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Multitask learning from clinical text and acute physiological conditions differentially 
improve the prediction of mortality and diagnosis at the ICU 
 
L.G. Reichmann1, G. Valdes2, Romain Pirrachio3 and Y. Interian1 

 
Abstract 
 
The prediction of mortality of critically ill patients has stimulated the development of many severity 
scoring algorithms. The majority of the models use physiological measurements obtained during the first 
hours of admission (i.e., heart rate, arterial blood pressure, or respiratory rate). In this study, we propose 
to improve the performance of current scoring system by including free text from patient’s medical 
history. Although the primary outcome was in-hospital mortality, we chose a model architecture to 
provide simultaneous assessment of ICD-9 codes and groupings. We hypothesized that including patients’ 
medical history with a multitask learning approach would improve model performance. We compared the 
predictive performance obtained with our approach to the best models previously proposed in the 
literature (baseline models). We used the MIMIC publicly available database which includes > 60,000 
ICU admissions between 2001 and 2012. The patients’ condition at admission was accounted for by the 
preliminary diagnosis at admission and the medical history extracted from the discharge summaries notes. 
Unstructured data was processed through a Gated Recurrent Units layer with pre-trained word 
embeddings, and the hidden states were concatenated to the remaining structured-tabular data. Baseline 
models achieved similar results than in previously published work, but our artificial neural networks 
models showed significant improvement towards classification of mortality (AUC-ROC = 0.90). 
Including the medical history improved all tasks but relatively more the ICD-9 codes prediction than the 
mortality. The clinical prediction model presented here could be used to identify patients’ risk groups, 
which would improve the quality of ICU care, and further help to efficiently allocate hospital resources.  
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1) Introduction 

 
Efforts to model the prognosis of patients in intensive care units (ICUs) date back to the early 1980s 

(Le Gall, Lemeshow, and Saulnier 1993, Knaus et al. 1981). Since the 1980s, there has been a significant 
increase in the availability of electronic health records and open access medical databases. Both of these 
tools have helped improve the performance of risk scores predicting mortality, length of stay, and/or post 
discharge outcomes, among others (Johnson et al. 2017).  

 
In most of the cases, scores are calculated from data collected within the first 24h after the ICU 

admission (i.e., APACHE, SAPS, and MPM). Although there are pros and cons on including more 
variables, in general one wants simple models to facilitate their wide spread adoption. In fact, one of the 
challenges of digital medicine is selecting the potential predictors from a rapidly increasing pool of 
variables, especially since clinical data is being archived at the bedside.  

 
Traditional scoring systems are associated with a number of limitations. First, the selection of score 
variables and their weights initially relied on subjective methods, e.g., a panel of experts that select 
variables according to their perceived relevance for predicting mortality (e.g., Le Gall, Lemeshow, and 
Saulnier 1993). This limitation was overcome by using objective variable selection through statistical 
modelling techniques (Pirracchio et al. 2015, Rajkomar et al. 2018, Gennatas et al. 2020). Second, the 
traditional models generate a scoring system, which is then transform to a probability of mortality based 
on an equation that has been calibrated with specific β-coefficients (Sekulic et al. 2015). A major 
limitation of these scoring systems is that they require periodic recalibration (Lee and Maslove 2017). 
With improvements in treatments and technologies, the weights of certain predictors in the model may 
decrease, increase, or remain unchanged with time. For example, one of the most used scores in clinical 
practice, the SAPS II score, includes 12 physiologic variables, age, type of admission, plus three co-
morbidities variables (Le Gall, Lemeshow, and Saulnier 1993). A newer version of the Simplified Acute 
Physiology Score (SAPS III, Sakr et al. 2008, Metnitz et al. 2005) added three more comorbidities, and a 
variable that accounts for the reason for ICU admission. Most of these risk scores models were developed 
using logistic regression, i.e.,a linear model. However, recent developments in machine learning may 
allow us to overcome the rigidity of the traditional scoring systems (Pirracchio et al. 2015). A key 
difference with traditional logistic regression methods, is that data adaptive methods such as gradient 
boosting, random forest or artificial neural networks (aNNs) can effectively model non-linearities in the 
function if enough data is available. Moreover, aNNs can not only handle large volumes of data, but also 
process unstructured data such as text notes from health care providers. The information contained in 
clinical notes can be extracted in several ways. Some variants of recurrent neural networks, i.e., Gated 
Recurrent Units (GRU), allow to extract only the relevant information to make predictions, and forget the 
rest (Cho et al. 2014). In this architecture, words not only get assigned representations, or embeddings, 
based on their meaning, but also based on their sequence. During training, GRUs find parameters that 
decide whether to store past information and determine the next output. Since the intermediate states are 
never observed, they also called “latent” or hidden states. 

