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Abstract

Ascertaining the state of coronavirus outbreaks is crucial for pub-

lic health decision-making. Absent repeated representative viral test

samples in the population, public health officials and researchers alike

have relied on lagging indicators of infection to make inferences about

the direction of the outbreak and attendant policy decisions. Recently

researchers have shown that SARS-CoV-2 RNA can be detected in mu-

nicipal sewage sludge with measured RNA concentrations rising and

falling suggestively in the shape of an epidemic curve while provid-

ing an earlier signal of infection than hospital admissions data. The
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present paper presents a SARS-CoV-2 epidemic model to serve as a

basis for estimating the incidence of infection, and shows mathemati-

cally how modeled transmission dynamics translate into infection indi-

cators by incorporating probability distributions for indicator-specific

time lags from infection. Hospital admissions and SARS-CoV-2 RNA

in municipal sewage sludge are simultaneously modeled via maximum

likelihood scaling to the underlying transmission model. The results

demonstrate that both data series plausibly follow from the transmis-

sion model specified, and suggest that the detection of viral RNA in

sewage sludge leads hospital admissions by 4.6 days on average.

1 Introduction

Ascertaining the state of coronavirus outbreaks is crucial for public health

decision-making. Absent repeated representative viral test samples in the

population (Kaplan and Forman 2020), public health officials and researchers

alike have relied on lagging indicators of infection to make inferences about

the direction of the outbreak and attendant policy decisions. How useful

these indicators are depends upon their typical lags behind the incidence of

infection. Some indicator lags, such as time from infection to hospitalization,

have been studied empirically (Lewnard et al 2020, CDC 2020, MIDAS 2020).

Other indicators have been proposed with the hope that they would greatly

reduce the lag time from infection. One such promising indicator is measured

SARS-CoV-2 RNA concentration in municipal wastewater (Hart and Halden

2020, Peccia et al 2020). Howmuch earlier might such a signal inform officials

of changes in the state of the outbreak?

This paper tackles this question by using an epidemic transmission model
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to create model-scale versions of whatever indicator is of interest, and then

scales these model quantities to match observed indicator values in the real

world. This approach clarifies the time lags that should be expected from

SARS-CoV-2 incidence to whichever indicator is of interest, and by doing so

makes it possible to compare the relative timing of one indicator to another,

providing the model fit to the data is sufficiently close.

Our study takes advantage of recently conducted research tracking the

local SARS-CoV-2 outbreak in the New Haven, Connecticut, USA metropol-

itan area. As reported by Peccia et al (2020), daily SARS-CoV-2 RNA

concentrations were obtained by sampling sewage sludge from the local waste-

water treatment plant and conducting PCR tests to determine virus RNA

concentration. Daily COVID-19 admissions to the Yale New Haven Hospi-

tal restricted to residents of the same four towns served by this wastewater

treatment plant were also recorded over the same time period. An epidemic

model developed by Kaplan (2020b) was taken as the basis for calibrating

these two lagging indicators while simultaneously estimating the initial con-

dition and reproductive number 0 of this outbreak. This paper details the

methodology employed and results obtained from doing so.

The next section presents a quick description of the transmission model

reported in Kaplan (2020b). In Section 3, a simple method is described for

linking model-scale lagging epidemic indicators to SARS-CoV-2 incidence

based on the model and appropriately defined lag probability density func-

tions, which enables a model-scale comparison of different indicators to see
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how they should appear over the course of an outbreak (Figure 1). Section 4

presents a simple statistical approach to analyzing real-world indicator data

by scaling modeled indicators up to observed values based on maximum like-

lihood estimation while also estimating the initial condition and reproductive

number of the epidemic wave from the underlying transmission model. We

simultaneously scale hospital admissions and the RNA virus concentration

observed in the sewage sludge to the epidemic model (Table 1, Figure 2 and

3). The results show that accounting for the inherent noise in the data, both

the virus RNA concentration in the sewage sludge and hospital admissions

match the model expectations reasonably well. The analysis verifies that

there is about a 4.6 day separation between the sludge RNA concentration

and hospital admissions curve, consistent with earlier analysis based on sta-

tistical time-series analysis (Peccia et al 2020). Section 5 provides a summary

of the key points of the paper.

