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ABSTRACT 
Neural tube defects (NTD) are the most common congenital birth defects. The reason for the 
NTD cause is still not completely known, but it is believed that some genetic and 
environmental factors might play a role in its etiology. Among the genetic factors the 
polymorphism in the folate gene pathway is crucial. Numerous studies have suggested the 
possible role of maternal higher plasma concentration of homocysteine and low concentration 
of folate and cobalamin in the development of NTD but some negative studies are also 
published. So, in this study, authors tried to find out the exact relation between NTD and 
maternal biomarkers like folate, cobalamin and homocysteine by conducting a meta-analysis. 
Different electronic databases were searched for the eligible studies. Standardized mean 
difference (SMD) with 95% confidence interval (CI) was used to determine association 
between maternal markers as risk for NTD pregnancy. The p value <0.05 was considered 
statistically significant in all tests. All the statistical analyses were done in the Open Meta-
Analyst program. The homocysteine is significantly associated with the increased risk of 
NTD (SMD= 0.57; 95% CI: 0.35-0.80, p= <0.001; I2= 93.01%), s-folate showed protective 
role in NTD (SMD= -0.48; 95% CI: -0.77 to -0.19, p= 0.001; I2= 95.73%), similarly 
cobalamin is also having protective role (SMD= -0.28; 95% CI: -0.43 to -0.13, p= <0.001; I2= 
80.40%). In conclusion this study suggest that different maternal biomarkers may be used for 
the early prediction of the NTDs. 
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INTRODUCTION 
Neural tube defects (NTD) are very common congenital birth defects [1]. NTD is the general 
term for a number of malformations but the most common of them are anencephaly, 
encephalocele and spina bifida. The prevalence of NTD is 1 in 33 infants globally [2]. A 
recent meta-analysis suggests that the prevalence of NTD in India is 4.5 per 1000 births [3]. 
NTDs are caused by the failure of closure of neural tube either partially or completely. The 
reason for the same is still not clear but it is believed that some genetic and environmental 
factors might play a role in the etiology of NTD [4]. Among the genetic factors the most 
important is the polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene. 
This gene has a polymorphism at 677th position which makes this enzyme thermolabile [5]. A 
recent meta-analysis suggests that polymorphism in this gene increases the chance of the 
NTD affected pregnancies [6]. The MTHFR enzyme regulates the level of homocysteine. 
Experimental studies have already suggested that the low level of homocysteine is 
responsible for the improper closure of the neural tube in mouse model [7]. Several published 
articles also reported that higher maternal homocysteine concentration is associated with the 
increased risk of NTD affected pregnancies [8-10]. Higher plasma homocysteine 
concentration is also reported as to be  associated with different diseases like- Down 
syndrome [11-13], cleft lip and palate [14-16], cardiovascular disease [17-20], diabetes [21], 
and cancer [22- 24] etc. 
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Although various previous studies have suggested that the elevated level of homocysteine [8-
10] or lower level of the folic acid [8, 25, 26] and cobalamin [8, 10, 27] are the risk factors 
for the etiology of the NTD but the result are conflicting with some negative results. So here 
in this paper we try to find out the exact relation of these maternal biomarkers with the 
etiology of the NTDs by conducting a meta-analysis. 
 
MATERIALS AND METHODS 
Literature search 
Different databases (PubMed, ScienceDirect, and SpringerLink) were searched for the 
eligible studies. The keywords used were “neural tube defects”, or “NTD” in association with 
“homocysteine”, “folic acid”, or “cobalamin”.  
 
Inclusion and exclusion criteria 
A study included in this meta-analysis only if it was- (i) a case-control study; (ii) reported the 
level of homocysteine, folic acid, and cobalamin in NTD mothers and control mothers; (iii) 
either provided mean ± standard deviation (SD) or sufficient data to calculate mean and SD. 
Similarly, the studies excluded if they were- (i) reviews, meta-analysis, animal model studies, 
letter to editor, case reports; (ii) not in English. 
 