 
Machine learning models have shown to improve model generalization when they are trained for 

more than one task simultaneously. With this approach, called multitask learning, we could use extra 
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outputs available to learn more efficiently related tasks with a shared representation (Caruana 1997). 
When trained simultaneously on multiple related tasks through multitask learning, backpropagation is 
done in parallel on all the outputs in the multitask learning net. These characteristics allow aNNs to learn 
new representations of the relevant factors from the data itself, such as tasks relatedness or disjointness. 
Overall, multitask learning methods have resulted in better model predictions (Argyriou, Evgeniou, and 
Pontil 2007, Zhang et al. 2014). In the context of patients’ care, lab test results and diagnoses will become 
available as patients’ health evolve. At discharge, diagnoses are coded following the International 
Classification of Diseases (ICD9-CM system, CDC 2011). The ICD9-CM codes are a granular source of 
diagnose descriptions assigned at the end of a patient’s stay, mostly for budgeting and administrative 
purposes. Codes have different number of digits depending on their level of detail. Diagnosis codes are 
composed with either 3, 4, or 5 digits where the first 3 correspond to the heading category that may be 
further subdivided to provide more detail. The ICD9-CM system has ~ 13,000 codes, and because several 
codes could be assigned to the same patient, it is a good system to implement a multitask learning 
method.  

 
Here, we proposed a clinical prediction model based on a aNN (with and without multitask learning), 

building on the features used for the SAPS II score, with the addition of clinical text corresponding to the 
medical history. The primary outcome was in-hospital mortality, yet the model architecture also provides 
a simultaneous assessment of the 100th most frequent ICD9 codes, and the most frequent ICD9 
groupings. We compared the predictive performance of the models with the original SAPS2 score as well 
as a new logistic regression model, an eXtreme Gradient Boosting model (XGBoost, Chen and Guestrin 
2016), and a neural network model.  

  
 
2) Methods 

a) Dataset 
 
We used the Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC) publicly available 

database, which has been developed by the MIT Lab. The database comprises de-identified detailed 
clinical information regarding >60 000 stays in ICUs at the Beth Israel Deaconess Medical Center in 
Boston, Massachusetts, collected as part of routine clinical care between 2001 and 2012. The project’s 
Institutional Review Board (IRB) was approved by the Beth Israel Deaconess Medical Center (Boston, 
MA) and the Massachusetts Institute of Technology (Cambridge, MA).  Patient consent was not sought 
because the study did not impact clinical care and protected health information was de-identified in 
compliance with the Health Insurance Portability and Accountability Act (HIPAA). The database includes 
information such as demographics, vital sign measurements made at the bedside, laboratory test results, 
procedures, medications, and nurse and physician notes. We used the MIMIC Code Repository to query 
the database in PostgreSQL 10. Only those patients with a single ICU admission per hospital stay, staying 
more than 12 hours in the ICU, and older that 15 years old were considered for the analysis. Because the 
age of patients older than 89 at their first admission has been fixed to 300 as part of the de-identification 
process, we set their age to the median value for that group of 91.4.    

 
We divided the dataset randomly into train, validation, and test. Given that a patient can have one or 

more hospitalizations with ICU stays between 2001 and 2012, we divided the dataset based on the 
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subjects rather than on the ICU admissions. Thus, patients with more than one hospital stay remained in 
the same subset of data.  The training sample consisted of 60% of patients, while the validation and test 
samples consisted of 20% patients each. We used the same dataset split across all the models presented in 
this article.  

 
b) Structured features 
 
Our prediction algorithms included the 14 variables from the SAPS II score: age, Glasgow coma 

scale, systolic blood pressure, heart rate, body temperature, PaO2/FiO2 ratio, urinary output, serum urea 
nitrogen level, white blood cell count, serum bicarbonate level, sodium level, potassium level, bilirubin 
level, and type of admission (scheduled surgical, unscheduled surgical, or medical). We did not include 
the three underlying disease variables (acquired immunodeficiency syndrome, metastatic cancer and 
hematologic malignancy) because these are usually derived from the ICD9-codes, which we were 
predicting as well. Instead of using SAPS II variable scores, we took the worst value of those variables 
within the first 24 hours in the ICU, as defined by Le Gall et al. (1993). We inspected the variables for 
missing values and outliers. Because missing values may contain hidden patterns, we created a new 
dummy variable for every variable with more than 5% of missing data were 1: “missing value” and 0: 
“not missing”. Bilirubin, PaO2/FiO2 ratio, and urinary output had 56.1, 64.8 and 5.3 % missing values. 
We followed clinical knowledge to replace missing and outlier values with the mean value of the feature. 
Missing categorical variables were replaced with the most frequent value. All continuous variables were 
standardized by first obtaining the parameters from the training dataset and applying the transformation 
on training, validation and test.  
 