2 Transmission Model

Data detailing person-to-person SARS-CoV-2 transmission in Wuhan were

reported by Li et al (2020). These data enabled an early model-based as-

sessment of prospects for containing coronavirus via isolation and quarantine

(Kaplan 2020a), while that analysis was extended to a dynamic transmission

model for SARS-CoV-2 transmission in Connecticut (Kaplan 2020b). This

latter model incorporates infection-age-dependent transmission, and thus
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falls into the class of renewal equation epidemic models (Heesterbeek and

Dietz 1996, Champredon and Dushoff 2015). The key model element is the

age-of-infection dependent transmission rate (), which can be thought of

as the instantaneous transmission intensity of an individual who has been in-

fected for  time units. At the beginning of an outbreak when an infectious

person is embedded in an otherwise susceptible population, the expected

number of infections transmitted per infectious person equals the reproduc-

tive number 0, which is given by

0 =

Z ∞

0

() (1)

as is well known. Li et al (2020) reported estimates of both the exponential

growth rate  and backwards generation time probability density function

(), enabling () to be written as

() = (),   0 (2)

(Kaplan 2020a, 2020b; Britton and Tomba 2019; Champredon and Dushoff

2015; Wallinga and Lipsitch 2007), which together imply a point estimate of

0 = 226 (Kaplan 2020a), consistent with values widely reported elsewhere

(Ferguson et al 2020, Kissler et al 2020, MIDAS 2020, Park et al 2020).

An alternative representation of () is

() = 0() (3)
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where () is the forward generation time density that dictates the timing

of transmission (Britton and Tomba 2019; Champredon and Dushoff 2015;

Wallinga and Lipsitch 2007). We adopt this representation in the present

analysis, as it enables estimation of the underlying reproductive number 0

directly from the data at our disposal.

The transmission model developed in Kaplan (2020b) that will be used

to anchor our infection indicators analysis follows. Let

() ≡ transmission potential (or force of infection) at chronological time
;

() ≡ fraction of the population that is susceptible to infection at chrono-
logical time ;

( ) ≡ fraction of the population that has been infected for duration 
at time time ;

(0 ) = incidence of infection at time .

Given initial conditions ( 0) and (0) the model equations are:

() =

Z ∞

0

()( )   0 (4)

(0 ) = ()()   0 (5)

()


= −(0 )   0 (6)
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( ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−  0) 0   ≤ 

(0 − ) 0   ≤ 

(7)

Equation (4) defines the transmission potential at time , which is infection-

age-dependent transmission () weighted by the infection-age-dependent

prevalence of infection in the population ( ); equation (5) equates SARS-

CoV-2 incidence to the product of the fraction of the population that is

susceptible and the transmission potential; equation (6) depletes suscepti-

bles with the incidence of infection; and equation (7) aligns the fraction of

the population infected for duration  at time  with the incidence of infec-

tion at time − , adjusting for the initial conditions at time zero. There is

no additional accounting for the duration of infectiousness because the time

course of infection is already built into ().

The transmission function employed for the present analysis is given by

equation (3) using the forward generation time density () implied by Li et

al (2020), which is a gamma density with mean (standard deviation) equal to

8.86 (4.02) days1. The reproductive number 0 and initial condition ( 0)

are estimated from the data as described below.

1We also considered the generating time density based on the posterior parameter

estimates from Park et al’s (2020) analysis of generating times, but it did not fit the data

quite as well as the generating time based on Li et al (2020).
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3 Transmission Indicators and Time Lags

In the absence of repeated representative viral testing in a population, offi-

cials and researchers alike have turned to lagging indicators of infection such

as diagnosed COVID-19 cases, hospitalizations, and deaths to monitor the

state of the outbreak. How useful such indicators are depends upon their lag

time from infection. Let () be the value of a model-scale infection indicator

that represents a distributionally lagged signal of the incidence of infection.

