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Abstract

The incubation period of coronavirus disease 2019 (COVID-19) is not al-
ways observed exactly due to uncertain onset times of infection and disease
symptom. In this paper, we demonstrate how to estimate the distribution of
incubation and its association with patient demographic factors when the ex-
act dates of infection and symptoms onset may not be observed. The findings
from analysis on the confirmed COVID-19 cases indicate that age could be
associated with the incubation period, and an age-specific quarantine policy
might be more efficient than a unified one in confining COVID-19.
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1. Introduction

The coronavirus disease 2019 (COVID-19) was first reported in Wuhan,
China, in December 2019; an outbreak rapidly spread worldwide. The novel
virus infection can be asymptomatic or unapparent during a certain period
and asymptomatic persons could spread the virus unknowingly [1]. Among
patients who develop symptoms, the incubation period is defined as the
elapsed time between infection and appearance of the first symptom. Knowl-
edge of the incubation period is essential for disease prevention, facilitating
an optimal quarantine guideline to confine the spread.

The distribution of incubation for coronavirus disease 2019 (COVID-19)
has been investigated in several reports. In the early outbreak, Backer et
al. [2] estimated the incubation period distribution among travelers from
Wuhan, and Linton et al. [3] investigated the geographic spread of the in-
fections from Wuhan. Lauer et al. [4] estimated the distribution among
confirmed cases outside Wuhan. The demographic and clinical characteris-
tics of COVID-19 in China were also discussed in Guan et al. [5]. Despite its
importance, it remains unclear how the incubation distribution could vary by
age and gender. The current 14-day quarantine period, ignoring the patient
demographic factors, may be insufficient for the containment of COVID-19.
Only a few studies [6, 7] addressed these concerns using a limited amount of
confirmed cases. A more accurate estimation of the incubation period using
these factors is necessary to optimize the surveillance guidelines.

We model uncertain dates of infection and symptom onset with the best
available information, by classifying COVID-19 confirmed cases into plausible
observing scenarios. The observed data are subject to both right-censoring
and left-censoring; if these censoring mechanisms are not properly consid-
ered, the estimates for the incubation period could lead to severe biases. Ig-
noring the left-censoring tends to overestimate the incubation period. This
approach allows the use of incomplete observations on the COVID-19 incu-
bation period and thereby provides more reliable results and inferences. A
sufficiently general parametric class, the generalized odds-rate class of regres-
sion models, is employed for modeling the incubation period of COVID-19.
This parametric class includes the log-logistic proportional odds model and
the Weibull proportional hazards model as special cases. This modeling is
more flexible than the distributions commonly used in the previous relevant
work [2, 3, 4, 5, 6, 7, 8]. We also revisit the impact of the current quarantine
duration on the spread of COVID-19 by estimating the distribution of the
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incubation periods of COVID-19 and its association with gender and age.
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Figure 1: Flow diagram of confirmed cases for data analysis. Two data sources were
combined from DXY [9] and Xu et al [10].
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2. Exposure History Reports for Confirmed COVID-19 Cases

We outline a modeling approach to enable the analysis of publicly re-
ported, clinically confirmed cases with symptoms from two sources [9, 10],
available as of March 30, 2020. The publicly available data sets for these two
sources are freely available without permission requirement by DXY [9] (http
s://docs.google.com/spreadsheets/d/e/2PACX-1vQU0SIALScXx8VXDX7yK

NKWWPKE1YjFlWc6VTEVSN45CklWWf-uWmprQIyLtoPDA18tX9cFDr-aQ9S6/pubh

tml) and Xu et al. [10] (https://github.com/beoutbreakprepared/nCoV
2019/tree/master/covid19/raw-data), respectively. To obtain the period
of potential exposure, defined as contact with infected persons or visit to con-
taminated regions, we included the following patients in the analytic data set:
1) non-residents of Wuhan who visited Wuhan since December 1, 2019 and
for whom the exposure period was the time between the earliest possible
arrival to and the latest possible departure from Wuhan; 2) people with a
travel history of visiting the coronavirus-affected nations known at the time
or taking the Diamond Princess Cruises; 3) non-travel related cases with an
exposure history based on contact with infected persons. Among these, 312
cases had recorded exposure periods, or at least an exposure end date, and
dates of symptom onset or hospitalization, as well as gender and age; this
number reflects removal of 34 potentially duplicated cases (see Figure 1).

There were 111 (35.6%) cases with known exposure start and end dates,
illustrated in Supplementary Figure S1. For cases without an exact start
date of the exposure period, the initial date was set to have a maximum of
thirty days of exposure or was set to December 1, 2019, whichever one was
later. In addition, the end date of exposure was set to precede the known
dates of symptom onset and hospitalization. If the exact date of symptom
onset was unknown, it was assumed to have occurred before hospitalization
(i.e., left-censored).

