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Abstract  10 

Arboviruses remain a significant cause of morbidity, mortality and economic cost 11 

across the global human population. Epidemics of arboviral disease, such as Zika 12 

and dengue, also cause significant disruption to health services at local and national 13 

levels. This study examined 2014-16 Zika and dengue epidemic data at the sub-14 

national level to characterise transmission across the Dominican Republic. 15 

 16 

For each municipality, spatio-temporal mapping was used to characterise disease 17 

burden, while data were age and sex standardised to quantify burden distributions 18 

among the population. In separate analyses, time-ordered data were combined with 19 

the underlying disease migration interval distribution to produce a network of likely 20 

transmission chain events, displayed using transmission chain likelihood matrices. 21 

Finally, municipal-specific reproduction numbers (Rm) were established using a 22 

Wallinga-Teunis matrix. 23 

 24 

Dengue and Zika epidemics peaked during weeks 39-52 of 2015 and weeks 14-27 of 25 

2016 respectively. At the provincial level, dengue attack rates were high in 26 

Hermanas Mirabal and San José de Ocoa (58.1 and 49.2 cases per 10,000 27 

population respectively), compared with the Zika burden, which was highest in 28 

Independencia and San José de Ocoa (21.2 and 13.4 cases per 10,000 population 29 

respectively). Across municipalities, high disease burden was observed in Cotui (622 30 

dengue cases per 10,000 population) and Jimani (32 Zika cases per 10,000 31 

population). Municipal infector-infectee transmission likelihood matrices identified six 32 

0% likelihood transmission events throughout the dengue epidemic and one 0% 33 

likelihood transmission event during the Zika epidemic. Municipality reproduction 34 
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numbers (Rm) were consistently higher, and persisted for a greater duration during 35 

the Zika epidemic (Rm = 1.0), than during the dengue epidemic (Rm = <1.0). 36 

 37 

This research highlights the importance of disease surveillance in land-border 38 

municipalities as an early warning for infectious disease transmission. It also 39 

demonstrates that a high number of importation events are required to sustain 40 

transmission in endemic settings, and vice versa for newly emerged diseases. The 41 

inception of a novel epidemiological metric, Rm, reports transmission risk using 42 

standardised spatial units, and can be used to identify high transmission risk 43 

municipalities to better focus public health interventions for dengue, Zika, and other 44 

infectious diseases.  45 

  46 
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Author Summary 47 

 48 

Arboviruses remain a significant cause of morbidity, mortality and economic cost. 49 

Between the years 2014-16, two large arbovirus outbreaks occurred in the 50 

Dominican Republic. The first was a wave of dengue cases, followed by a large Zika 51 

epidemic. Using various mathematical modelling and geospatial approaches, a 52 

number of analyses were undertaken to both characterise the pattern of disease 53 

transmission and identify high-burden municipalities. Throughout the process, a 54 

novel metric was developed: the Rm. This parameter was used to identify the 55 

transmission potential of any given municipality to surrounding municipalities, where 56 

>1.0 is high transmission risk, and <1.0 is low transmission risk. This is useful as it 57 

provides a standardised approach to determine where public health resources might 58 

be focussed to better impact ongoing disease transmission.  Additionally, analyses 59 

demonstrated the importance of increased disease surveillance in municipalities that 60 

share land borders with neighbouring countries, and how relatively few disease 61 

importation events can spark and sustain an epidemic.   62 

  63 
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Introduction 64 

Arboviruses are an informal name for a group of viruses transmitted by arthropods 65 

such as ticks, mosquitoes and sand flies (1) - members of which include Rift Valley 66 

Fever, Chikungunya and West Nile Virus (2). Arboviruses are commonly zoonotic, 67 

and the cause of increasing human disease worldwide. In recent years, the 68 

arboviruses Zika and dengue have afflicted millions via endemic and epidemic 69 

transmission, in part due to relatively few, effective means of control (3). Indeed, 70 

current estimates suggest that the global annual burden of dengue infections is 390 71 

million, with 96 million manifesting clinically (4). Those at risk number 3.97 billion 72 

across 128 countries worldwide (5). In the case of Zika, estimates of the global 73 

burden are not yet available, however by the end of 2018, the Pan American Health 74 

Organisation (PAHO) had reported 19,020 suspected cases of Zika, with 1,379 75 

laboratory confirmed cases in Brazil alone (6). 76 

 77 

Dengue and Zika are principally transmitted via Aedes mosquitoes. When a female 78 

Aedes mosquito bites an infected human, the mosquito ingests a blood meal 79 

containing the virus, at which point it enters the midgut, proliferates, and spreads to 80 

the salivary glands. Once the mosquito bites another person, the cycle is complete 81 

(7). However, vertical transmission can also occur, and while this is relatively rare for 82 

dengue (8), such transmission is more common with Zika; indeed in a prospective 83 

cohort, 26% of maternal cases resulted in vertical transmission to the unborn foetus 84 

(9). Importantly, sexual transmission between humans is also a significant driver of 85 

Zika epidemiology (10).  86 

 87 
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The basic reproduction number (R0) describes the average number of secondary 88 

infections produced by a single infectious individual in a totally susceptible 89 

population (11). Epidemics involving novel pathogens are best described using R0, 90 

due to the absence of existing population immunity (12). By contrast, Reff is most 91 

appropriate in endemic settings (11), when part of the population is already immune 92 

(12). In the absence of field data, mathematical modelling is used to average the 93 

expected number of new infections over all possible infected individuals. This idea 94 

can be represented by a matrix where the reproduction number is recognised as the 95 

dominant eigenvalue of an operator, which is linear for every pair of functions, and 96 

can be calculated whilst considering other factors such as age stratification (13).  97 

 98 

The simplest form of epidemiological modelling is mechanistic, which deploys 99 

compartments with interconnected per capita rates to describe the movement of 100 

individuals between disease states (14). This field has since been further expanded 101 

to include network analysis. Wallinga and Teunis applied this approach (15) to 102 

estimate both the serial interval distribution (16) and the Reff of Severe Acute 103 

Respiratory Syndrome (SARS). In similar research, Routledge et al., 2018 also used 104 

network-based analysis to predict malaria elimination time scales (17).  Together, 105 

these studies further developed mathematical modelling used to calculate individual 106 

reproduction numbers (18) while building on the established Reed-Frost model of 107 

epidemic transmission (19)(20). And while these approaches are powerful, they are 108 

highly reliant on granular data to infer geospatial disease spread at fine scales, yet 109 

these data are not always available 110 
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Accordingly, this research sought to further analyse data in Bowman et al., 2018 (21) 111 

by describing the geospatial transmission of dengue and Zika using network-112 

reconstruction and the R0 at the regional level.  113 

 114 

  115 
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Methods 116 

Country context: Dominican Republic 117 

The Dominican Republic is a country in the Greater Antilles region of the Caribbean 118 

(Fig 1).  119 

 120 

Fig 1. Mapping the Central and South American geographic area.  121 

(A) The location of the Dominican Republic on a continental scale. (B) Administrative municipal 122 

boundaries map of the Dominican Republic and ten most populous cities (22). Dominican Republic 123 

administrative boundaries, as at 2010, were obtained from the Humanitarian Data Exchange (23). The 124 

shapefiles relied on ggplot package to realise the image (24). 125 

 126 
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 127 

It shares an island with Haiti (25), and according to demographic data released by 128 

the World Bank in 2016, the total population was 10.63 million over an area of 48.7 129 

km2 (26).  130 

 131 

The Dominican Republic has a long history of dengue endemicity, and recent 132 

research showed that 98% of the Santo Domingo population was seropositive (27).  133 

