956
http://creativecommons.org/licenses/by-nc-nd/4.0/

Currently, a typical laboratory seems to test about 400 samples per day. Accordingly, we
have simulated tests for n = 400 samples with pool size p = 27 for varying infection rates.
The minima/maxima/averages/medians have been taken over 1,000,000 samples, in which the
infected samples are uniformly randomly distributed. The results for the Frankfurt method
in comparison to the 3-split version of the recursive method are presented in Table 1 and, for
the medians only, as a bar chart in Figure 4. The results show that, with small infection rates
up to about 5 %, the new approach outperforms the Frankfurt approach by more than 50 %.
For example, for an infection rate of 1.5 %, our method needs about 66 tests compared to the
Frankfurt method with 150 tests (which is a reduction of 56 %). For larger rates, the advantage
is less significant, and for rates from about 25 %, the Frankfurt approach is better.

Compared to current individual testing methods without pools, our experiments show that
with a positive sample rate of 1.5 % the number of tests could be reduced by 83.5 %.

Frankfurt recursive 3-split
method method

#positive min max avg med min max avg med

1 (0.25 %) 37 42 41.72 42 23 26 23.98 24
2 (0.50 %) 37 69 66.73 69 23 35 32.69 33
4 (1.00 %) 37 123 111.97 123 27 53 49.37 51
6 (1.50 %) 42 177 151.50 150 38 71 65.11 66

20 (5.00 %) 172 415 317.93 312 113 182 155.67 156
36 (9.00 %) 253 415 385.34 388 174 269 231.92 232

60 (15.00 %) 312 415 410.45 415 259 363 316.86 317
80 (20.00 %) 334 415 414.13 415 316 417 371.20 371

100 (25.00 %) 361 415 414.85 415 359 462 415.31 416

Table 1: 400 samples, pool size 27, statistics over 1,000,000 samples

0.25 % 0.5 % 1 % 1.5 % 5 % 9 % 15 % 20 % 25 %
0

100

200

300

400

Percentage of positive samples

M
ed

ia
n

n
u

m
b

er
of

te
st

s Frankfurt method
recursive method

Figure 4: Median number of tests for 400 samples with infection rates from 0.25 % to 25 %

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint
The copyright holder for thisthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.07.02.20144956doi: medRxiv preprint

https://doi.org/10.1101/2020.07.02.20144956
http://creativecommons.org/licenses/by-nc-nd/4.0/

3 Limitations of pool testing

The Frankfurt pool testing method increases the test capacity significantly and our simulations
indicate that recursive pool testing has the potential to increase the test capacity even further
by a factor of about 2 in realistic scenarios. However, pool testing in general and the recursive
method in particular have drawbacks that limit their applicability. We recall that we refer to
the pool size as p and to the required number of aliquots as a.

3.1 Desirable pool sizes

As Lohse et al. [4] state, borderline samples might escape detection in pools of size 30. However,
they expect those samples might stem from almost recovered persons.

With increased p, sensitivity, i.e., the chance to detect a positive sample in a pool of negative
samples, diminishes. In PCR technology, ideal amplification follows a 2c pattern where c is the
cycle number. Assuming a 40-cycle PCR, one can estimate the amount of amplified DNA
by amplified DNA = initial DNA × 240. Typically, a realtime PCR reliably detects positive
samples as long as the target reaches the threshold value by cycle 37 or 38. With each 1:2
dilution (50 % virus concentration) the ct-value is increased by 1. So, for a 1:p dilution, ct
values increase by log2 p. With a 128-size pool, one can assume an increase in the ct value from
a single sample to a pool of log2 128 = 7. This means that samples with single-sample ct values
31 or above might escape detection. With this in mind, the pool size can be determined by
counterbalancing cost and sensitivity.

As a working hypothesis for the following, we assume that pools should not be larger than
30, on the other hand, it is desirable to stay close to 30.