c) Unstructured features 
 

We included two different unstructured features to help better represent the patients’ state upon 
admission to the ICU. The ADMISSIONS table in MIMIC-III contains a preliminary diagnosis for 
patients upon hospital admission. This field is usually assigned by the admitting clinician, does not have a 
systematic format, and it varies between 1 and 22 terms. We are aware that the ‘diagnosis’ field could be 
vague and that the documentation recommends to not use this field to stratify patients. However, we think 
that whether this field is useful will be determined during training. The other unstructured feature was 
obtained from the NOTEEVENTS table. We analyzed the structure of the discharge summaries and built 
a parser to extract the PAST MEDICAL HISTORY of all patients (details in our repository). Medical 
histories were already de-identified, and ranged from 0 to ~720 words. We truncated the medical history 
feature to 242 words, which includes 99% of all notes. We used pre-trained, 200 dimension word 
embeddings (Zhang et al. 2019) to initialize the model after tokenizing the words in the vocabulary (see 
our repository for more details on the text normalization). The vocabulary was defined by the collection 
of terms present only in the training set. All new terms appearing in the validation and test datasets were 
treated as unknown and thus got the same index and embedding representation. 

 
d) Prediction Models 

 
We describe two models for mortality prediction using unstructured features. Both models use a GRU 

structure (Cho et al. 2014) to capture important features from the text. Given a sequence of text, each 
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pretrained word embedding passes as an input to the GRU at each timestep t. The GRU stores information 
in a hidden layer h that will be updated overtime. The output of the hidden layer at the final timestep, t, is 
the final hidden state vector ht, which is then combined with other features to estimate 𝑦". The two models 
are very similar in the architecture of the input and hidden layers, but they differ in the classification task, 
as explained below. We implemented our deep learning models in PyTorch (Paszke et al. 2019). We used 
the training set for training different models, the validation set for hyperparameter tuning, and the test set 
as a held-out set. The results presented here correspond to the model evaluation metrics performed on the 
test set. 

    
Deep learning Model for mortality prediction 

This is a binary classifier that combined unstructured and structured features to predict the probability 
of mortality of each ICU admission (Figure 1). We concatenated the final hidden state vectors from two 
GRUs (hts) with an 18-dimension vector (14 SAPS variables + 3 dummy variables from variables with 
missing values), and a 11-dimension embedding representing 3 categorical variables (Gender, Admission 
type, ICU type and Admission location). This concatenated vector was fed into a fully connected layer, 
normalized, and a ReLu activation layer. Lastly, a fully-connected layer was fed to a sigmoid layer which 
output the probability distribution over the label. Dropout was added at different steps to reduce model 
overfitting. The best performing model on the validation set had the following parameters: dimension of 
the GRU hidden layer: 20, dimension of hidden layer in the fully connected layer: 150, batch size: 3500, 
dropout probability: 0.5, learning epochs: 35, learning rate: 0.005 (5 epochs), 0.01 (15 epochs), 0.005 (5 
epochs), and 0.001 (10 epochs). We used a binary cross entropy loss and Adam optimizer (Kingma and 
Ba 2014).  

 
Deep learning Multitask model for ICD9 assignment and mortality 

The input layers of this model are similar to the model described in the previous paragraph. However, 
the prediction from this model was a combination of 3 tasks, also known as multitask training (Figure 1). 
The first task was mortality and the other two were multi-label classifiers for different groups of ICD9-
codes, as follows. Of the ~13,000 existing ICD9-codes, about 6,300 distinct ones where assigned to the 
patients in MIMIC. The number of diagnoses per patient and ICU admission was variable, and ranged 
between 1 and 39 codes. This means that one or more can be assigned to any given ICU stay. Because 
many of these diagnostic codes were rare, we focused on predicting the most common 100 as our second 
task. Even with this limitation, some of those diagnoses appeared in only 3% of the training data. The 
remaining codes were coerced to their category group. We kept 362 of those groups as our third task, 
where each group had an absolute frequency of at least 100 of ICU admissions. The best performing 
model had the following parameters: dimension of the GRU hidden layer: 20, dimension of hidden layer 
in the fully connected layer: 300, batch size: 3500, dropout probability: 0.5, learning epochs: 50, learning 
rate: 0.005 (5 epochs), 0.01 (25 epochs), 0.005 (10 epochs), and 0.001 (10 epochs). Each task has its own 
binary cross entropy loss, and then the three losses were summed to obtain the total loss at each training 
step. We used a heuristic approach to find a linear combination of the loss function so that the losses had 
approximately a similar scale. This allowed the tasks to equally affect the learning process. The weights 
of these hyperparameters were: mortality loss: 2.5, 100 most frequent ICD9 loss: 1.3, and 362 groups 
ICD9 loss: 2.  
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e) Baseline Evaluation and Performance Measures 
 