Data extraction 
From all the eligible articles, following information were extracted- first authors family 
name; ethnicity; country of study; journals name with year of publication, mean and SD of 
homocysteine, folic acid and cobalamin. In some publications the authors provided median 
and range so we calculated the mean and SD as per the method of Hozo et al. [28]. All the 
information was retrieved by two authors independently (UY and PK) and if any discrepancy 
found it was sorted out by consultation with the corresponding author. 
 
Statistical analysis 
Standardized mean difference (SMD) with 95% confidence interval (CI) was calculated to 
determine association between risk for NTD pregnancy and maternal markers i.e. 
homocysteine, folic acid and cobalamin. The p value <0.05 were considered statistically 
significant in all tests. The between study heterogeneity was calculated by Cochran's Q test 
and quantified by I2 tests [29] were applied. If heterogeneity is present (I2>50%) random-
effects model was applied [30] otherwise fixed-effects model was applied [31]. Publication 
bias was determined by visualization of the symmetry of the funnel plot. Publication bias was 
evaluated by the Egger’s linear regression method [32]. All the statistical analyses were done 
by Open Meta-Analyst program [33]. All p-values were two-tailed with a significance level at 
0.05. 
 
RESULTS 
Characteristics of selected studies and meta-analysis 
(i) For homocysteine 
Five hundred and ninety-six studies were retrieved by electronic database search. Out of 
which 33 studies were assessed the level of homocysteine in NTD mothers [8-10, 26, 27, 34-
61]. Arbour et al. [40] reported two different populations (Cree and non-Cree) we treated 
them as separate studies so finally for homocysteine we have 34 studies (2,109 cases and 
3,514 controls).  
Meta-analysis revealed an SMD of 0.57 (95% CI: 0.35-0.80, p= <0.001; I2= 93.01%) 
indicating that elevated level of homocysteine is associated with NTD. High heterogeneity 
was found so random effect model was applied. Strong correlation was observed in the Asian 
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population (SMD= 1.11, 95% CI: 0.56-1.66, p= <0.001; I2= 97.05%). The Caucasian 
population has low effect of homocysteine (SMD= 0.41, 95% CI: 0.21-0.62, p= <0.001; I2= 
80.98%). Low effect of homocysteine is also found in the African population (SMD= 0.19, 
95% CI: -0.40-0.78, p= 0.52; I2= 68.57%) (Table 1; Figure 2). 
 
(ii) For s-folate 
Three hundred and ninety-three studies were retrieved by our search criteria. Out of which 36 
studies were assessed the level of s-folate in NTD mothers [8-10, 25-27, 34-39, 41-43, 45-55, 
58, 59, 61-68]. In the selected 36 studies the number of cases and controls were 2,131 and 
3,983 respectively.  
Meta-analysis revealed an overall SMD of -0.48 (95% CI: -0.77 to -0.19, p= 0.001; I2= 
95.73%) indicate that elevation in s-folate level in controls play a protective role in the 
etiology of NTD. High heterogeneity was found so random effect model was applied. The 
level of s-folate is higher in the Asian population (SMD= -1.37, 95% CI: -2.14 to -0.61, p= 
<0.001; I2= 97.85%) in comparison to the Caucasian population (SMD= -0.17, 95% CI: -0.35 
to 0.004, p= 0.05; I2= 78.89%). Low effect of s-folate is also found in the African population 
(SMD= -0.03, 95% CI: -0.56 to 0.49, p= 0.90; I2= 60.89%) (Table 1; Figure 3). 
 