3.2 Number of required aliquots

Individual testing requires no sample splitting into aliquots, in our notation a = 1, the Frankfurt
method requires up to a = 2, the Saarbrücken variant up to a = 3, and our recursive method
with 3-splits up to a = 1 + log3 p aliquots of each sample, at pool size p = 9 the latter amounts
to a = 3 aliquots like the Saarbrücken variant, at pool size p = 27 the latter amounts to
a = 4 aliquots. It is unclear, see also below, if a = 4 is tolerable in laboratory practice. We
have pointed out the superiority of the 3-split recursive method, but we have not yet taken
a limitation of the number of required aliquots into account. If a ≤ 3 is required, the 3-split
method would have to set the pool size to only 9 which is undesirable. Likewise, the 4-split
recursive method (B = 4) with “natural” pool size p = 42 = 16 is undesirable due to small pool
size. On the other hand, 6-split with “natural” pool size p = 62 = 36 is undesirable, because
the pools get too big. An interesting alternative is to consider 5-splits (i.e., take B = 5) and
set the pool size to p = 52 = 25.

We have repeated the experiment reported in Table 1 and Figure 4 with this alternative in
order to see if the number of tests deteriorates in comparison to the previous table for which
up to 4 aliquots were needed. We also ran the Saarbrücken variant on the same instances in
order to see how well it performs in comparison. The results are given in Table 2 and Figure 5.
We observe that recursive 5-split consistently outperforms the Saarbrücken variant and its
performance only moderately deteriorates in comparison to the 3-split recursive method.

We also compared the same two methods as well as the 3-split recursive method on 1,000,000
random instances of the original Saarbrücken experiment, i.e., n = 1,191 samples, 23 of which
positive, randomly distributed, 1,000,000 instances. The pool sizes are 30 for the Saarbrücken
variant, 25 for the 5-split, and 27 for the 3-split recursive method, see Table 3. The 5-split recur-
sive method significantly outperforms the Saarbrücken method (both require up to 3 aliquots)
even though it uses pools of size 25 rather than 30, and its performance is is pretty close to the
one of the recursive 3-split method that requires up to 4 aliquots.

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint
The copyright holder for thisthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.07.02.20144956doi: medRxiv preprint

https://doi.org/10.1101/2020.07.02.20144956
http://creativecommons.org/licenses/by-nc-nd/4.0/

Saarbrücken recursive 5-split
variant method

#positive min max avg med min max avg med

1 (0.25 %) 24 27 26.92 27 26 26 26.00 26
2 (0.50 %) 24 40 39.42 40 26 36 35.65 36
4 (1.00 %) 27 66 63.15 66 31 56 53.97 56
6 (1.50 %) 37 92 85.35 89 41 76 71.08 71

20 (5.00 %) 125 253 207.06 207 106 196 165.61 166
36 (9.00 %) 201 383 296.93 300 176 276 240.00 241

60 (15.00 %) 284 453 375.56 373 256 376 318.09 316
80 (20.00 %) 323 453 411.21 413 301 436 365.48 366

100 (25.00 %) 353 453 431.30 433 336 461 401.80 401

Table 2: 400 samples, pool sizes 30 for Saarbrücken variant and 25 for recursive 5-split, statistics
over 1,000,000 samples

0.25 % 0.5 % 1 % 1.5 % 5 % 9 % 15 % 20 % 25 %
0

100

200

300

400

Percentage of positive samples

M
ed

ia
n

n
u

m
b

er
of

te
st

s

Saarbrücken variant
recursive 5-split method

Figure 5: Median number of tests for 400 samples with infection rates from 0.25 % to 25 %

method pool size #aliquots #tests
min max avg med

Saarbrücken 30 3 210 339 304.02 304
5-split recursive 25 3 193 278 251.29 253
3-split recursive 27 4 180 252 231.17 231

Table 3: 1,191 samples, statistics over 1,000,000 random instances

However, with the 5/25 pooling, a lab can use the same pooling device with identical settings
to produce 25-size pools by just using the previously generated size-5-pools as input and still
keep the original (aliquot 1) as well as the size-5-pools (aliquot 2) and obtain the 3rd aliquot
by making up the 25-size-pool. No re-programming is needed, and lab personnel does not need
to keep in mind whether to pool 3, 9 or 27 samples as it would always boil down to 1 in 5.