3. Model and Estimation

The distribution of the COVID-19 incubation period is estimated with
the patient-related covariates by modelling the interval-censored exposure
duration and the possibly left-censored symptom onset time. The proposed
method allows us to use a larger data cohort consisting of more confirmed
COVID-19 cases; the cases may not have the exact symptom onset time
(left-censored) and include an interval-censored incubation period. We pa-
rameterize the underlying incubation period under the generalized odds-rate

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.06.27.20141002doi: medRxiv preprint 

https://docs.google.com/spreadsheets/d/e/2PACX-1vQU0SIALScXx8VXDX7yKNKWWPKE1YjFlWc6VTEVSN45CklWWf-uWmprQIyLtoPDA18tX9cFDr-aQ9S6/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vQU0SIALScXx8VXDX7yKNKWWPKE1YjFlWc6VTEVSN45CklWWf-uWmprQIyLtoPDA18tX9cFDr-aQ9S6/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vQU0SIALScXx8VXDX7yKNKWWPKE1YjFlWc6VTEVSN45CklWWf-uWmprQIyLtoPDA18tX9cFDr-aQ9S6/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vQU0SIALScXx8VXDX7yKNKWWPKE1YjFlWc6VTEVSN45CklWWf-uWmprQIyLtoPDA18tX9cFDr-aQ9S6/pubhtml
https://github.com/beoutbreakprepared/nCoV2019/tree/master/covid19/raw-data
https://github.com/beoutbreakprepared/nCoV2019/tree/master/covid19/raw-data
https://doi.org/10.1101/2020.06.27.20141002
http://creativecommons.org/licenses/by-nc-nd/4.0/


class of regression models with the patient’s age and gender. Let T be the
incubation period and X be the covariate vector including both the patient’s
age and gender. Within the generalized odds-rate class of regression models,
the conditional probability density function of T given X = x is defined as

f(t|x) = φλ−φtφ−1ex
Tβ
{

1 + ρ (t/λ)φ ex
Tβ
}−(1+ρ)/ρ

, (1)

where ρ, λ, and φ are the positive model parameters, and β is the vector of
the regression parameters. The corresponding survival function is

S(t|x) =
{

1 + ρ (t/λ)φ ex
Tβ
}−1/ρ

. (2)

This class of models includes the log-logistic proportional odds model
(ρ = 1) and the Weibull proportional hazards model (ρ→ 0) as special cases
[11], where survival functions are respectively expressed as

Proportional odds model: S1(t|x) =
{

1 + (t/λ)φ ex
Tβ
}−1

, and

Proportional hazard model: S2(t|x) = e−(t/λ)φex
T β

.

To construct the likelihood function of COVID-19 data from (1) and (2),
we distinguish the four types of observation, as shown in Figure 2. Let d
denote the difference between the exposure start date and end date, and r
denote the difference between the exposure end date and either the symptom
onset date (if available) or the date of hospitalization. If the date of infection
is at best known to be within a potential exposure period (i.e., d > 0), let
δd = 1; otherwise δd = 0. If a patient’s symptom onset date was observed,
let δs = 1; otherwise, δs = 0. Under the assumption of a uniform risk for
infection during the potential exposure periods, the contributions of each
type to the likelihood function, defined as L1, L2, L3, and L4, respectively,
are given as follows:

� Type I: observing potential exposure period and symptom onset date
(δd = 1 and δs = 1)

L1 = d−1

∫ d

0

f(a+ r|x)da = d−1 {S(r|x)− S(r + d|x)} ,
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� Type II: observing potential exposure period and hospitalization date
(δd = 1 and δs = 0)

L2 = d−1

∫ d

0

{1− S(a+ r|x)} da = 1− d−1

∫ d

0

S(a+ r|x)da,

� Type III: observing exact exposure date and symptom onset date (δd =
0 and δs = 1)

L3 = f(r|x),

� Type IV: observing exact exposure date and hospitalization date only
(δd = 0 and δs = 0)

L4 = 1− S(r|x),

where a is the variable of integration representing the unknown period from
the infection to the exposure end.

Considering n independent observations, the overall log-likelihood is then
proportional to

logL =
n∑
i=1

δsiδdi logL1i + (1− δsi)δdi logL2i

+ δsi(1− δdi) logL3i + (1− δsi)(1− δdi) logL4i

∝
n∑
i=1

[
δsiδdi log {S(ri|xi)− S(ri + di|xi)}

+ (1− δsi)δdi log

{
1− d−1

i

∫ di

0

S(a+ ri|xi)da
}

+ δsi(1− δdi) log f(ri|xi) + (1− δsi)(1− δdi) log {1− S(ri|xi)}
]
.