(iii) For cobalamin 
Three hundred and twenty-six studies were retrieved by our search criteria. Out of which 28 
studies were assessed the level of cobalamin in NTD mothers [8, 9, 26, 27, 34-43, 45-47, 49-
54, 58, 59, 62-64]. Arbour et al. [40] reported two different populations (Cree and non-Cree) 
we treated them as separate studies so finally for cobalamin we have 29 studies (1,640 cases 
and 3,163 controls).  
Meta-analysis revealed an overall SMD of -0.28 (95% CI: -0.43 to -0.13, p= <0.001; I2= 
80.40%) indicate that elevation in cobalamin level in controls shows the decline in the NTD. 
Higher heterogeneity was found so random effect model was adopted. The level of cobalamin 
is low in the Asian population (SMD= -0.18, 95% CI: -0.67 to 0.31, p= 0.46; I2= 90.12%) in 
comparison to the Caucasian population (SMD= -0.30, 95% CI: -0.42 to -0.17, p= <0.001; 
I2= 52.95%). Low effect of cobalamin is also found in the African population (SMD= -0.40, 
95% CI: -0.86 to 0.06, p= 0.09; I2= 49.85%) (Table 1; Figure 4). 

 
Table 1. Summary estimates for the effect size of different biomarkers in overall and various subgroups, 

the significance level (p value) of heterogeneity test (Q test), and the I2 metric. 
 

Gene  Fixed effect 
SMD (95% CI), p 

Random effect 
SMD (95% CI), p 

Heterogeneity 
p-value (Q 

test) 

I2 
(%) 

 
 

Homocysteine 
(34 studies) 

Overall 0.34 (0.29-0.40), <0.001 0.57 (0.35-0.80), <0.001 <0.001 93.01 
Asian 0.40 (0.32-0.49), <0.001 1.11 (0.56-1.66), <0.001 <0.001 97.05 
Caucasian 0.33 (0.24-0.41), <0.001 0.41 (0.21-0.62), <0.001 <0.001 80.98 
African 0.11 (-0.19-0.42), 0.47 0.19 (-0.40-0.78), 0.52 0.07 68.57 
Other 0.15 (-0.09-0.40), 0.21 0.15 (-0.09-0.40), 0.21 0.72 0 

      
 

S-folate 
(36 studies) 

Overall -0.47 (-0.53 to -0.41), <0.001 -0.48 (-0.77 to -0.19), 0.001 <0.001 95.73 
Asian -1.04 (-1.14 to -0.93), <0.001 -1.37 (-2.14 to -0.61), <0.001 <0.001 97.85 
Caucasian -0.23 (-0.31 to -0.15), <0.001 -0.17 (-0.35 to 0.004), 0.05 <0.001 78.89 
African 0.02 (-0.28 to 0.33), 0.87 -0.03 (-0.56 to 0.49), 0.90 0.11 60.89 
Other 0.12 (-0.08 to 0.34), 0.24 0.22 (-0.47 to 0.92), 0.53 < 0.001 89.15 

      
 

S-cobalamin 
(29 studies) 

Overall -0.14 (-0.20 to -0.08), <0.001 -0.28 (-0.43 to -0.13), <0.001 <0.001 80.40 
Asian 0.20 (0.08 to 0.31), <0.001 -0.18 (-0.67 to 0.31), 0.46 <0.001 90.12 
Caucasian -0.28 (-0.36 to -0.20), <0.001 -0.30 (-0.42 to -0.17), <0.001 0.004 52.95 
African -0.35 (-0.66 to -0.04), 0.02 -0.40 (-0.86 to 0.06), 0.09 0.15 49.85 
Other -0.22 (-0.46 to 0.01), 0.06 -0.32 (-0.89 to 0.25), 0.27 0.02 79.48 
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Publication bias 
The funnel plots were symmetrical in all contrast models (Figure 5), and the P values of 
Egger’s test were more than 0.05, which provided statistical evidence for the absence of 
publication bias.  
 