A logistic regression model, an eXtreme Gradient Boosting model (XGBoost, Chen and Guestrin 
2016), and a neural network model were fit to the structured data using the same training, validation, and 
test sets as for the neural network models. These three algorithms were compared to our proposed deep 
leaning models. The outcome measure of the logistic regression baseline model was hospital mortality. 
The traditional SAPS II uses a logistic regression on the SAPS II score with pre-defined coefficients (Le 
Gall, Lemeshow, and Saulnier 1993). In our version of the SAPS II logistic regression, we used the values 
of the variables instead of the variable’s scores. Categorical variables were one-hot encoded. We used 
cross-validation with 5 folds and L1 regularization to find the model hyperparameters.  

 
We used XGBoost as a baseline for the multitask neural network models. The outcome measure of 

the XGBoost baseline model was hospital mortality and labels for the ICD-9 codes, but in contrast to the 
neural network, the XGBoost fits one classifier per class, in a one-versus-rest manner and it does not 
handle the problem when the same observations have multiple classes assigned (multi task learning). We 
then took the mean of the evaluation metric for the two ICD9 tasks to be able to compare among models. 
The XGBoost model had the following parameters: minimum child weight: 40, learning rate: 0.05, 
fraction of columns sampled by tree: 0.3, maximum tree depth: 4, and random subsample fraction: 0.8. 
Lastly, to account for high class imbalance, we set the scale pos weight to be the ratio between the 
negative classes and the positive classes for each classifier.  

 
Lastly, a feed-forward neural network was trained on the structured data to predict either hospital 

mortality, or mortality and ICD9-codes in a multitask model architecture. In this model, we concatenated 
an 18-dimension vector (14 SAPS variables + 3 dummy variables from variables with missing values), 
and a 11-dimension embedding representing 3 categorical variables (Gender, Admission type, ICU type 
and Admission location). This concatenated vector was fed into a fully connected layer, normalized, and a 
ReLu activation layer. Lastly, a fully-connected layer was fed to a sigmoid layer which output the 
probability distribution over the label. The best performing model for hospital mortality alone had the 
following parameters: dimension of hidden layer in the fully connected layer: 150, batch size: 3500, 
dropout probability: 0.5, learning epochs: 30, learning rate: 0.005 (5 epochs), 0.01 (15 epochs), 0.005 (5 
epochs), and 0.001 (10 epochs). The multitask learning model had the following parameters: dimension of 
hidden layer in the fully connected layer: 150, batch size: 3500, dropout probability: 0.5, learning epochs: 
60, learning rate: 0.01 (30 epochs), and 0.005 (30 epochs). 

 
A good model with high discrimination power will assign a higher probability to a patient that died in 

the hospital, or a higher probability to an ICD9-code that was assigned at discharge. The discrimination 
power of the algorithms was assessed with the area under the receiver-operating characteristic curve 
(AUROC), reported with 95% CI. The 95% CI were obtained by bootstrapping the test dataset with 
replacement 100 times. Another model performance of interest is calibration. Under perfect calibration, 
there is a match between the average predicted probability and the observed probability at each 
probability range. Model calibration was only calculated for the deep learning model with structured and 
unstructured data.  

 
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2020. ; https://doi.org/10.1101/2020.06.30.20143677doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.30.20143677
http://creativecommons.org/licenses/by-nd/4.0/


Page 7 of 17 

f) Patient phenotyping evaluation 
 

Machine learning models with high interpretability are highly desired in clinical informatics. In the 
context of this research, we want to evaluate whether the GRU was able to extract relevant information 
about patients’ clinical phenotypes for each hospital admission. In other words, has the algorithm learned 
something useful?  If the algorithm were able to differentiate patients’ clinical phenotypes, this would 
suggest that any improvement in model predictions was due to a better segmentation of patients’ ICU 
stays into risk groups. For this evaluation, we used a different set of hospital notes from the discharge 
summary of the NOTEEVENTS table to group patients stays according to their clinical phenotypes (see 
Table 1 for an example). We parsed the discharge summaries, searched, and extracted the following sub-
sections for each patient: a) discharge condition, b) discharge diagnosis, c) final diagnosis, and d) history 
of present illness. These sub-sections made up a separate dataset that has not been previously seen by the 
model to make predictions. The groupings generated with this dataset were compared to groupings 
derived from the GRU model ht vector.  