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint
The copyright holder for thisthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.07.02.20144956doi: medRxiv preprint

https://doi.org/10.1101/2020.07.02.20144956
http://creativecommons.org/licenses/by-nc-nd/4.0/

3.3 Required time for all results

With current technology, a batch with up to 94 samples takes a little over 3 hours to be analysed.
Any time to pool samples would have to be performed beforehand and laboratory experience
indicates that this takes about another roughly 2 hours for 380 samples (pooled into pools of
size 5, thus 76 pools). Assuming no invalid results and only valid batches, as well as neglecting
setup-times and time taken to produce the pools, individual results are available after 3a hours,
i.e., 3 hours for individual testing (up to 94 samples), 6 hours with the Frankfurt method, 9
hours with the Saarbrücken variant as well as the 5-split recursive method at pool size 25, and
12 hours with the recursive 3-split method at pool size 27.

While it takes 8 hours to test 1,000 samples using a roche cobas 8800 analyzer, the authors
have calculated that with pool size 5 it takes a little more than 14 hours for the same samples
(1 % positives), and, with recursive pool testing at size 25 and 5, the turnaround-time would
go up to 17 hours. While the extended waiting times are intolerable in many scenarios like
testing due to individual doctoral prescription or testing in known hot spots, they might well
be tolerable in mass testing without previous indications, e.g., when opening a school with
1,000 students and teachers and testing at fortnightly intervals for possible early detection of
infections, mainly in settings with very few or no positive samples to be expected.

3.4 Laboratory practice

Of course, in order to convince laboratories to undertake changes in their workflow that are
prone to prolonged turnaround times, the course of action must be provided in an easily di-
gestible form. The question is: How could something like this be realized in practice?

First and foremost, the LIS (lab information system) needs to be able to distinguish between
samples which can be pooled (let’s call them “screening samples”) and samples which must not
be pooled (“diagnostic samples”). Those screening samples need to be entered into the system
with a specific request, different from the diagnostic samples’ entries. Also, the user (not
necessarily the samples’ originators) need to be able to see, at any time, at which point in the
prospective pooling step a sample might be just now. Therefore, it might be prudent to allow
for 3 different analyses if working with 2 different pools: “number analyses = number aliquots”.
We start with aliquots si,1 of the n samples {s1, s2, . . . , sn} and add p samples into one pool
which is then analysed using analysis corona pool 1. If corona pool 1 turns out negative, the
lab order for those patients is fulfilled and the negative result is reported. All those with either
a positive or invalid result appear with “not negative” (and hidden to the sender) on the lab
report and make the next step (request) appear (open) on the lab report corona pool 2. Same
here, any negative pools end up with the negative result behind this analysis while any positive
or invalid results appear as “not negative” internally within the lab and make the third analysis
appear, visibly, on the report corona screen. All 3 analyses might have the same friendly name
appear on the lab report, visible to the samples’ sender.

The strict consecutive pattern of dividing positive pools into subpools described in Sec-
tion 2.2 has been useful for a concise description of the algorithm, but it is not necessary for
the correctness of the recursive method. Rather, different aliquots of the samples in a positive
pool can be arbitrarily assigned to the subpools.

Within the lab, samples will be archived and can be retrieved if any pool is positive. In
order for the lab personnel to know whether to pool the samples with 26 or 8 or 2 or whatever
number of other samples, samples should be stored in different archives and marked with
different colours, depending on their status within the workflow chain.

An easier setup would be a pooling device that inherently can pool 5 samples and use this
to undergo a 2-step pooling. Step 1: Make pools of 5 of all screening samples. Step 2: Make
pools of 5 of all pools from step 1. This way, using the same pipetting robot and the same
programming, the complete chain of barcode numbers can be passed on to the LIS after step 2

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint
The copyright holder for thisthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.07.02.20144956doi: medRxiv preprint

https://doi.org/10.1101/2020.07.02.20144956
http://creativecommons.org/licenses/by-nc-nd/4.0/

is complete. This way, also, all containing pools of 5 which might be needed if the 25-size-pool
comes back positive, are already available and ready for second stage testing. The downside
is: With low prevalence, a significant number of size-5 pools are created unnecessarily, costing
time.