DISCUSSION 
This meta-analysis was conducted to check the association between maternal homocysteine, 
folate and cobalamin levels as risk factors for the etiology of NTDs. We found that the 
homocysteine is a risk factor for the NTD affected pregnancies. While the folic acid and 
cobalamin level plays a protective role against the NTD affected pregnancies. It was long 
known before that the periconceptional folic acid supplementation prevent the NTD [35, 69]. 
The mechanism by which the NTDs are prevented by dietary folate supplementation is still 
not fully elucidated. Folic acid is essential for different cellular processes like- cell division, 
replication and DNA methylation etc. [70-73]. Proper DNA methylation is necessary for the 
maintenance of chromosome structure and gene expression and both are crucial for the 
normal development of the fetus [74]. Low plasma folate and /or MTHFR C677T 
polymorphism increases homocysteine in expecting mothers, which consequently affects the 
DNA methylation pattern and DNA synthesis of the developing fetus. Improper methylation 
interferes with the genes regulating neural tube closure [7]. Further higher concentration of 
homocysteine is toxic and generates free radicals by auto-oxidation and free radicals are toxic 
for the fetus [75]. 
Meta-analysis is an effective tool for combining studies having lower effect size. During past 
decade a number of meta-analyses were published examining the effect of different gene 
polymorphisms on various disease/disorder susceptibility like- MTHFR frequency [76], 
MTRR frequency [77], NTD [6], Down syndrome [78-79], schizophrenia [80-81], epilepsy 
[82], esophageal cancer [83], breast cancer [84], digestive tract cancer [85], and prostate 
cancer [86], etc. 
During our literature search we found two meta-analyses evaluating the role of homocysteine 
and NTDs [87, 88]. Tang et al. [87] found that the homocysteine has an association with the 
NTD with ratio of means (RoM) of 1.16 (95%CI: 1.09-1.23, p= 1.8x10-6). They also reported 
that the NTD-affected mothers have lower levels of folate, RBC folate and vitamin B12. The 
other study was published in the year 2017 by Yang et al. [88]. The authors of this study only 
included homocysteine level in their meta-analysis and they found that a significantly higher 
mean log plasma tHcy level was found in the mothers of NTD affected offspring (log WMD: 
0.06; 95%CI: 0.02–0.09, p= 0.001). The present meta-analysis included the larger number of 
studies with large sample size and results also supports the finding of the previous two 
studies. 
The main strength of our meta-analysis is (i) we included largest sample sizes and also largest 
number of studies, (ii) we included three parameters viz. homocysteine, s-folate, and 
cobalamin, (iii) we found no publication bias in our study. Here we also want to acknowledge 
some of the limitations of our meta-analysis such as- (i) use of unadjusted weighted mean 
difference, (ii) not considered the environmental effect on the metabolites, and (iii) high 
heterogeneity between studies. 
 
CONCLUSION 
In conclusion, the meat-analysis reveals the role of different biomarkers for the early 
prediction of the neural tube defects. Also, this study strengths the hypothesis that the 
elevation in the level of homocysteine or depletion in the level of folate or cobalamin during 
the pregnancy will increases the chances of an NTD affected offspring. 
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Figure legend 
Figure 1: Flow diagram of study search and selection process. 
Figure 2: Random effect forest plot of standardized mean differences of homocysteine. 
Results of individual and mean estimates, and 95% CI of each study were shown. Horizontal 
lines represented 95% CI, and dotted vertical lines represent the value of the mean. 
Figure 3: Random effect forest plot of s-RBC folate. 
Figure 4: Random effect forest plot of cobalamin. 
Figure 5: Funnel plots (standard error by mean difference)- a) homocysteine; b) s-RBC 
folate; c) cobalamin. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2020. ; https://doi.org/10.1101/2020.07.01.20143974doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.01.20143974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2020. ; https://doi.org/10.1101/2020.07.01.20143974doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.01.20143974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2020. ; https://doi.org/10.1101/2020.07.01.20143974doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.01.20143974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2020. ; https://doi.org/10.1101/2020.07.01.20143974doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.01.20143974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2020. ; https://doi.org/10.1101/2020.07.01.20143974doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.01.20143974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2020. ; https://doi.org/10.1101/2020.07.01.20143974doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.01.20143974
http://creativecommons.org/licenses/by-nc-nd/4.0/