Between 2014-2016, dengue and Zika outbreaks occurred (21), during which large-134 

scale control measures were deployed across the country. A range of clinical and 135 

epidemiological data was collected, providing an opportunity to study the passage of 136 

the outbreaks at the population level.  137 

Datasets 138 

Surveillance data capturing cases of dengue, severe dengue and Zika were 139 

extracted from the Dominican Republic healthcare database, Sistema Nacional de 140 

Vigilencia Epidemiologica, for the years 2014 to 2016. Variables in the dataset 141 

included suspected, probable, confirmed cases (28) (29), date of symptom onset, 142 

epidemiological week of onset and date of notification. Demographic data were also 143 

collected. To capture aggregate dengue disease states, the following outcome 144 

variable labels were used: dengue (uncomplicated dengue); severe dengue 145 

(complicated dengue); total dengue (complicated and uncomplicated dengue 146 

combined).  Suspected incident dengue and Zika cases were used to form all 147 

outcome variables. Data were de-identified at source, underwent quality control, and 148 

cleaned as described in Bowman et al, 2016 (30) and Bowman et al, 2018 (21).  149 

Population census data, stratified by age and sex for the years 2015-2017, were 150 
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provided by the Oficina Nacional de Estadística. These data were used to 151 

standardise attack rate calculations and to categorise data into five-year age bins. All 152 

coding and analyses were performed in RStudio version 3.6.0. (31), and all figures 153 

produced using the ‘ggplot2’ package (24).  154 

Mapping 155 

The municipal distribution of cases (per 10,000 population) for each outcome 156 

variable was calculated as a function of case counts and population census data 157 

(Equation 1). Maps were generated using shape files (23) with administrative 158 

boundaries from 2010.  159 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1: 𝐴𝑡𝑡𝑎𝑐𝑘 𝑅𝑎𝑡𝑒 =  
𝐶𝑎𝑠𝑒 𝐶𝑜𝑢𝑛𝑡 (𝑝𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡)

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 ×10,000 

Statistical analyses 160 

Age and sex standardised attack rates by province were calculated using 161 

established methodologies (32). The provincial populations were standardised to the 162 

population characteristics of the Dominican Republic using data provided by the 163 

Oficina Nacional de Estadística, with 95% confidence intervals calculated using 164 

Equation 2: 165 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2: 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑠𝑒𝑑 𝐴𝑡𝑡𝑎𝑐𝑘 𝑅𝑎𝑡𝑒 ± 1.96 ×  
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑠𝑒𝑑 𝐴𝑡𝑡𝑎𝑐𝑘 𝑅𝑎𝑡𝑒

# 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠  

Disease migration interval distribution 166 

The disease migration interval is a novel parameter, defined in this paper as the time 167 

between symptom onset of the infector municipality and symptom onset of the 168 

infectee municipality. To calculate the distribution of potential intervals, a matrix of 169 

potential migration intervals was calculated by determining non-negative differences 170 
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between initial symptom onsets within each municipality. The resultant distribution of 171 

intervals then informed the probability density of infector, i, transmitting infection to 172 

the infectee, j. This interval reflects a higher order version of the serial interval, which 173 

specifies the interval between symptom onset of the infector and infectee individual 174 

pairs. The benefit of using the serial interval in estimates is the ability to account for 175 

other important distributions of time in the transmission cycle, including the time from 176 

symptom onset to infectiousness, intrinsic incubation period, extrinsic incubation 177 

period and mosquito transmission rate (17). The probability density of the disease 178 

migration interval was fitted to an exponential distribution after visualisation of the 179 

data strongly indicated an exponential trend. Fitting the distribution was achieved 180 

using maximum likelihood estimation with the exponential maximum likelihood 181 

estimator, seen below, where 𝜆! is the maximum likelihood estimator, 𝑛 is the 182 

number of independent observations, 𝑥 is a variable from an independent and 183 

identically distributed sample and 𝑥!!
!!!  is the sum of all observations. The resultant 184 

simulated distribution was used to calculate the Wallinga-Teunis matrix (Equation 3) 185 

Equation 3: 𝜆! =  !
!!!

!!!
 186 

Determining the transmission likelihood and network 187 

The cases with the earliest symptom onset of dengue or Zika recorded within each 188 

municipality were identified, resulting in one case representing the earliest infection 189 

event for each municipality. These were ordered by date of symptom onset for each 190 

municipality, with no indication of the transmission chain present. Combination of this 191 

time-ordered data with a simulation of the underlying disease migration interval 192 

distribution produced a network of the most likely transmission chain events. This 193 

was achieved by analysing a network of all potential pairwise infector-infectee 194 
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municipality pairs, and their transmission likelihoods, to isolate the most likely chain 195 

of transmission events across municipalities. The network of potential infector-196 

infectee municipal pairs and their transmission likelihoods make up the Wallinga-197 

Teunis matrix (15), made with the ‘IDSpatialStats’ package (33). The matrix itself 198 

represents likelihood-based estimation of who-infected-whom using observed dates 199 

of initial symptom onset of each municipality. Each square provides the relative 200 

likelihood, pij, that the infector municipality, i, has infected an infectee municipality, j, 201 

given the time difference in symptom onsets of each municipality, ti - tj. This time 202 

difference is captured by the disease migration interval distribution. As such, the 203 

relative likelihood that an infectee municipality, i, has been infected by an infector 204 

municipality, j, is the likelihood of this pair, normalised by the likelihood that the 205 

infector municipality, i, is infected by any other municipality, k. This analysis is based 206 

around the theory that infection events between the potential pairs follow an 207 

independent cascade model (34), where the upper triangular likelihood of the matrix 208 

represents all the realistic pairwise transmission likelihoods of the infector-infectee 209 

municipal pairs (15). 210 

Estimating time-varying municipal-specific reproduction numbers 211 

Municipal-specific reproduction numbers (Rm) were established using the produced 212 

Wallinga-Teunis matrix wherein each column represents an infector municipality and 213 

each row represents an infectee municipality. To calculate the Rm for an infector 214 

municipality, j, we sum over all infectee municipalities, i, weighted by the relative 215 

likelihood that the infectee municipality, i, has been infected by the infector 216 

municipality, j. At a municipal level, this reflects the number of municipalities that the 217 

infector municipality will go on to infect. The time-varying Rm was plotted over time 218 
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and a Generalised Additive Model smoothing spline was fitted to the data to 219 

determine trends and smooth data noise.  220 

Ethics 221 

Ethical clearance was granted by the Pan American Health Organization Ethics 222 

Review Committee (PAHO-ERC; Ref No. 2014-10-0023) and accepted by 223 

Dominican Republic Ministry of Health. De-identified and aggregated data were used 224 

throughout the study, no further ethical clearance was required. 225 
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Results 226 

Geostatistical Mapping 227 

Spatial mapping of Zika and dengue was used to determine the highest burden 228 

areas for all disease outcomes across the Dominican Republic (Fig 2). Spatio-229 

temporal mapping displays incidence per 10,000 population (non-standardised), 230 

while attack rates were standardised according to age and sex with accompanying 231 

confidence intervals. These can be seen in S1 Table, for total dengue, and S2 Table, 232 

for Zika.  233 

The municipality of Cotuí recorded the highest burden for each dengue outcome: 234 