To make the two groupings, we first clustered patients stays into broadly-defined risks groups with 
topic modeling using the available post-admission information, that is, the sub-sections mentioned above 
(LDA, Blei, Ng, and Jordan 2003). Second, we independently grouped patients stays by applying K-
means classification to the ht vectors from the GRU model, which were learned from the patient’s past 
medical history (see Unstructured Features section). We generated different cluster scenarios by changing 
the number of K-mean clusters. Third, we used the normalized mutual information score (NMI) to assess 
the similarity of the K-means clustering to the LDA topic assignment. A NMI score of zero means that 
there is no agreement between the two groupings, while a NMI score of 1 implies that there is a perfect 
correlation.   

 
3) Results 
 
ICU stays 
 

This study included 42,601 ICU stays, corresponding to 33,973 different patients. Median age was 65 
(IQR = 52-78) and male patients were the majority (70%). The median SAPS II at admission was 33 (24-
42). Patients were hospitalized mostly at the MICU: CCU (5809, 13.6%), CSRU (7663, 18%), MICU 
(17404, 40.8%), SICU (6847, 16.1%), and TSICU (4878, 11.5%). The number of deaths in ICU was 
4,190, an estimated hospital mortality of 9.8%. 

 
Baseline and Prediction Models evaluation 
 

The AUROC from hospital mortality prediction was 0.85 for the Logistic Regression, and 0.88 for the 
XGboost model (Table 2). Our baseline model achieved similar results compared to the predictions 
obtained by the Super Learner, Pirracchio et al. (2015). There were no significant differences between the 
XGboost AUROC and the AUROC obtained with a Neural Network model using the same tabular data as 
input variables. Moreover, we did not find any AUROC improvement when mortality was simultaneously 
trained with ICD9 codes compared to the XGboost one-versus-rest (Table 1, Neural Network tabular 
Multitask Learning vs. XGboost. The Neural Network model which included the medical history 
outperformed all the other models (AUROC = 0.90, Table 1). Lastly, the inclusion of medical history to 
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the multitask learning led to a greater improvement of the ICD9 codes prediction than of the mortality 
prediction (Multitask Learning, ICD task vs. Mortality task trained with tabular data only or tabular + 
unstructured data, Table 2).  

The calibration plot shows that the Deep learning Multitask model provides accurate predictions 
throughout the range of death probability (Figure 2). The predicted probabilities fell close to the ideal 
calibration line for low probabilities of death, and were slightly underestimated as probabilities increased.  

 
 
GRU Model Interpretability and Patient Phenotyping 
 

 To improve understanding of the factors contributing to the prediction in our model, a set 
of notes with the patients’ condition and diagnosis at discharge was used to cluster the patients into risk 
groups. We built several LDA models with the number of topics ranging from 8 to 20. Although the 
model with 14 topics had the highest coherence scores (~0.55), the keywords describing these topics did 
not create conceptually distinct risks groups compared to a model with 12 topics with a coherence score 
of 0.54 (Figure 3). The mean NMI score between the LDA topics and the k-means clustering was 0.24 
(Figure 4). The NMI score for the LDA topics and a randomly assigned cluster number was not different 
from zero. From the 12 topics, we could identify a subset of 7 groups related to the following conditions: 
coronary artery disease, sepsis, cancer, liver disease, respiratory problems, falls + fractures, and renal 
issues. When we subset the ICU stays to these 7 groups, the mean NMI core was ~0.38 (Figure 4).  The 
positive correlation between the clusters based on patients' discharged summaries and the clusters based 
on past medical history shows that the GRU based clusters are effective at segmenting patients based on 
past medical history. 

 
 
4) Discussion 

 
We have assessed the potential of medical history data to improve outcome predictions of critically ill 
patients in the ICU. Our models with tabular data as the only input variables achieved similar results to 
those previously published (Pirracchio et al. 2015, Le Gall, Lemeshow, and Saulnier 1993, Sakr et al. 
2008). As severity scores need to account for, and be updated to, common comorbidities, we 
hypothesized that past medical history would allow a simple way to include comorbidity information, 
account for cumulative impacts, or adjust for different patients’ underlying risks. Our experiments 
showed that the inclusion of the medical history resulted in significant higher AUCROC for in-hospital 
mortality prediction. Moreover, this model which uses medical history notes and 24h of ICU 
physiological variables, showed similar mortality prediction as models that included 48 hours of ICU’s 
notes (Weissman et al. 2018).  The advantage of using recurrent neural networks such GRUs, is that 
GRUs can process inputs of any length, and without much pre-processing work.  
 