The model parameters are estimated by maximizing the log-likelihood.
In our implementation, we maximized the log-likelihood with the logarith-
mic transformation for the positive parameters (i.e., λ, φ, and ρ). The delta
method was used to obtain the asymptotic normal distribution for any pa-
rameter transformation, such as the median incubation time. All analyses
were performed with R, version 3.6.1 [12]. The R code is provided with the
supplementary material.
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Type I: observing potential exposure period and symptom onset date (235 patients)

Type II: observing potential exposure period and hospitalization date (60 patients)

Incubation period

Exposure period/date Infection Symptom onset Hospitalization

Observed Unobserved

Type III: observing exact exposure date and symptom onset date (16 patients)

Type IV: observing exact exposure date and hospitalization date only (1 patient)

Figure 2: The four types of observations available for the data analysis. The total number
of patients is 312.

4. Application

We applied the proposed method to the COVID-19 data sets, described
in Section 2. Within the total of 312 patients, the median age was 42 (in-
terquartile range 33− 55) years, and 126 (40.4%) patients were women. The
summary statistics and the histogram for patient’s age are shown in Sup-
plementary Table S1 and Figure S2. The positive association between age
and the duration of incubation was observed from the model with age as a
continuous variable (Supplementary Table S2). Age was dichotomized at its
median prior to the analysis. Table 1 shows the estimation results for regres-
sion models with gender and age. An interaction between age and gender
was not statistically significant in the model. Patients older than 42 years
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Table 1: Results of the analysis of COVID-19 under the generalized odds-rate class of
regression models.

Model log(λ) log(φ) log(ρ) βmale βage≤42

Full model
Estimate 2.300 0.305 -3.766 0.141 0.371

SE 0.155 0.119 6.569 0.176 0.180
P-value <0.001 0.010 0.566 0.423 0.039

Reduced model
Estimate 2.115 0.457 -1.271 - 0.449

SE 0.126 0.128 0.685 - 0.214
P-value <0.001 <0.001 0.064 - 0.035

* Full model refers to the model with age and gender and reduced model refers to the model with age only.

The p-value of the likelihood ratio test comparing the full model and reduced model was 0.384.

of age have, on average, longer incubation periods, compared to 42-year-old
or younger patients (p = 0.039), whereas gender has no effect on the in-
cubation period (p = 0.423). We decide not to include gender in the final
model (Reduced model of Table 1), based on the likelihood ratio test with
p = 0.384. For the outbreak period from December 2019 to March 2020, the
median incubation times are estimated to be 5.3 (95% CI: 4.3−6.3) days and
7 (95% CI: 5.6 − 8.3) days among younger (≤ 42 years) and older patients
(>42 years), respectively. During this outbreak period, the mean incubation
period is estimated to be 6.6 (95% CI: 5.4 − 7.8) days for the younger pa-
tients, and 8.8 (95% CI: 7.2−10.3) days for the older patients. The estimated
distribution functions in both age groups together with the 95% confidence
intervals are presented in Figure 3. Table 2 shows the estimated differences
(in days) between the quantiles of the incubation distribution in both age
groups. The incubation period difference between the two age groups was
not obvious in lower quantiles, but it becomes conspicuous after the 25th
quantile, leading to about 7-day differences between the two age groups at
the 97.5th quantile.

5. Discussion

The finding that persons older than 42 years have, on average, longer
incubation periods than those who are younger may have important impli-
cations for enacting age-specific quarantine policies. This result agrees with
previous studies on Severe Acute Respiratory Syndrome that showed a re-
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Figure 3: The estimated cumulative distribution of the incubation period by two age
groups.

Table 2: Estimated differences of specific quantiles of the incubation period among both
age groups (patients aged > 42 years – patients aged ≤ 42 years).

Percentile
(days, 95%CI) 2.5th 25th 50th 75th 97.5th

Age ≤ 42 years (G1) 0.6 (0.3,0.9) 2.9 (2.3,3.5) 5.3 (4.3,6.3) 8.7 (7.0,10.4) 20.3 (15.2, 25.5)
Age > 42 years (G2) 0.8 (0.4,1.2) 3.9 (3.0,4.7) 7.0 (5.6,8.3) 11.6 (9.4,13.8) 27.0 (20.3, 33.7)
Difference (G2 - G1) 0.2 (0.0,0.4) 1.0 (0.1,1.8) 1.7 (0.2,3.3) 2.9 (0.3,5.4) 6.7 (0.6, 12.8)

lationship between age and the incubation period [13]. Using the uniform
14-day quarantine policy recommended by the World Health Organization
and the US Centers for Disease Control and Prevention [14, 15], our estima-
tors imply that 8.4% (95% CI: 3.6 − 13.1%) of COVID-19 patients younger
than 42, and 17.1% (95% CI: 9.9−24.2%) of older patients may pose a risk of
infection to others before onset of their symptoms. Using a 21-day quaran-
tine, these percentages reduce to 2.2% (95% CI: 0−7.0%) and 5.8% (95% CI:
1.3 − 13.0%), respectively. To ensure that at least 90% of cases’ symptoms
are being manifested during quarantine periods, the required durations are
estimated to be 13.1 (95% CI: 10.5− 15.7) days for patients 42 years of age
or younger and 17.4 (95% CI: 14.0 − 20.8) days for patients older than 42
years. As such, a unified quarantine policy could be inefficient during a viral
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outbreak. These estimates were derived from the conservative assumption
that the quarantine periods started immediately after infection.