583 (uncomplicated dengue), 39 (complicated dengue) and 622 (dengue) cases per 235 

10,000 population respectively (Fig 2), which equates to the largest dengue burden 236 

of any municipality. Municipalities that also recorded high dengue burden include Las 237 

Terrenas, Jarabacoa and Las Salinas recorded 99, 98 and 95 per 10,000 population 238 

respectively (Fig 2B). The burden of complicated dengue was also high in Salcedo, 239 

Villa Tapia and Jarabacoa with 15, 12 and 8 cases per 10,000 population 240 

respectively (Fig 2C). The highest burden of Zika incident cases was recorded in the 241 

west of the country, Jimaní, with 32 cases per 10,000 population (Fig 2D). 242 

 243 

Fig 2. Aggregated spatial distribution of cases over 2014-2016 epidemic period at the 244 

municipal level.  245 

(A) Uncomplicated dengue, (B) Dengue, (C) Complicated dengue and (D) Zika. Continuous colour 246 

scale from white (lowest) through to red (highest) for all images, scales vary. Grey areas indicate no 247 

data for those municipalities. All counts per 10,000 population. 248 

 249 
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 250 

All four outcomes were also displayed over time and space, as seen in Figure 3. 251 

Where the outcome was dengue, the highest burden municipalities were Jarabacoa, 252 

Ramón Santana and La Cienega with 26, 23 and 20 cases per 10,000 population 253 

respectively (Fig 3A), which occurred between epidemiological weeks 39-52 in 2015. 254 

The highest burden of complicated dengue incident cases was recorded in Las 255 

Salinas, Villa Tapia and Jarabacoa with 2 cases per 10,000 population each (Fig 3B) 256 

within the same time period. 257 

 258 
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Figure 3. Breakdown of aggregated spatial distribution of cases over 2014-2016 epidemic 259 

period by epidemiological week at the municipal level.  260 

(A) Dengue cases over 2015 (top row) and 2016 (bottom row) (B) Complicated dengue cases over 261 

2015 (top row) and 2016 (bottom row). (C) Zika cases over 2015 (top row) and 2016 (bottom row). 262 

Continuous colour scale from white (lowest) through to red (highest) for all images. Scales vary as 263 

shown. Grey areas indicate absence of data. All counts per 10,000 population. Dates are over 264 

epidemiological weeks 1-52 for each year, where year is split into weeks 1 – 14, 14 – 27, 27 – 39, and 265 

39 - 52. 266 

 267 

 268 
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 269 

The first suspected cases of Zika in 2015 were identified during epidemiological 270 

weeks 14 – 27 and reported in San Cristobal (Fig 3C), while the highest burden of 271 

Zika disease was reported in Jimaní (16 cases per 10,000 population: 272 

epidemiological weeks 1-15). In 2016, the peak of Zika cases occurred between 273 

epidemiological weeks 1 – 27 (Fig 3C). Throughout weeks 14 -27, the greatest 274 

burden of Zika disease was recorded in Sabana Grande de Palenque, San José de 275 

Ocoa and Sabana Larga (13, 9 and 6 cases per 10,000 population respectively) (Fig 276 

3C).  277 

Transmission Dynamics 278 

A distribution of the disease migration interval, defined as the serial interval 279 

calculated between municipalities, instead of individuals, was calculated to capture 280 

the spatio-temporal disease dynamics of the dengue and Zika epidemics. 281 

Each municipality was described as either infector or infectee, and the disease 282 

migration interval referenced the time between symptom onsets in each of the 283 

infector-infectee pairs. The results indicated an exponential distribution between the 284 

probability density of secondary municipality symptom onset (infectee) and the time 285 

of symptom onset in the infector municipality (Fig 4) for both dengue and Zika. 286 

Probability of transmission from infector to infectee municipalities was elevated 287 

(~0.1) for both dengue and Zika at the beginning of the epidemic. Probabilities for 288 

dengue remained elevated for the first ~50 days before tailing off, whereas 289 

probabilities for Zika were high for the first ~125 days before a gradual decline. 290 

 291 

Fig 4. Disease migration interval distribution fitted to exponential distribution.  292 
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(A) Dengue cases, (B) Zika cases. Probability density histograms plotted of the disease migration 293 

interval represent the distribution of time differences between initial symptom onset within each 294 

municipality. Red line represents the maximum likelihood estimation of the exponential distribution 295 

describing the data. 296 

 297 

 298 

The mean disease migration interval, probability of transmission per day (expressed 299 

as a rate), standard deviations and log likelihoods for the fitted distributions can be 300 

seen in Table 1. The rate for the dengue distribution fitted to 0.01004 (s = 301 

0.00009095) and the rate for Zika distribution was 0.01580 (s = 0.0001793). 302 
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Parameter	 Disease	

	 Dengue	 Zika	

Mean	Disease	Migration	Interval	(days)	 99.55	 63.28	

Rate	(probability	of	transmission/day)	 0.01004	 0.01580	

Standard	Deviation	 0.00009095	 0.0001793	

Log	Likelihood	 -66950	 -39670	

	

 303 

Table 1: Fitted disease migration interval distribution parameters.  304 

Mean disease migration interval calculated by the inverse of the estimated rate 305 

 306 

The disease migration intervals were used to produce the Wallinga-Teunis matrices 307 

(Fig 5) along with the transmission network between infector-infectee municipal pairs 308 

for dengue and Zika (Fig 6). 309 

 310 

Fig 5. Heatmaps of transmission likelihood of infector-infectee municipal pairs.  311 

(A) Dengue cases, (B) Zika cases. Heatmap X axis represents all possible infector municipalities 312 

ordered by time of initial symptom onset date; Y axis represents all possible infectee municipalities 313 

ordered by time of symptom onset. Each square represents the transmission likelihood for said 314 

infector-infectee pair. Continuous scale from grey (0) to red (1) represents the normalised likelihood of 315 

transmission, with grey squares indicating no likelihood of transmission. Dark grey lines represent 316 

where infectee municipalities were unlikely to be infected by other observed municipalities, and so 317 

infection occurred by unobserved disease migration. 318 
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  319 

 320 

 321 

Fig 6. Municipal-specific, time-varying reproduction numbers. (A) Dengue cases, (B) Zika cases. 322 

Rm is the number of municipalities a given infector municipality is likely to infect. Red line represents 323 

the fitted Generalised Additive Model with smoothing splines and the 95% confidence interval seen as 324 

a shaded grey area. Dashed line represents an Rm = 1. 325 

 326 

 327 
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 328 

 329 

During the exponential phase of the outbreak, the transmission likelihood matrix for 330 

dengue was populated by lower likelihood transmission events compared with the 331 

downward curve (Fig 5A). The matrix also identified six transmission events with a 332 

0% likelihood of transmission between infector and infectee, all of which occurred in 333 

the latter half of the transmission network. By comparison, the Zika transmission 334 

likelihood matrix (Fig 5B) displayed one transmission event with a 0% likelihood of 335 

transmission between infector and infectee, both of which also occurred at the end of 336 
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the transmission network. The transmission chain itself, however, was populated 337 

with many high likelihood transmission events, with few pairwise infector-infectee 338 

likelihoods below 50%. In other words, the likelihood of transmission between 339 

infector and infectee municipalities increased over time for both dengue and Zika, 340 

although probabilities were higher, earlier for Zika. 341 

To obtain the time-varying Rm, the sum of the transmission likelihoods for each 342 

infectee municipality was calculated and plotted over time (Fig 6). For dengue (Fig 343 