Our results did not support the hypothesis that including diagnosis codes as outcomes would improve 
mortality predictions by means of multitask learning. While including the medical history significantly 
improved the automated diagnosis coding, multitask learning did not have an effect on improving the 
main outcome of interest, prediction of mortality. Interestingly, the relative improvement in diagnosis 
coding due to including patients’ medical history was greater than the improvement in mortality. This 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2020. ; https://doi.org/10.1101/2020.06.30.20143677doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.30.20143677
http://creativecommons.org/licenses/by-nd/4.0/


Page 9 of 17 

results supports the hypothesis that most of the patients’ note are included to justify the billing and as 
such they correlate more with ICD codes than with mortality. This will indicate that for Machine 
Learning to be able to harness the true potential of our Electronic Health Record a pattern shift of how 
physicians input patients’ initial information would be needed. Needless to say, this is a major 
undertaking.  

 
 
Our findings not only supported the use of unstructured notes to improve outcome predictions, but 

also provided an interpretation of the mechanism. We think that the inclusion of medical history 
processed by the GRU memory mechanism results in a model customized for different risks groups as 
also reported by other authors (Lee and Maslove 2017). This is supported by the correlation found 
between patients that were grouped according to discharge diagnoses with the grouping of patients 
produced by the GRU.  
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Table 1. Examples of the unstructured features used in this study. Past Medical History was used as 
input in the GRU-Neural Network, and the Discharge Diagnosis was used to group patients in risks 
groups with LDA modeling.  
 
 Past Medical History Discharge Diagnosis 
Patient A 1.  Interstitial pulmonary fibrosis. 

2.  T7 compression fracture.  
3.  No cardiac history. 
 

“The patient is a 54-year-old man with 
a history of interstitial pulmonary 
fibrosis, UIP who presents with fever 
and sudden shortness of breath. The 
patient has shortness of breath at 
baseline, requiring home oxygen of 
two to four liters.  He is on chronic 
prednisone treatment, gamma 
interferon for his interstitial pulmonary 
fibrosis…()” 
 

Patient B Dyslipidemia with triglycerides in 
dm type II macular degeneration htn 
kidney stone gastritis cervical 
spondylosis colonic polyp 
 

“Stable. Primary: brain tumor. 
Secondary: dyslipidemia tg type II dm 
macular degeneration htn kidney stone 
gastritis cervical spondylosis colonic 
polyp gout 62 yo male w/ pmhx sig for 
dm ii, htn, and severe hyperlipidemia 
who was found down at home.  Pt was 
apparently last seen well by his friends 
on Saturday. When he did not show up 
for a golfing outing with friends, they 
went to his house and found him 
seizing behind the house on a bed of 
trash.” 
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Table 2. Classification performance (% AUCROC) of prediction models. Logistic Regression and 
XGboost models were fitted with tabular data only. Neural Network models were fitted with and 
without patients’ medical history and compared to the baseline models.  
Models*   

 Mortality Mortality ICD100 ICD362 

Logistic Regression (tabular data) 84.80 ± 0.13 - - - 

XGboost (tabular data) 88.23 ± 0.12 - 77.56 ± 1.73 74.46 ± 1.16 

  Multitask learning 

Neural Network (tabular data) 87.94 ± 0.13 87.79 ± 0.11 76.16 ± 0.03 74.78 ± 0.04 