However, already having the LIS know the next smaller pools barcode makes it easier to
work with residual lists, i.e., which samples still have no result and where do I find them.

4 Discussion

These days we face the situation that some restrictions imposed due to the Covid-19 pandemic
are reduced stepwise and another shutdown would be disastrous for the economy. We regularly
test the players in the German soccer leagues but have no plan how to detect new emerging
hotspots in, say, re-opened kindergartens, schools, and retirement homes as early as possible.
It seems that a substantially increased testing capability might help in developing an enhanced
strategy in dealing with this situation. This view is shared, e.g., by the German Federal Minister
of Health Jens Spahn [3]: “Es ist viel teurer, zu wenig zu testen, als zu viel zu testen.”2

Currently (end of June 2020), the German Federal State of Bavaria offers preventive SARS-
CoV-2 mass testing to all (roughly 13,000,000) state inhabitants. We believe that pool testing
in general and the recursive method in particular may be the method of choice.

However, one must not assume that sample pooling reduces the cost of testing by a factor
of the pool size. It is clear that laboratories save on reagents with the reduced number of tests.
With recursive pooling, we have shown that reagents use can be massively reduced. For positive
sample rates of 1.5 %, the reduction is about 83 % with respect to current individual testing
and 56 % with respect to the Frankfurt method, respectively. However, one must consider the
downsides, namely the increased personnel and other consumable costs (like secondary tubes
and pipette tips) due to longer hands-on times and more procedural steps. A major problem
could also be the significantly prolonged turnaround times. However, this setup is certainly
feasible for laboratories with limited PCR-capacity or countries with limited reagent supplies
as well as those having to deal with sample numbers exceeding the laboratory capacities by a
large factor over a prolonged period of time. We definitely think that recursive pool testing
may be useful in mass testing when only few infections are to be expected.

We can suggest to labs involved in SARS-CoV-2 testing to consider evaluating this setup
with their own equipment and calculate the “sweet spot” for their circumstances based on an
arbitrary number of samples with varying positivity rates.

While it is also possible to transfer this idea to antibody-testing, one needs to keep in mind
that antibody tests mostly follow a linear dilution formula while the exponential increase in
DNA-fragments in PCR technology allows for greater dilution factors with relatively smaller
impact on possible false-negatives.

5 Acknowledgments

We gratefully acknowledge the advice of Ulrich Jürgens, Andrea Krieger, Dirk Schmidt, and
Norbert Schöngen.

References

[1] Eleanor Bird. Pooling samples could accelerate new coronavirus testing. https://www.
medicalnewstoday.com/articles/pooling-samples-could-accelerate-new-coronavirus-testing,
2020.

2“It is much more expensive to test too little than it is to test too much.”

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint
The copyright holder for thisthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.07.02.20144956doi: medRxiv preprint

https://doi.org/10.1101/2020.07.02.20144956
http://creativecommons.org/licenses/by-nc-nd/4.0/

[2] Goethe University Frankfurt. Corona pool testing increases worldwide
capacities many times over. https://healthcare-in-europe.com/en/news/
corona-pool-testing-increases-worldwide-capacities-many-times-over.html, 2020.

[3] Bundesministerium für Gesundheit. https://www.bundesgesundheitsministerium.de/
corona-test-vo.html.

[4] Stefan Lohse, Thorsten Pfuhl, Barbara Berkó-Göttel, Jürgen Rissland, Tobias Geißler, Bar-
bara Gärtner, Sören L Becker, Sophie Schneitler, and Sigrun Smola. Pooling of samples for
testing for SARS-CoV-2 in asymptomatic people. https://www.thelancet.com/journals/
laninf/article/PIIS1473-3099(20)30362-5/fulltext, 2020.

[5] Michael Schmidt, Sebastian Hoehl, Annemarie Berger, Heinz Zeichhardt, Kai Hourfar,
Sandra Ciesek, and Erhard Seifried. FACT - Frankfurt adjusted COVID-19 testing- a
novel method enables high-throughput SARS-CoV-2 screening without loss of sensitivity.
medRxiv, 2020.