6A), there was a linear trend starting at an Rm of ~1.0 in January 2015, which 344 

decreased to a value of approximately 0.7 by April 2016. Zika (Fig 6B) showed a 345 

consistent Rm of approximately 1 until just after April 2016 when it began to decline. 346 

By September 2016, the Rm was ~0.4. Grey areas in Figure 6 represent 95% 347 

confidence intervals, which increase in size over time and correlate with greater 348 

uncertainty as caseload declines. 349 
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Discussion 350 

This research set out to explore the spatio-temporal trends of both dengue and Zika 351 

epidemics between 2014-2016, and better define disease progression at a 352 

municipality level across the Dominican Republic. Retrospective analysis of incident 353 

case data was used to map the spatio-temporal distribution of cases. Transmission 354 

likelihood matrices for infector-infectee pairs were generated, and the temporal trend 355 

of Rm, was calculated to better understand transmission dynamics over time. 356 

 357 

Dengue and Zika attack rates over the entire epidemic period varied substantially 358 

across the country, likely a result of known transmission drivers (35). As shown in 359 

Fig 3A, the peak of the dengue epidemic occurred during epidemiological weeks 39-360 

52 of 2015, which coincided with the implementation of control efforts, such as 361 

fogging and public health campaigns (36), that may have stymied transmission (37).  362 

By contrast, the peak of the Zika epidemic occurred between weeks 14-27 of 2016 363 

(Fig 3D). Uncomplicated dengue attack rates were highest in the municipality of 364 

Cotuí, at 622 cases per 10,000 population. No other municipality recorded >100 365 

cases per 10,000 population. By contrast, the highest Zika attack rate was recorded 366 

in the municipality of Jimaní, at 32 per 10,000 population, and equates to a ~20-fold 367 

difference in incidence, demonstrating the continuing burden of dengue in the 368 

Dominican Republic. 369 

 370 

That Jimani recorded the highest Zika burden in the country is important not only due 371 

to the relatively high caseload. Jimani has a population of 400,000 and shares a land 372 

border with Haiti. It has undergone rapid expansion in recent decades and is a hub 373 
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for the movement of people and goods across the border (38). Considering the 374 

detection of Zika in Haiti as early as 2014 (39), and that Jimani has become a 375 

gateway for larger campaigns in Haiti (40), it is plausible that a number of Zika 376 

importation and re-importation events occurred across both sides of the border. This 377 

narrative is hypothetically confirmed by spatio-temporal mapping of Zika, showing 378 

that western-most municipalities were affected greatly in the early phases of the 379 

epidemic, while central and eastern regions were affected later. In light of this, 380 

increased disease surveillance capacity in Jimaní could offer valuable early warning 381 

for disease events across both sides of the border.  382 

 383 

Human Mobility and Infrastructure 384 

Human movement between neighbourhoods and commuter cities is known to 385 

intensify dengue transmission (41) (42). Indeed, those provinces (Hermanas Mirabal, 386 

Sánchez Ramirez and La Vega) that share these characteristics reported relatively 387 

high uncomplicated dengue attack rates of 58, 48 and 38 cases per 10,000 388 

population respectively (standardised for age and sex) (Table S1). For Hermanas 389 

Mirabal and La Vega, high standardised attack rates correlate with their geographical 390 

location. They are connected by primary roads DR-132 and DR-1 to San Francisco 391 

de Macoris and Santiago De Los Caballeros respectively, two of the ten largest cities 392 

by population (22)(43). Sánchez Ramirez province, which includes Cotuí 393 

municipality, also places on one of the Dominican Republic’s primary roads (DR-17) 394 

between Santo Domingo and San Francisco de Macoris (43). Accordingly, 395 

municipalities and towns along major commuter belts would likely benefit from 396 

greater surveillance and public health capacity. 397 
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Transmission Chains 398 

The disease migration interval, seen in Fig 4, describes the likelihood of secondary 399 

(municipality) infection as a function of the distribution of disease migration intervals 400 

for dengue and Zika. This reflects both the infectious period and human mobility. For 401 

dengue, the migration interval was heavily skewed towards the first 50 days after 402 

symptom onset, in contrast to Zika, which showed a broader distribution over the first 403 

125 days. Given that both pathogens are transmitted via the same Aedes vectors, 404 

this suggests a more significant role for sexually transmitted Zika (44), at least in 405 

terms of transmission drivers throughout the first half of the epidemic.  406 

 407 

Wallinga and Teunis (15) first proposed transmission likelihood matrices to identify 408 

breaks in transmission chains. In real terms, this equates to the importation of cases, 409 

better known as importation events (17). The international and intra-national 410 

movement of people, and the influence of asymptomatic or unreported individuals, 411 

can be captured using this methodology, which can help identify both the index case 412 

and the source of importations/ reintroductions (17). Using absolute dengue cases, 413 

this study identified six events that had 0% likelihood of transmission between 414 

infector and infectee municipalities, in other words, six importation events (Fig 5A). 415 

These occurred during the latter half of the outbreak and constituted a greater 416 

number of importation events than the single event observed for Zika. While it is not 417 

possible to tease out the origin of each event, the relative frequency of importation 418 

events between diseases is not unexpected, given the assumed largely Zika 419 

seronegative international population (due to the novel nature of the virus) vs. the 420 

global endemicity of dengue (4). However, it is also possible that these events are 421 

related to intra-national introductions, where individuals become infected through 422 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 1, 2020. ; https://doi.org/10.1101/2020.06.30.20143248doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.30.20143248
http://creativecommons.org/licenses/by-nc-nd/4.0/


26	
	

	 26	

inter-municipal contacts, reinforcing the importance of human mobility as a 423 

transmission driver, but also potentially through asymptomatic or unreported 424 

infections. The implicit assumption here is that a lower Rm requires a greater number 425 

of importation events to sustain transmission, and vice versa.  426 

The likelihood of transmission increased with time from symptom onset for both Zika 427 

and dengue. Heatmaps for dengue (Fig 5A) showed increasing likelihood of 428 

transmission between infector-infectee pairs, as a function of symptom onset over 429 

time, likely indicating multiple smaller importation events in pockets of less well-430 

connected municipalities in rural areas. By contrast, Zika heatmaps demonstrated a 431 

more consistent chain of transmission, most likely reflecting a continuous supply of 432 

susceptibles infected by two modes of transmission. This is not atypical for Zika, and 433 

has been observed in Rio de Janeiro, Brazil, where multiple introductions over a 434 

short space of time led to a national crisis (45), since corroborated by phylogenetic 435 

analysis linking the strain to French Polynesia (46).  436 

 437 

Municipal Reproduction Number (Rm) 438 

Defining transmission chains and generating time-varying reproduction numbers can 439 

provide epidemiologists with valuable information that inform surveillance, control 440 

and response. Methodologies used to generate these metrics are established (47) 441 