Neural Network (+ unstructured data) 90.12 ± 0.10 89.87 ± 0.11 80.82 ± 0.03 80.02 ± 0.04 
*100 bootstrap samples on the test set n = 7241, mean ± 95%CI  
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Figure 1. Deep Learning Model architecture for mortality prediction in Intensive Care Units. 
Unstructured data from medical history records (NOTEEVENTS) and admission diagnosis 
(ADMISSIONS) are processed by a GRU layer, then the ht vectors are concatenated to the tabular 
variables used in the SAPSII score. A fully connected hidden layer and an activation function 
computes the probability of mortality during the ICU stay. A multitask model simultaneously predicts 
mortality and ICD9 codes. 
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Figure 2. Calibration plot for the actual death probability compared the mortality prediction given 
by the Deep learning Multitask model. 
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Figure 3. Visualization of the topics generated with LDA modeling. For each of the 12 topics, a word 
cloud shows the 10 top keywords where the size of the words is proportional to their weight in the 
topic. Some topics can be associated with risks groups The topics  
Topic visualization. coronary artery disease, sepsis, cancer, liver disease, respiratory problems, falls 
+ fractures, and renal issues 
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Figure 4. The adjusted normalized mutual information score (NMI) for various K-means clusters 
grouping the ht vectors derived from patients’ medical histories and the LDA topics obtained by 
analyzing the patients’ discharge summaries. In yellow, predicted topics on the test set ICU stays 
were compared to clusters obtained with K-means after computing the ht vectors. In red, the 
same K-mean clusters were compared to a subset of 7 predicted topics (likely corresponding 
with: coronary artery disease, sepsis, cancer, liver disease, respiratory problems, falls + 
fractures, and renal issues). In grey, the adjusted NMI was calculated by randomly permutating 
the K-means cluster assignment, we expect low correlation between these.  
 

 
 
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2020. ; https://doi.org/10.1101/2020.06.30.20143677doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.30.20143677
http://creativecommons.org/licenses/by-nd/4.0/


Page 16 of 17 

Literature Cited 
Argyriou, Andreas, Theodoros Evgeniou, and Massimiliano Pontil. 2007. "Multi-task feature learning." 

Advances in neural information processing systems. 
Blei, David M., Andrew Y. Ng, and Michael I. Jordan. 2003. "Latent dirichlet allocation."  J. Mach. 

Learn. Res. 3 (null):993–1022. 
Caruana, Rich. 1997. "Multitask Learning."  Machine Learning 28 (1):41-75. doi: 

10.1023/a:1007379606734. 
CDC. 2011. ICD-9-CM Official Guidelines for Coding and Reporting. 
Chen, Tianqi, and Carlos Guestrin. 2016. "XGBoost: A Scalable Tree Boosting System." Proceedings of 

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 
San Francisco, California, USA. 

Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger 
Schwenk, and Yoshua Bengio. 2014. "Learning phrase representations using RNN encoder-
decoder for statistical machine translation."  arXiv preprint arXiv:1406.1078. 

Gennatas, E. D., J. H. Friedman, L. H. Ungar, R. Pirracchio, E. Eaton, L. G. Reichmann, Y. Interian, J. 
M. Luna, C. B. Simone, A. Auerbach, E. Delgado, M. J. van der Laan, T. D. Solberg, and G. 
Valdes. 2020. "Expert-augmented machine learning."  Proc Natl Acad Sci U S A 117 (9):4571-
4577. doi: 10.1073/pnas.1906831117. 

Johnson, Alistair E W, David J Stone, Leo A Celi, and Tom J Pollard. 2017. "The MIMIC Code 
Repository: enabling reproducibility in critical care research."  Journal of the American Medical 
Informatics Association 25 (1):32-39. doi: 10.1093/jamia/ocx084. 

Kingma, Diederik P, and Jimmy Ba. 2014. "Adam: a method for stochastic optimization. arXiv."  arXiv 
preprint arXiv:1412.6980 6. 

Knaus, W. A., J. E. Zimmerman, D. P. Wagner, E. A. Draper, and D. E. Lawrence. 1981. "APACHE-
acute physiology and chronic health evaluation: a physiologically based classification system."  
Critical care medicine 9 (8):591-597. doi: 10.1097/00003246-198108000-00008. 

Le Gall, J. R., S. Lemeshow, and F. Saulnier. 1993. "A new Simplified Acute Physiology Score (SAPS II) 
based on a European/North American multicenter study."  JAMA 270 (24):2957-63. doi: 
10.1001/jama.270.24.2957. 

Lee, Joon, and David M. Maslove. 2017. "Customization of a Severity of Illness Score Using Local 
Electronic Medical Record Data."  Journal of Intensive Care Medicine (1):38. doi: 
10.1177/0885066615585951. 

Metnitz, Philipp G. H., Rui P. Moreno, Eduardo Almeida, Barbara Jordan, Peter Bauer, Ricardo Abizanda 
Campos, Gaetano Iapichino, David Edbrooke, Maurizia Capuzzo, Jean-Roger Le Gall, and Saps 
Investigators on behalf of the. 2005. "SAPS 3—From evaluation of the patient to evaluation of 
the intensive care unit. Part 1: Objectives, methods and cohort description."  Intensive Care 
Medicine 31 (10):1336-1344. doi: 10.1007/s00134-005-2762-6. 