Specifically, denote  as the time lag from infection, and define  ()

as the probability density function governing the lag   The model-scale

infection indicator () is then defined as

() =

Z ∞

0

 ()( ) (8)

=

Z ∞

0

 ()(0 − )

=  [(0 −  )]

where  [·] denotes mathematical expectation with respect to random vari-
able . Simply stated, the model-scale indicator at time  is the expected

value of SARS-CoV-2 incidence  time units into the past. A first-order

Taylor approximation yields the approximation

() ≈ (0 −( )) (9)
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which suggests that the model-scale indicator value can be approximated by

incidence evaluated ( ) time units earlier.

3.1 Example: Hospital Admissions

Hospital admissions have been used as an indicator for the coronavirus out-

break under the presumption that the fraction of new infections that require

hospitalization remains constant over time. Define  as the time from in-

fection to hospitalization for those infected persons that do require hospital

treatment. A review of several published studies by Lewnard et al (2020) es-

timated that the time from infection until hospitalization averages 13.5 days

with 95% probability coverage ranging from 4.8 to 27.9 days. We approxi-

mate this finding by employing a gamma distribution with  = 4954 and

 = 2725 to represent the probability density of  ,  (). This distribu-

tion also has a mean of 13.5 days with 95% probability coverage ranging from

4.4 to 27.7 days. Similar times from infection to hospitalization are implied

by the Centers for Disease Control COVID-19 pandemic planning scenarios

(CDC 2020) and also MIDAS (2020).

Conditional upon the transmission model described in equations (4-7), the

model-scale hospitalization indicator () is, following equation (8), given by

() =

Z ∞

0

 ()(0 − ) (10)

=  [(0 − )]

≈ (0 −())

9

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.27.20141739doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.27.20141739


Figure 1 plots both the model-scale SARS-CoV-2 incidence (0 ) and hos-

pitalization indicator () assuming () as defined in equation (3) with

0 = 234 as will be estimated subsequently; the gamma distribution for

 () described above; (0) = 1 indicating complete population suscepti-

bility at time 0 (taken as February 19, 2020); and ( 0) = 0016430 for

0   ≤ 30 as will be estimated subsequently. The model-scale hospitaliza-
tion indicator lags incidence by about two weeks, as one would expect given

that () = 135 days by design.

3.2 Example: SARS-CoV-2 RNA inMunicipal Sewage

Sludge

Peccia et al (2020) reported daily SARS-CoV-2 RNA concentrations based

on sampling sludge from a municipal wastewater treatment plant serving the

towns of New Haven, East Haven, Hamden, and Woodbridge in the state

of Connecticut, USA between March 19 and May 1 of 2020. Virus RNA

concentrations in sludge should reflect the amount of virus shed in feces by

infected persons in the population served by the treatment plant, resulting in

a fecal estimate of community virus RNA concentration. Though virus RNA

concentrations in feces degrade exponentially with the time from excretion

to sample collection (Hart and Halden, 2020), virus RNA concentrations ob-

tained from sludge sampled daily should be discounted by approximately the

same degradation factor, rendering the resulting signal a plausible surrogate

10
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tracking community virus RNA concentration over time.

Referring back to the epidemic model, the appropriate measure of virus

RNA concentration is the transmission potential (), as the amount of virus

shed in feces should reflect the average infectiousness of the population. How-

ever, to use the indicator framework developed above, the age-of-infection

transmission rate () must be normalized to the scale of a probability den-

sity function. This is easily achieved by defining

 () =
()

0
,   0 (11)

which is immediately recognized as the forward generation time probability

density () introduced earlier. This density enables the definition of the

model-scale virus RNA indicator () as

() =

Z ∞

0

 ()(0 − ) (12)

=  [(0 −  )]

≈ (0 −( ))

For () as defined in equation (3) using the forward generation time

density () corresponding to Li et al (2020), the expected lag ( ) is given

by 8.9 days, or 4.6 days shorter than the lag from infection to hospitalization.