[6] Erhard Seifried and Sandra Ciesek. Pool-Testen von SARS-CoV-2 Proben erhöht die
Testkapazität weltweit um ein Vielfaches. https://aktuelles.uni-frankfurt.de/forschung/
pool-testen-von-sars-cov-2-proben-erhoeht-die-testkapazitaet-weltweit-um-ein-vielfaches/,
2020.

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint
The copyright holder for thisthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.07.02.20144956doi: medRxiv preprint

https://doi.org/10.1101/2020.07.02.20144956
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Appendix: Optimum Split Numbers

We derive the (expected) optimum split numbers B for the cases that in a pool of size p there
is exactly one (see A.1) or there are exactly two (see A.2) positive samples, respectively, as
claimed in Section 2.4. We have B ≥ 2 and B ≤ p. In order to simplify the mathematics we
assume p to be a power of B, i.e., p = Bk for some k ∈ N.

The set of all possible tests is illustrated by the split tree. Figure 6 displays the split tree
for B = 3 and pool size p = 27. Each box shows a pool with its size (the number of samples in
this pool) provided in the box. The split tree has exactly logB p+ 1 levels, we will denote them
by level 0 (the root level), followed by the levels 1, 2, . . . , logB p. On the first level j = 0 of the
split tree all samples are part of the pool of size 27. On the second level (j = 1), the samples
have been separated into B = 3 pools of size p/B = 9. The last level (j = logB p) contains
pools with singletons only.

In general all samples on level 0 are within the same pool of size p, on level 1 we have B
pools of size p/B each, on level 2 we have B2 pools of size p/B2 each, on level logB p − 1 we
have p/B pools of size B, and on the last level we have singletons only.

27

9

3

1 1 1

3

1 1 1

3

1 1 1

9

3

1 1 1

3

1 1 1

3

1 1 1

9

3

1 1 1

3

1 1 1

3

1 1 1

Figure 6: The split tree for B = 3 and pool size p = 27. Each box corresponds to a pool whose
size is given in the box. The red boxes indicate positive pools under the assumption that here is
exactly one positive sample. Regardless of the position of the positive sample (here position 3)
there is always one positive pool on each level such that a total of 1 + B logB p = 10 tests are
needed.

A.1 Case 1: One positive sample in the pool

In the case that exactly one sample in the pool is positive, it is obvious that we need one test
for the original pool of size p (level j = 0 of the split tree) and B tests on each level of the split
tree in order to identify the sample. Hence, for p ≥ 2, the number of tests is provided by the
function

f1(B, p) = 1 + B logB p.

Calculating the first partial derivative with respect to B

∂

∂B
f1(B, p) =

(lnB)(ln p)− ln p

(lnB)2

and setting it to 0 gives the minimum B = e = 2.718..., where e is the Euler number. However,
we need to restrict B to be integer. We can easily see that f1(2, p) > f1(3, p) for p ≥ 3, and f1
is monotonically increasing with increasing B > e, therefore we obtain B = 3 as the optimum
value for B. Notice that the function f1(B, p) is the same in the best possible case, the worst
possible case, and the (expected) average case.

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint
The copyright holder for thisthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.07.02.20144956doi: medRxiv preprint

https://doi.org/10.1101/2020.07.02.20144956
http://creativecommons.org/licenses/by-nc-nd/4.0/

A.2 Case 2: Two positive samples in the pool

In the case that there are exactly two positive samples in the pool of size p, the optimum split
number depends on their explicit position. If we are lucky, both samples belong to the same
pool all the way down in the split tree (they are separated on the last level only). In this (best)
case we need the same number of tests as in the subsection before (see A.1), namely

fbest
2 (B, p) = 1 + B logB p.

On the other hand, in the worst case the two positive samples are in different pools already on
level j = 1 of our tree (as shown in Figure 7), in which case we need 2B tests for levels j = 2
to j = logB p in addition to the test at level j = 0 and B tests in level j = 1. This sums up to
the worst case number of tests

fworst
2 (B, p) = 1 + 2B(logB p− 1) + B = 1 + 2B logB p−B.