(48) and have been used to determine the impact of cattle culls on foot-and-mouth 442 

disease in the UK (47). However, only a small proportion of such probabilistic studies 443 

have focussed on arboviruses, with Salje et al., 2016 looking specifically at the 444 

transmission dynamics of chikungunya (49). Independent cascade models (34) have 445 

also been used to determine interactions across networks for infectious disease 446 

outbreaks, yet these focussed on individuals’ data (17), or were used in the context 447 
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of social network modelling (50). Where this study expands the field is in the use of 448 

widely available data at a standard geospatial unit – the municipality – to understand 449 

transmission dynamics of infectious diseases, using a newly-defined variant of the 450 

basic reproduction number: Rm. The metric reflects the average number of 451 

secondary infectee municipalities arising from a primary infector municipality, and 452 

can be interpreted as follows: a municipality with an Rm <1 reflects a lower likelihood 453 

of infection to other municipalities, while on the other hand, an Rm >1 represents 454 

increased likelihood of infection to other municipalities.  455 

In this study, dengue Rm was recorded as ~1.0 at the start of the epidemic, but 456 

immediately and steadily declined throughout (Fig 7A), likely reflecting two factors: 1) 457 

that there was a relatively small pool of susceptibles among a highly mobile 458 

population in the early phases of the outbreak and 2) that this pool depleted fairly 459 

rapidly as transmission spread from major urban areas before fading throughout less 460 

mobile populations. By contrast, the Zika Rm (Fig 7B) remained constant at a value of 461 

1.0 for four months between January and April, indicating a large pool of 462 

susceptibles (51) that were infected steadily as the infection spread throughout the 463 

population. Then in May, the Rm steadily declined below 1.0, suggesting both a 464 

declining pool of susceptibles and a lower force of infection, perhaps as the virus 465 

reached poorly connected rural areas. This transmission pattern has been observed 466 

previously in French Polynesia and the Federated States of Micronesia, where high 467 

seroprevalence of IgM antibodies in the local population suggested an acute 468 

outbreak that infected three quarters of the population over a similar time scale: four 469 

months from April – July 2007 (52), before tailing off. 470 

 471 
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The dengue Rm observed in this study provides evidence that vector-borne disease 472 

spread between administrative locations, and so between populations, can still occur 473 

when the effective municipal reproduction number is below 1. Conversely, Zika, as a 474 

newly emerged infection, never recorded an Rm of 1.5 or higher, but maintained a 475 

consistent Rm of approximately 1.0 during the growth and exponential phases of the 476 

epidemic. This indicates that even in the presence of a huge pool of mobile 477 

susceptibles, vector-borne and sexually transmitted diseases have an Rm ‘celling’, 478 

pre-determined by the mode of transmission.  479 

This novel metric clearly has benefit. It operates at a scale that broadly aligns with 480 

existing geospatial data collection, thus addressing fundamental issues surrounding 481 

data and spatial heterogeneity described elsewhere (30, 53, 54). Operationally, the 482 

Rm can be used to identify high-burden and high-risk municipalities that necessitate 483 

intervention, thereby aligning with early warning and response systems that operate 484 

on similar spatial scales (30, 55). But it should be cautioned that the Rm should be 485 

used as a floating metric to guide intervention, rather than a binary threshold used to 486 

trigger intervention.  487 

 488 

 489 

Limitations 490 

Estimation of the time-varying Rm across the Dominican Republic required the 491 

heuristic determination of an optimal distribution to describe the disease migration 492 

interval distribution. This used the maximum likelihood estimation of an exponential 493 

distribution fit to the data, as seen in Figure 4, which required the assumptions that 494 

the data was identical, independent, and discrete, and fitted the interval probability 495 
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density distribution well. This was supported by the log likelihood for each of these 496 

models, which were significantly negative, as shown in Table 1, implying a good fit to 497 

the data. However, this and the standard deviation for Zika were lower than in 498 

dengue, implying the model fitted the dengue epidemic data better than for Zika. This 499 

could have been a product of more uncertainty in the exact distribution for Zika due 500 

to the smaller sample size of disease migration intervals.  501 

As suspected cases were used in all analyses, there was the potential for 502 

misclassification between not only dengue and Zika, but also within the clinical 503 

spectrum of dengue, as well as misreporting. All rates were calculated using 2016 504 

census data, so there will be small discrepancies in precision when standardising 505 

earlier datasets. Data paucity was an issue for those over 80 years of age resulting 506 

in increased noise and less reliability across results within this age group.  507 

Wallinga-Teunis matrices rely on the temporal product of the disease migration 508 

interval distribution, so for these analyses, the distribution was reasonably assumed 509 

to be exponential. Furthermore, the matrices themselves are dependent on the 510 

completeness of the dataset regarding asymptomatic and unreported infections. 511 

Consequently, the clarity of the transmission chain could be honed by incorporating 512 

predictions on rates of asymptomatic or unreported cases. 513 

The production of time-varying reproduction numbers assumed complete 514 

susceptibility to the viruses within the population, which was valid for Zika, but less 515 

so for dengue, although susceptibility to the serotype across the population was 516 

patently high. 517 
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Conclusions 518 

The results of this study characterised the Zika and dengue burden at the 519 

municipality level in the Dominican Republic across 2014-16. Concentrated disease 520 

burden within specific municipalities is likely due to the presence of significant 521 

transport arteries, both within Dominican Republic and across the border to Haiti, as 522 

a conduit for increased human movement and disease dispersal. Therefore, 523 

increased surveillance of both vector and epidemiological data (51), alongside 524 

targeted public health measures in these municipalities, is needed.  525 

Furthermore, this research highlights the inception of a novel metric used to quantify 526 

and determine transmission chains at the municipal level, which can be used to 527 

characterise municipality risk, in terms of secondary transmission to neighbouring 528 

municipalities. This approach can be generalised to countries worldwide, for multiple 529 

infectious diseases, towards refining public health responses by targeting 530 

municipalities that are significant contributors to disease spread.  531 

Finally, this study further reinforces the importance of importation events that drive 532 

transmission where Rm is below one, and conversely the significance of immune-533 

naïve populations in facilitating disease spread, which require fewer importation 534 

events to sustain transmission. Future research should be focused on the refinement 535 

of these novel metrics, and application of these to characterise municipalities based 536 

on a risk-system, reflecting variation in Rm outputs.  537 
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Supplementary Material 706 

Table S1. Age and sex standardised attack rates of dengue by province. 707 

Respective lower and upper 95% confidence intervals are shown. 708 

Province of Residence 
Standardised Attack Rate Lower 95% Confidence 

Interval 
Upper 95% Confidence 
Interval 

Hermanas Mirabal 
58.07921 57.85644 58.30198 

San José de Ocoa 
49.20185 48.846 49.5577 

Sánchez Ramírez 
48.49327 48.36307 48.62347 

La Vega 
38.80868 38.75974 38.85763 

Santiago Rodríguez 
38.07062 37.71529 38.42594 

Barahona 
33.09816 33.00535 33.19097 

Duarte 
31.81822 31.75006 31.88637 

Distrito Nacional 
29.4844 29.4635 29.5053 

María Trinidad Sánchez 
29.00574 28.86502 29.14646 

Hato Mayor 
25.61707 25.3909 25.84324 

Monseñor Nouel 
25.23547 25.12044 25.35049 

Azua 
24.86613 24.7818 24.95045 

San Juan 
23.91775 23.83329 24.00222 

Santiago 
23.75802 23.73761 23.77842 

Santo Domingo 
23.2899 23.28279 23.29702 

Monte Cristi 
22.7714 22.59429 22.94851 

Puerto Plata 
20.60499 20.5439 20.66609 

Pedernales 
19.88183 19.3406 20.42306 

Dajabón 
19.72239 19.43175 20.01304 

Espaillat 
18.54744 18.4613 18.63359 

Valverde 
18.18141 18.06645 18.29636 

Peravia 
18.0829 17.9858 18.18001 

Samaná 
17.80326 17.62246 17.98406 

San Cristóbal 
16.987 16.95681 17.01718 

Baoruco 
14.92881 14.7493 15.10832 

El Seibo 
14.84969 14.64179 15.05759 

Monte Plata 
14.07224 13.9758 14.16868 

San Pedro de Macorís 
12.76493 12.70028 12.82958 

Elías Piña 
11.80936 11.54331 12.07541 
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Independencia 
11.66837 11.36343 11.9733 