This mean generation time is 3 to 4 days longer than the values implied

11
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by CDC (2020) and MIDAS (2020), though it falls within the uncertainty

interval estimated by Park et al (2020). Figure 1 reports the model-scale virus

RNA indicator () under the same epidemic modeling assumptions described

for the hospitalization indicator (). Given the transmission model, the

timing of both the virus RNA concentration and hospitalization indicators

is clear, and provides a clue as to what might be expected when examining

the timing of observed hospital admissions and SARS-CoV-2 data in sewage

sludge. We turn to such an empirical analysis in the next section.

Figure 1

12
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4 Scaling Indicators to Transmission: Hospi-

tal Admissions and SARS-CoV-2 RNA in

Sewage Sludge

Consider a model-scale infection indicator () as earlier described, and let

 () be the random variable denoting the real-world scale observable value

of this indicator at time . For examples, corresponding to the model-scale

hospitalization indicator (), the real-world number of hospital admissions

observed on day  is the random variable (). Similarly, random variable

 () denotes the actual concentration of RNA observed in sewage sludge on

day , corresponding with the model-scale virus RNA concentration indicator

().

The observable indicator  () is modeled as a random variable with mean

proportional to (), that is,

( ()) =  ()    (13)

for some indicator-specific constant  . We thus scale observable indicators

to their model-scale values in expectation. We also allow the indicator vari-

ance 2 () to depend upon (). Given the transmission model, we treat  ()

as conditionally independent of  (0) for all  6= 0, for correlation in observed

values across time would almost entirely be due to the underlying epidemic.

The specific probability law presumed for  () given () can differ by infec-

13
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tion indicator, as will become clear by example. Given observed indicator

values at different points in time and an underlying epidemic model, one can

estimate the scaling constants  (and variance parameters if needed) via

maximum likelihood or other methods.

The Peccia et al (2020) study of sewage sludge obtained daily COVID-19

admissions data to the Yale New Haven Hospital restricted to residents of

the same four Connecticut towns served by the local wastewater treatment

plant. The data record the first such admission as occurring on March 14,

2020, 24 days following our February 19 starting date ( = 0), and daily

admissions data were recorded through May 1, 2020 ( = 72) to match the

sampling period observed in the sewage sludge study.

Daily hospital admissions data  are modeled as realizations of a Poisson

random variable () with mean proportional to the model-scale indicator

() developed earlier, that is,

[()] = (),   0 (14)

The Poisson log likelihood corresponding to the hospital admissions data

covering March 14 ( = 24) to May 1 ( = 72), lnL , is thus given by

lnL =

72X
=24

{ ln(())− ()}  (15)

Also as reported in Peccia et al (2020), sludge samples from the local

14
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wastewater treatment plant were tested for SARS-CoV-2 RNA concentra-

tions with two different primers applied to two sample replications daily.

These values were adjusted to control for day to day variations in treatment

plant flow, sludge solids content, and RNA extraction efficiency (Peccia et

al 2020). The data we employ here are , the day  average of these four

adjusted values with measurement units 105 SARS-CoV-2 RNA copies / ml

sludge. Data were collected from March 19 through May 1 ( = 29  72) for

a total of 44 daily observations. We model  as realizations of a Normal ran-

dom variable  () with mean [ ()] =  () and variance 
2
 () =  ()

to allow for over- or under-dispersion relative to the mean2. The Normal log

likelihood corresponding to the sludge data, lnL , thus equals

lnL = −1
2

72X
=29

½
ln( ()) +

( −  ())
2

 ()

¾
 (16)

We estimate five parameters from the hospital admissions and sludge

data via maximum likelihood, conditional upon the epidemic model (which

implies the forward generation lag density  () = (), and hospital lag

density  () that was taken from the literature). Three of the parameters

estimated are the hospitalization scaling constant  , the sludge RNA scaling

constant  , and the sludge RNA variance scaling constant  . The fourth

parameter estimated is 0 which scales the strength of the outbreak and

enables direct comparison to SARS-CoV-2 epidemics elsewhere. The final

2We also considered a model with constant variance but the model did not fit the data

as well.
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parameter estimated is (0), which sets the initial condition of the model via

the relation

( 0) = (0)30, 0   ≤ 30 (17)