27

9

3

1 1 1

3

1 1 1

3

1 1 1

9

3

1 1 1

3

1 1 1

3

1 1 1

9

3

1 1 1

3

1 1 1

3

1 1 1

Figure 7: A split tree for B = 3 and pool size p = 27 with two positive samples. The pools
containing positive samples are shown in red. After level j = 0 the two samples have been
separated into different pools.

In practice, best and worst cases will occur rather rarely. Therefore, in addition to best
case and worst case analysis, an average case analysis is the appropriate analysis for practical
scenarios. In the average case analysis we are interested in the expected number of tests for
the following stochastic experiment in which we randomly choose the two positions of the two
positive samples in the pool. We introduce the random variable X as the number of necessary
tests in order to detect the two positive samples correctly. For our analysis we are interested
in the expected number of tests E[X]. We will search for all possible pairs of positive samples
once and average over the number of all possible pairs which is

(
p
2

)
= p(p− 1)/2.

The number of tests depends on the level of the tree on which the two samples are separated
into different pools. Let j be defined as the level number for which the two positive samples
share the same pool, but are in different pools on level j + 1. For the two positive samples
(displayed in red) in Figure 7 we can see that j = 0. Obviously, all pairs of positive samples
satisfying the above condition for the same j will need the same number of tests. Let Xj be
the random variable of the number of tests needed for those pairs for a specific j.

The expected number of tests E[X] is defined by the sum of all possible outcomes of the
random variable X weighted by the number of times this outcome is produced divided by the
total number of possible pairs. In other words, it is the average number of tests needed to
search for all possible pairs:

E[X] =
1(
p
2

) logB p−1∑
j=0

E[Xj](number of pairs that separate on level j + 1)

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint
The copyright holder for thisthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.07.02.20144956doi: medRxiv preprint

https://doi.org/10.1101/2020.07.02.20144956
http://creativecommons.org/licenses/by-nc-nd/4.0/

We first consider the number of tests needed when the two positive samples separate directly
after level j.

• For the latest possible j = logB p − 1, we have already argued that we get the best case
which is fbest

2 (B, p) = f1(B, p) = 1 + B logB p.

• For j = logB p − 2 we need B more tests, since the two positive samples are in different
pools on level logB p− 1.

• For each j decreasing by one, we have B more tests.

• We know already that for j = 0 we get the worst case function fworst
2 (B, p) = 1 +

2B logB p−B.

• Altogether the number of tests in the considered case for j is equal to

1 + B logB p + iB with i = logB p− 1− j.

In particular, for j = 0 we get 1 + B logB p + B logB p − B = fworst
2 (B, p) (worst case

function) and for j = logB p − 1 we get 1 + B logB p + B(logB p − 1 − (logB p − 1)) =
1 + B logB p = fbest

2 (B, p) (best case function).

Next we calculate the number of pairs that separate directly after level j:

• For the latest possible j = logB p − 1 we have
(
B
2

)
p/B possibilities to choose the two

positive samples. In this case both samples are in the same pool until the end. The
(
B
2

)
is the number of possibilities for choosing the two samples from the last pool which has
size B. On the latest possible level we have p/B such pools.

• For level j = logB p− 2 we have
(
B
2

)
(BB)p/B2 such pairs. Again, we have

(
B
2

)
different

possibilities to choose the two samples from the last pool which has size B. Now for
each subtree we need to decide in which of the B × B positions each of the two samples
will sit. Hence, these are (BB) possibilities. We have p/B2 such subtrees rooted at level
logB p− 2.

• For level j = logB p− 3 we have
(
B
2

)
(BB)2p/B3 such pairs. Again, we have

(
B
2

)
different

possibilities to choose the two samples from the last pool which has size B. Now for
each subtree we need to decide in which of the B positions each of the two samples will
sit. Hence, these are (BB)2 possibilities. We have p/B3 such subtrees rooted at level
logB p− 3.