La Altagracia 
11.36612 11.30525 11.42699 

La Romana 
4.964588 4.891426 5.03775 

 709 

Table S2. Age and sex standardised attack rates of Zika by province. Respective lower 710 

and upper 95% confidence intervals are shown. 711 

Province of Residence Standardised Attack 
Rate 

Lower 95% 
Confidence Interval 

Upper 95% 
Confidence Interval 

San José de Ocoa 21.160 20.773 21.548 

Independencia 13.370 13.015 13.724 

Distrito Nacional 9.334 9.315 9.353 

Santo Domingo 7.291 7.284 7.298 

Valverde 7.288 7.171 7.405 

Puerto Plata 6.348 6.288 6.408 

Azua 5.855 5.756 5.954 

San Cristóbal 5.681 5.649 5.714 

Hato Mayor 5.430 5.193 5.666 

Espaillat 5.358 5.273 5.444 

Samaná 5.032 4.846 5.218 

La Altagracia 5.003 4.940 5.067 

Santiago Rodríguez 4.326 3.957 4.694 

Dajabón 3.435 3.115 3.756 

Monte Plata 3.138 3.026 3.250 

Peravia 3.034 2.932 3.137 

Pedernales 3.000 2.347 3.653 

Santiago 2.684 2.665 2.703 

Monseñor Nouel 2.588 2.473 2.704 

La Romana 2.465 2.390 2.541 

Hermanas Mirabal 2.254 2.033 2.475 

La Vega 1.920 1.872 1.969 

Elías Piña 1.770 1.337 2.204 

Sánchez Ramírez 1.766 1.628 1.905 

El Seibo 1.680 1.445 1.915 

Duarte 1.622 1.555 1.690 

Barahona 1.620 1.507 1.734 
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San Juan 1.531 1.428 1.635 

San Pedro de Macorís 1.388 1.324 1.453 

Monte Cristi 1.334 1.159 1.508 

María Trinidad Sánchez 1.223 1.082 1.364 

Baoruco 1.116 0.897 1.334 

 712 

Table S3. Age and sex standardised attack rates of total dengue by municipality. 713 

Respective lower and upper 95% confidence intervals are shown. 714 

Municipality of Residence Standardised Attack Rate (per 
10,000 population) 

Lower 95% confidence 
interval 

Higher 95% confidence 
interval 

Jarabacoa 99.80548 99.46349 100.1475 

Ramón Santana 89.70886 87.66433 91.75339 

Fantino 89.63507 88.68542 90.58471 

Jima Abajo 85.40193 84.76547 86.03838 

Las Salinas 84.32807 80.65512 88.00103 

Villa Tapia 76.6103 75.76196 77.45864 

La Ciénaga 61.26256 59.35661 63.16851 

San José De Ocoa 56.34095 55.80489 56.87701 

Salcedo 55.89944 55.37521 56.42366 

Cotuí 52.90987 52.64865 53.17108 

Villa González 50.6077 50.0964 51.11899 

Cabrera 49.68283 48.84336 50.5223 

San Ignacio De Sabaneta 47.72824 47.11682 48.33966 

Tenares 46.91322 46.17762 47.64882 

Sabana Larga 44.4343 42.25702 46.61158 

Mella 43.95176 39.41779 48.48573 

Villa Rivas 42.39822 41.82511 42.97133 

Enriquillo 40.41046 39.09039 41.73054 

Barahona 39.92808 39.71827 40.13789 

Cayetano Germosen 36.2763 33.31374 39.23887 

Castillo 34.20579 32.9165 35.49509 

La Mata 33.82985 33.32753 34.33217 

Villa Los Almácigos 33.65289 31.96162 35.34416 

Monte Cristi 33.55048 32.73864 34.36232 

Tabara Arriba 33.22181 32.13656 34.30706 

San Francisco De Macorís 33.00379 32.89722 33.11036 

Fundación 32.87632 30.57498 35.17766 

Arenoso 31.6767 30.29701 33.0564 

Las Matas De Farfán 31.04217 30.60128 31.48306 

Hato Mayor del Rey 30.47963 30.16355 30.79572 

Rancho Arriba 29.52567 27.21086 31.84048 
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Bonao 28.53502 28.3801 28.68995 

Azua 28.52515 28.32759 28.7227 

Nagua 28.4949 28.23753 28.75227 

Juan De Herrera 28.18342 26.64899 29.71785 

Santo Domingo Norte 27.69646 27.66495 27.72797 

Bohechío 26.75297 24.73621 28.76974 

Santo Domingo Oeste 26.73674 26.68871 26.78477 

Licey Al Medio 26.71107 25.89305 27.5291 

La Vega 26.66034 26.58019 26.74048 

Puerto Plata 26.08195 25.95665 26.20724 

Villa Vázquez 25.68708 24.28856 27.0856 

Las Guaranas 25.51559 24.12641 26.90478 

Santiago 25.51513 25.48629 25.54397 

Sabana Yegua 25.48877 24.52804 26.4495 

Pueblo Viejo 25.37458 23.77025 26.97891 

Sosua 24.61137 24.21918 25.00355 

Vicente Noble 24.41566 23.59058 25.24075 

Santo Domingo Este 24.37927 24.3605 24.39804 

Guayubín 24.11644 23.56681 24.66607 

San Juan 24.09508 23.94515 24.245 

El Pino 24.01008 20.64867 27.37149 

Samaná 23.23657 22.92029 23.55285 

Loma De Cabrera 23.13504 21.94176 24.32832 

Yamasá 22.79716 22.48249 23.11182 

Mao 22.63276 22.37781 22.8877 

Piedra Blanca 22.60557 21.71943 23.4917 

San Cristóbal 22.14353 22.06685 22.22022 

Pepillo Salcedo (Manzanillo) 22.08113 20.02022 24.14204 

Pedernales 21.8935 21.17831 22.60869 

Peralta 21.65648 20.44372 22.86924 

Laguna Salada 21.46498 20.67118 22.25878 

Dajabón 21.4077 20.74168 22.07371 

Padre Las Casas 21.26606 20.37922 22.1529 

Cambita Garabitos 21.24353 20.68836 21.79869 

Las Yayas de Viajama 21.15576 20.11913 22.1924 

Moca 20.47941 20.36602 20.59279 

Bisonó 20.39457 19.94033 20.84881 

Los Alcarrizos 20.32296 20.26306 20.38286 

Jaquimeyes 20.25948 15.84741 24.67154 

Bajos De Haina 20.13347 19.99304 20.2739 

Duvergé 19.97502 18.46921 21.48083 

Baní 19.94201 19.82603 20.05799 

Río San Juan 19.8371 18.44851 21.2257 

Los Hidalgos 19.81484 18.04952 21.58016 
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El Peñón 18.89265 14.26395 23.52135 