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor 
Killeen, Zeming Lin, Natalia Gimelshein, and Luca Antiga. 2019. "PyTorch: An imperative style, 
high-performance deep learning library." Advances in Neural Information Processing Systems. 

Pirracchio, R., M. L. Petersen, M. Carone, M. R. Rigon, S. Chevret, and M. J. van der Laan. 2015. 
"Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a 
population-based study."  Lancet Respir Med 3 (1):42-52. doi: 10.1016/S2213-2600(14)70239-5. 

Rajkomar, A., E. Oren, K. Chen, A. M. Dai, N. Hajaj, M. Hardt, P. J. Liu, X. Liu, J. Marcus, M. Sun, P. 
Sundberg, H. Yee, K. Zhang, Y. Zhang, G. Flores, G. E. Duggan, J. Irvine, Q. Le, K. Litsch, A. 
Mossin, J. Tansuwan, Wang, J. Wexler, J. Wilson, D. Ludwig, S. L. Volchenboum, K. Chou, M. 
Pearson, S. Madabushi, N. H. Shah, A. J. Butte, M. D. Howell, C. Cui, G. S. Corrado, and J. 
Dean. 2018. "Scalable and accurate deep learning with electronic health records."  NPJ Digit Med 
1:18. doi: 10.1038/s41746-018-0029-1. 

Reardon, Peter M., Shannon M. Fernando, Sasha Van Katwyk, Kednapa Thavorn, Daniel Kobewka, Peter 
Tanuseputro, Erin Rosenberg, Cynthia Wan, Brandi Vanderspank-Wright, Dalibor Kubelik, Rose 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2020. ; https://doi.org/10.1101/2020.06.30.20143677doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.30.20143677
http://creativecommons.org/licenses/by-nd/4.0/


Page 17 of 17 

Anne Devlin, Christopher Klinger, and Kwadwo Kyeremanteng. 2018. "Characteristics, 
Outcomes, and Cost Patterns of High-Cost Patients in the Intensive Care Unit."  Critical care 
research and practice 2018:5452683-5452683. doi: 10.1155/2018/5452683. 

Sakr, Y., C. Krauss, A. C. K. B. Amaral, A. Réa-Neto, M. Specht, K. Reinhart, and G. Marx. 2008. 
"Comparison of the performance of SAPS II, SAPS 3, APACHE II, and their customized 
prognostic models in a surgical intensive care unit."  BJA: British Journal of Anaesthesia 101 
(6):798-803. doi: 10.1093/bja/aen291. 

Sekulic, Ana D., Sladjana V. Trpkovic, Aleksandar P. Pavlovic, Olivera M. Marinkovic, and Aleksandra 
N. Ilic. 2015. "Scoring Systems in Assessing Survival of Critically Ill ICU Patients."  Medical 
science monitor : international medical journal of experimental and clinical research 21:2621-
2629. doi: 10.12659/MSM.894153. 

Weissman, G. E., R. A. Hubbard, L. H. Ungar, M. O. Harhay, C. S. Greene, B. E. Himes, and S. D. 
Halpern. 2018. "Inclusion of Unstructured Clinical Text Improves Early Prediction of Death or 
Prolonged ICU Stay."  Crit Care Med 46 (7):1125-1132. doi: 10.1097/CCM.0000000000003148. 

Xie, Junqing, Binbin Su, Chunxiao Li, Ke Lin, Hongyan Li, Yonghua Hu, and Guilan Kong. 2017. "A 
review of modeling methods for predicting in-hospital mortality of patients in intensive care 
unit."  Journal of Emergency and Critical Care Medicine 1 (8). 

Zhang, Yijia, Qingyu Chen, Zhihao Yang, Hongfei Lin, and Zhiyong Lu. 2019. "BioWordVec, improving 
biomedical word embeddings with subword information and MeSH."  Scientific Data 6 (1):52. 
doi: 10.1038/s41597-019-0055-0. 

Zhang, Zhanpeng, Ping Luo, Chen Change Loy, and Xiaoou Tang. 2014. "Facial landmark detection by 
deep multi-task learning." European conference on computer vision. 

Zimmerman, Jack E., Andrew A. Kramer, Fern M. Malila, and Douglas S. McNair. 2006. "Acute 
Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for 
today's critically ill patients."  Critical Care Medicine (5):1297. doi: 
10.1097/01.CCM.0000215112.84523.F0. 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2020. ; https://doi.org/10.1101/2020.06.30.20143677doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.30.20143677
http://creativecommons.org/licenses/by-nd/4.0/