This modeling choice reflects the random arrival of imported infections to the

area of study in the thirty days preceding the onset of community transmis-

sion, in effect determining the placement of the main epidemic wave without

changing its shape. A larger value of (0) would pull the epidemic earlier in

time, while a smaller value would push the epidemic later. In this way, the

hospital admissions and sludge virus RNA concentration data jointly deter-

mine the size and the placement of the epidemic wave while impacting the

transmission dynamics via the model described in equations (4-7).

Table 1 reports the maximum likelihood estimates and standard errors

computed by inverting the Hessian matrix of the log likelihood function (Cox

and Hinkley 1974) following maximization of lnL + lnL , while the fit of

the observed data to the scaled model indicators is illustrated in Figures

2 and 3, which plot 95% prediction intervals about the expected indicator

values in addition to the data. The hospital admissions data are plotted in

Figure 2. Though noisy, the admissions data correspond to the modeled pace

of the epidemic, with most values falling within the 95% prediction intervals.

16
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Parameter Maximum Likelihood Estimate Standard Error

(0) 00164 00044

 990365 61537

 56660 4723

 12682 0055

0 2344 0108

Table 1

Figure 2
Figure 3 reports the observed and modeled SARS-CoV-2 RNA concen-

trations (in 105 RNA copies / ml sludge) from the sewage study along with

conservative 95% prediction intervals. While peak RNA virus concentrations

are higher than what would be expected based on the model, the data again

match the estimated pace of the epidemic, suggesting that community virus

RNA concentration in sewage sludge can indeed be represented by the trans-

mission potential in an epidemic model. The data rise and fall as expected,

albeit with much random noise to be sure.
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Figure 3
Note that the estimated reproductive number is 2.34 with a 95% confi-

dence interval ranging from 2.13 to 2.55. This places the local SARS-CoV-2

outbreak in New Haven squarely in the middle of reproductive numbers esti-

mated elsewhere (for examples see CDC (2020) and MIDAS (2020)). What

is noteworthy is that this reproductive number was estimated from a model

linking transmission to hospital admissions and SARS-CoV-2 RNA concen-

trations measured in sewage sludge. The data, not the model, determined

the magnitude of 0, supporting the plausibility of the hospitalization and

generation time lag distributions employed to match the observed data to an

underlying transmission model.

Together with the epidemic model, these data answer one of the questions

raised by the Peccia et al (2020) study: why did the SARS-CoV-2 RNA signal

from the sewage sludge lead hospital admissions by only 4 days, when many

were expecting a much earlier signal? The model shows that the natural time

lag for virus RNA concentration is governed by the mean forward generation

time, estimated at 8.9 days in this model. Given an average 13.5 day lag from

18

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.27.20141739doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.27.20141739


infection to hospitalization documented elsewhere, tracking the outbreak by

relying on the sewage sludge RNA signal leads similar tracking by hospital

admissions by 4.6 days on average.

5 Summary

This paper has focused on modeling lagging epidemic indicators and how they

relate to each other. The approach has been to utilize an epidemic model as

a basis for scaling indicators like hospital admissions or SARS-CoV-2 RNA

observed in sewage sludge. After characterizing how indicators lag incidence,

we showed how one could use an epidemic model to simultaneously estimate

the placement of an epidemic wave (via estimating the initial condition), the

strength of an outbreak (via estimating 0), and situate lagging indicators

appropriately, allowing one to view the data in a more epidemiologically

meaningful way. Using data from a recently published study of SARS-CoV-

2 RNA concentrations observed in municipal sewage sludge, we showed why

the RNA data were only able to shorten the time from infection to signal by

4.6 days relative to hospital admissions. Finally, the RNA and hospitalization

data jointly implied an epidemic with 0 of approximately 234, well within

the range implied by numerous studies.
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