Consuelo 18.70276 18.0918 19.31372 

Cabral 18.43594 17.23146 19.64042 

El Factor 17.73807 16.92954 18.54659 

Tamboril 17.57079 17.19646 17.94513 

Neiba 17.0401 16.54895 17.53126 

Sabana De La Mar 16.99978 15.80979 18.18976 

Monción 16.88539 15.04676 18.72402 

Partido 16.86654 13.86123 19.87185 

Pedro Brand 16.85734 16.64279 17.07189 

Miches 16.80266 15.95822 17.6471 

Villa Jaragua 16.42362 14.81411 18.03314 

Tamayo 15.92995 15.27947 16.58042 

Villa Montellano 15.47258 14.49432 16.45085 

Sabana Grande De Boya 15.02801 14.45046 15.60555 

Las Charcas 14.93584 13.30949 16.56218 

Pimentel 14.58927 13.48946 15.68907 

Santa Cruz de El Seibo 14.26439 13.98758 14.54121 

Oviedo 14.10137 11.79814 16.40459 

Yaguate 14.01328 13.60936 14.41719 

Villa Isabela 13.76339 12.5372 14.98958 

Bánica 13.58093 10.6233 16.53855 

Comendador 13.54216 12.95233 14.132 

Estebanía 13.51789 10.20601 16.82978 

Los Ríos 13.45697 11.05918 15.85476 

San Antonio De Guerra 13.36972 12.99537 13.74407 

Hondo Valle 12.9614 11.26777 14.65502 

El Cercado 12.85318 11.92014 13.78623 

Castañuelas 12.64453 11.40537 13.8837 

Esperanza 12.28771 11.99754 12.57787 

Higüey 12.26903 12.20223 12.33583 

San José De Las Matas 12.16991 11.65137 12.68846 

Cevicos 11.80692 10.36058 13.25327 

Guananico 11.76473 7.921584 15.60787 

Las Terrenas 11.5613 10.5313 12.59131 

Polo 11.50662 8.687499 14.32574 

El Llano 10.96535 9.174346 12.75636 

Constanza 10.89276 10.57411 11.21142 

Sánchez 10.68355 9.908002 11.45909 

Gaspar Hernández 10.62947 10.10862 11.15031 

San Pedro De Macorís 10.51065 10.41208 10.60922 

Vallejuelo 10.47525 8.895904 12.05459 

Monte Plata 10.4132 10.00501 10.8214 

Santo Domingo de Guzmán 10.2152 10.20796 10.22244 
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Maimón 9.692846 8.692952 10.69274 

Boca Chica 9.677225 9.563648 9.790802 

Nizao 9.432479 8.772205 10.09275 

Janico 9.330062 8.110934 10.54919 

Imbert 9.234064 8.329125 10.139 

Galván 9.135609 8.016497 10.25472 

Paraíso 9.129083 8.076553 10.18161 

Puñal 8.974125 8.534393 9.413857 

Jimaní 8.950573 8.027251 9.873896 

Altamira 8.907666 7.743731 10.0716 

Villa Altagracia 8.794135 8.593711 8.99456 

Luperón 8.506038 7.315192 9.696883 

Bayaguana 8.400559 7.81252 8.988598 

Juan Santiago 8.099237 0.161985 16.03649 

Guayabal 7.956494 4.057812 11.85518 

La Descubierta 7.743339 5.575204 9.911474 

Restauración 7.602448 5.473763 9.731134 

Las Matas De Santa Cruz 7.171422 5.414424 8.928421 

La Romana 7.07478 6.940153 7.209407 

El Valle 7.068844 4.297857 9.839831 

Sabana Iglesia 6.993931 5.470808 8.517054 

Peralvillo 6.794156 5.906386 7.681926 

Eugenio Maria De Hostos 6.708117 3.42114 9.995094 

Guayacanes 6.471506 5.203091 7.739922 

Pedro Santana 5.994467 3.057178 8.931756 

Los Cacaos 5.894755 4.244224 7.545287 

Quisqueya 5.81898 4.868546 6.769413 

Jamao Al Norte 5.21818 2.661272 7.775088 

Los Llanos 4.373047 3.51593 5.230164 

San Gregorio De Nigua 4.073791 3.503461 4.644122 

Sabana Grande De Palenque 3.363778 2.264944 4.462612 

Cristóbal 3.129884 1.085027 5.174742 

Guaymate 2.681658 1.630448 3.732868 

Villa Hermosa 2.480608 2.286128 2.675088 

San Rafael Del Yuma 2.220714 1.495281 2.946148 

Postrer Río 2.05144 -1.96938 6.072261 
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Table S4. Age and sex standardised attack rates of Zika per municipality. Respective 716 

lower and upper 95% confidence intervals are shown. 717 

Municipality of 

Residence 

Standardised Attack Rate (per 10,000 

population) 

Lower 95% confidence 

interval 

Higher 95% confidence 

interval 

Jimani 32.3110079 31.199962764 33.4220531 

Sabana Grande De Pale

nque 

31.1635729 29.988945902 32.3381999 

San Jose De Ocoa 25.6569420 25.085491882 26.2283920 

Sabana Larga 24.9988175 22.419992094 27.5776429 

Mella 22.1680593 16.736884748 27.5992338 

Laguna Salada 13.8565123 13.057725133 14.6552995 

Los Alcarrizos 11.9794935 11.915862626 12.0431245 

Puerto Plata 11.4667693 11.347854645 11.5856839 

Azua 8.8848804 8.658719782 9.1110410 

Yamasa 8.5608894 8.179540673 8.9422381 

Santo Domingo Norte 8.4313207 8.399107466 8.4635339 

Sabana Iglesia 8.3813333 7.012382194 9.7502844 

Villa Los Almacigos 7.8986302 5.963465804 9.8337946 

Hato Mayor del Rey 7.5330013 7.204897261 7.8611054 

San Cristobal 7.3748640 7.296305708 7.4534224 

Santo Domingo Este 6.9967543 6.979329043 7.0141795 

Moca 6.6630892 6.552414200 6.7737643 

Mao 6.5777972 6.334542791 6.8210516 

Maimon 6.4023271 5.356613639 7.4480405 

Estebania 6.1978345 2.148582610 10.2470863 

Boca Chica 6.1964392 6.073762201 6.3191162 

Pueblo Viejo 5.9857849 4.030428520 7.9411413 

Guaymate 5.7685724 4.355272143 7.1818726 

Samana 5.6791387 5.361106943 5.9971705 

Janico 5.6002079 4.602352682 6.5980631 

Esperanza 5.5881001 5.275166493 5.9010337 

Dajabon 5.5087043 4.833888002 6.1835205 

Las Yayas de Viajama 5.4675100 4.127970032 6.8070499 

Sanchez 5.2444350 4.453735608 6.0351345 

Higuey 5.2339712 5.165580662 5.3023618 
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Santo Domingo Oeste 4.9618576 4.916623941 5.0070913 