•
...

• For level j = 1 we have
(
B
2

)
(BB)logB p−2p/BlogB p−1 =

(
B
2

) p2

(BB)2
B such pairs. Notice that

BlogB p−1 = p/B and BlogB p−2 = p/(BB).

• For level j = 0 we have
(
B
2

)
(BB)logB p−1p/BlogB p =

(
B
2

) p2

(BB) such pairs.

• Altogether for general j with j = 0, . . . , logB p−1 the number of pairs separating directly
after level j is given by (

B

2

)
(BB)ip

Bi+1
with i = logB p− 1− j.

In particular, for j = 0 we get
(
B
2

)
(BB)logB p−1p/BlogB p and for j = logB p − 1 we get(

B
2

)
(BB)0p/B1.

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint
The copyright holder for thisthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.07.02.20144956doi: medRxiv preprint

https://doi.org/10.1101/2020.07.02.20144956
http://creativecommons.org/licenses/by-nc-nd/4.0/

Putting this together leads to the following function for the expected number of tests de-
pending on B and p with B < p and p = Bk for some integer k:

E[X] =
1(
p
2

) logB p−1∑
i=0

(
B

2

)((BB)ip

Bi+1
)(1 + B logB p + iB

)

=
p
(
B
2

)(
p
2

) logB p−1∑
i=0

Bi−1(1 + B logB p + iB)

=
2pB(B − 1)

2p(p− 1)

logB p−1∑
i=0

(Bi−1 + Bi logB p + iBi)

=
B(B − 1)

(p− 1)

(1

B

logB p−1∑
i=0

Bi + (logB p)

logB p−1∑
i=0

Bi +

logB p−1∑
i=0

iBi
)

In order to calculate the sums, we use the well known formulae for geometric series

logB p−1∑
i=0

Bi =
BlogB p − 1

B − 1
=

p− 1

B − 1

and
logB p−1∑

i=0

iBi =
(B − 1)p logB p−Bp + B

(B − 1)2
=

p logB p

B − 1
− B(p− 1)

(B − 1)2
.

We obtain:

E[X] =
B(B − 1)

p− 1

(1

B

(p− 1)

B − 1
+ (logB p)

(p− 1)

B − 1
+

p logB p

B − 1
− B(p− 1)

(B − 1)2

)
=

B

p− 1

(p− 1

B
+ (logB p)(p− 1) + p logB p− B(p− 1)

B − 1

)
=

B

p− 1

(p− 1

B
+ (logB p)(2p− 1)− B(p− 1)

B − 1

)
=

B(logB p)(2p− 1)

p− 1
+

B

p− 1

((p− 1)(B − 1)

B(B − 1)
− B2(p− 1)

B(B − 1)

)
=

B(logB p)(2p− 1)

p− 1
+

B(p− 1)

p− 1

((B − 1)

B(B − 1)
− B2

B(B − 1)

)
=

B(logB p)(2p− 1)

p− 1
− B2

B − 1
+ 1

The expected number of tests depends on B and b, so it can be written as a function
f2(B, b). In contrast to the case of only one positive sample in the pool, the minimum of the
function f2(B, b) depends on the pool size p.

For pool size p = 6, the best choice is B = 5 since the minimum of the function is taken for
value 5.284... . For smaller pool sizes p ≤ 5, it is preferable to test individually. For pool sizes
7 ≤ p ≤ 12, the best choice is B = 4 since for these pool sizes the minimum values are within
the range [3.507, 4.295], and for pool size p ≥ 13, B = 3 is the optimum split value: For p = 13,
the minimum is taken at 3.455... and for larger pool sizes p > 13 the minimum again converges
to the Euler number e = 2.718... . However, this convergence is quite slow. Whereas for p = 30,
the minimum value of the function is 3.158..., for the (unrealistic) large p = 1,000,000, the
minimum value is 2.790... .

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint
The copyright holder for thisthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.07.02.20144956doi: medRxiv preprint

https://doi.org/10.1101/2020.07.02.20144956
http://creativecommons.org/licenses/by-nc-nd/4.0/