Cambita Garabitos 4.8807317 4.242982784 5.5184807 

San Ignacio De Sabanet

a 

4.7929775 4.166695081 5.4192599 

Las Salinas 4.7902755 0.095805510 9.4847455 

Sabana Yegua 4.7736030 3.604070248 5.9431357 

Luperon 4.5556290 3.280052865 5.8312051 

El Pino 4.4579821 1.545433789 7.3705304 

Ramon Santana 4.3993225 2.243654453 6.5549905 

La Descubierta 4.1547668 1.440319165 6.8692145 

Bajos De Haina 4.0324240 3.886061953 4.1787861 

Tabara Arriba 4.0215527 2.707845475 5.3352599 

Las Guaranas 4.0192872 2.706320080 5.3322544 

Duverge 3.9938524 2.428262244 5.5594425 

El Llano 3.9517350 0.079034700 7.8244353 

Pedro Brand 3.9407016 3.706647803 4.1747554 

Pedernales 3.8533242 3.014155784 4.6924925 

Santo Domingo de Guz

man 

3.5813698 3.574236191 3.5885034 

Bani 3.3054351 3.185460033 3.4254101 

Villa Tapia 3.0550819 2.199658977 3.9105048 

Yaguate 2.9979435 2.545945881 3.4499412 

Las Terrenas 2.8254353 1.717864634 3.9330059 

Santiago 2.8209334 2.794975507 2.8468913 

Cayetano Germosen 2.8138487 0.056276973 5.5714204 

Neiba 2.7419134 2.144785610 3.3390412 

Barahona 2.7377511 2.493842378 2.9816598 

Salcedo 2.6390676 2.121810327 3.1563248 

La Vega 2.6375850 2.559256741 2.7159133 

Comendador 2.6288381 1.598333586 3.6593427 

Peralta 2.5874098 1.319578974 3.8552405 

Guayubin 2.5377422 1.985078332 3.0904060 

Fantino 2.4828577 1.509577508 3.4561380 

La Romana 2.4590175 2.332183957 2.5858510 

Guayacanes 2.4273391 1.237942933 3.6167352 

Licey Al Medio 2.4193452 1.629025784 3.2096647 
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Villa Altagracia 2.3683721 2.136271672 2.6004726 

Bonao 2.2882133 2.133561601 2.4428649 

Villa Gonzalez 2.2798786 1.783371703 2.7763855 

San Juan 2.2505690 2.074124375 2.4270136 

La Mata 2.2182605 1.674786661 2.7617343 

Bisono 2.1160769 1.655242388 2.5769114 

San Francisco De Maco

ris 

1.9711141 1.869446083 2.0727821 

Castanuelas 1.9551102 0.677771522 3.2324488 

Villa Hermosa 1.9428478 1.731293231 2.1544023 

Tamboril 1.9257006 1.548263248 2.3031379 

Guayabal 1.9073927 -1.831097011 5.6458825 

Peralvillo 1.8898764 0.963836984 2.8159159 

Santa Cruz de El Seibo 1.8710630 1.565456042 2.1766700 

San Pedro De Macoris 1.5842176 1.490124677 1.6783105 

Nagua 1.5703194 1.313833891 1.8268049 

Altamira 1.5438997 0.030877994 3.0569214 

Pedro Santana 1.5394848 -1.477905401 4.5568750 

Cotui 1.5062534 1.237866434 1.7746404 

San Antonio De Guerra 1.4871201 1.070726469 1.9035137 

Nizao 1.4756720 0.752592713 2.1987513 

Castillo 1.4643032 0.029286064 2.8993203 

Fundacion 1.4457480 -1.387918078 4.2794141 

San Rafael Del Yuma 1.3746690 0.701081169 2.0482567 

Piedra Blanca 1.3607211 0.471716637 2.2497255 

El Factor 1.3308969 0.461377576 2.2004161 

Punal 1.2720042 0.856482823 1.6875256 

Jima Abajo 1.2345934 0.629642633 1.8395442 

Tenares 1.1261471 0.390397665 1.8618966 

Miches 1.1019171 0.022038343 2.1817959 

Monte Plata 1.0452904 0.635536553 1.4550442 

Imbert 1.0206539 0.020413078 2.0208947 

Los Cacaos 1.0094193 -0.969042510 2.9878811 

Vicente Noble 1.0040338 0.020080675 1.9879869 

Cristobal 1.0002930 -0.960281281 2.9608673 

Padre Las Casas 0.9838419 0.019676838 1.9480069 
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Las Charcas 0.9819012 -0.942625159 2.9064276 

Restauracion 0.9803555 -0.941141299 2.9018523 

San Gregorio De Nigua 0.9420560 0.326579411 1.5575326 

Enriquillo 0.9369993 -0.899519289 2.7735178 

Sosua 0.9251375 0.562483600 1.2877914 

Cevicos 0.9205966 -0.883772781 2.7249661 

Las Matas De Farfan 0.8601461 0.298183977 1.4221082 

Gaspar Hernandez 0.8527920 0.295634556 1.4099494 

Las Matas De Santa Cru

z 

0.8518128 -0.817740285 2.5213659 

Loma De Cabrera 0.8265447 -0.793482887 2.4465722 

Juan De Herrera 0.8032091 -0.771080766 2.3774990 

Los Hidalgos 0.7504047 -0.720388514 2.2211979 

Constanza 0.6942031 0.354043562 1.0343626 

Villa Isabela 0.6891028 -0.661538716 2.0397444 

Rio San Juan 0.6527960 -0.626684125 1.9322761 

Villa Vazquez 0.6285566 -0.603414334 1.8605275 

Cabrera 0.5035959 -0.483452092 1.4906440 

Monte Cristi 0.4637674 -0.445216695 1.3727515 

San Jose De Las Matas 0.4387227 0.008774453 0.8686709 

Jarabacoa 0.4355955 0.151006446 0.7201846 

Tamayo 0.3854663 -0.370047622 1.1409802 

Consuelo 0.3807781 -0.365546933 1.1271030 

Villa Rivas 0.3642234 -0.349654457 1.0781012 

Bayaguana 0.3230117 -0.310091264 0.9561147 

Sabana Grande De Boy

a 

0.3042786 -0.292107421 0.9006645 

Arenoso NA NA NA 

Banica NA NA NA 

Bohechio NA NA NA 

Cabral NA NA NA 

El Cercado NA NA NA 

El Penon NA NA NA 

El Valle NA NA NA 

Eugenio Maria De Hosto

s 

NA NA NA 
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Galvan NA NA NA 

Guananico NA NA NA 

Haiti NA NA NA 

Hondo Valle NA NA NA 

Jamao Al Norte NA NA NA 

Jaquimeyes NA NA NA 

Juan Santiago NA NA NA 

La Cienaga NA NA NA 

Los Llanos NA NA NA 

Los Rios NA NA NA 

Moncion NA NA NA 

Otro Extranjero NA NA NA 

Oviedo NA NA NA 

Paraiso NA NA NA 

Partido NA NA NA 

Pepillo Salcedo (Manza

nillo) 

NA NA NA 

Pimentel NA NA NA 

Polo NA NA NA 

Postrer Rio NA NA NA 

Quisqueya NA NA NA 

Rancho Arriba NA NA NA 

Sabana De La Mar NA NA NA 

Vallejuelo NA NA NA 

Villa Jaragua NA NA NA 

Villa Montellano NA NA NA 
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