To examine how robust the estimates were to the assumption of 30 days of
maximum exposure for cases with a missing start date of exposure interval,
we performed some sensitivity analyses considering a maximum exposure
duration of 20 days or shifting the lower bound back and forth within 15
days. The variation of these assumptions had little effect on analysis results
(Supplementary Table S3). Although the proposed method assumes that the
infection would happen uniformly during the potential exposure period, it
can be easily modified with other forms of risk for various purposes.

The application to the COVID-19 data sets has some notable limitations.
Our inferences relied on publicly reported confirmed cases that might over
represent more severely symptomatic patients. Moreover, the definition of
COVID-19 symptoms and hospitalization criteria could differ by country, es-
pecially during the initial outbreak. We combined the data sets from two
different sources, and the potential variation in source criteria for tracing
infected cases may lead to different exposure records. However, we obtained
similar findings when fitting the model to each data set separately. The same
trend was observed for the incubation period by the age groups (Supplemen-
tary Table S4 and Table S5), though one indicated no statistically significant
difference. We dichotomized age to show the difference in the incubation
period time that might exist between the two groups. However, in no case
was it our goal to identify an optimal cut-off age, since we are aware of the
risks involved in the dichotomization of the explanatory variables [17, 16].

The longer incubation periods experienced by older patients might have
been due to a delayed immune response system, given the mechanism of
immune systems against COVID-19 [18]. However, the results may not be
directly applicable to affect the public health policy globally, because the dis-
tribution of the incubation period could differ by other factors such as case
reporting system, and co-infection levels in different regions and countries.
There is also a possibility that the virus evolves to be more or less lethal and
transmissible over time [19]. As one referee commented, co-morbidities and
medical history would be informative to further investigate their association
with the incubation period of COVID-19. They could be directly incorpo-
rated in our model as covariates. Unfortunately, our data sources do not
include such information; thus, we cannot investigate those effects on the
incubation period.

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.06.27.20141002doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.27.20141002
http://creativecommons.org/licenses/by-nc-nd/4.0/


Author Contributions

Conceptualization, D.P., G.G., J.N. and Y.S.; Methodology, D.P., J.N.
and Y.S.; formal analysis, D.P., K.L., J.N. and J.C.; writing–original draft
preparation, D.P., G.G., J.N. and Y.S. All authors have read and agreed to
the published version of the manuscript.

Funding

This research was funded by the Ministerio de Ciencia e Innovación
(Spain) [PID2019-104830RB-I00]; the Ministerio de Economı́a y Competi-
tividad (Spain) [MTM2015-64465-C2-1-R (MINECO/FEDER)] and the De-
partament d’Economia i Coneixement de la Generalitat de Catalunya (Spain)
[2017 SGR 622 (GRBIO)].

Conflicts of Interest

The authors declare no conflict of interest.

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.06.27.20141002doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.27.20141002
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

[1] Wilson, M. E.; Chen, L. H. Travellers Give Wings to Novel Coron-
avirus (2019-NCoV). Journal of Travel Medicine 2020, 27, taaa015.
https://doi.org/10.1093/jtm/taaa015.

[2] Backer, J. A.; Klinkenberg, D.; Wallinga, J. Incubation Period of
2019 Novel Coronavirus (2019-NCoV) Infections among Travellers
from Wuhan, China, 20–28 January 2020. Eurosurveillance 2020, 25.
https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062.

[3] Linton, N.M.; Kobayashi, T.; Yang, Y.; Hayashi, K.; Akhmetzhanov,
A.R.; Jung, S.-M.; Yuan, B.; Kinoshita, R.; Nishiura, H. Incuba-
tion Period and Other Epidemiological Characteristics of 2019 Novel
Coronavirus Infections with Right Truncation: A Statistical Anal-
ysis of Publicly Available Case Data. J. Clin. Med. 2020, 9, 538.
https://doi.org/10.3390/jcm9020538.

[4] Lauer, S. A.; Grantz, K. H.; Bi, Q.; Jones, F. K.; Zheng, Q.; Meredith,
H. R.; Azman, A. S.; Reich, N. G.; Lessler, J. The Incubation Period of
Coronavirus Disease 2019 (COVID-19) From Publicly Reported Con-
firmed Cases: Estimation and Application. Ann Intern Med 2020, 172,
577-582. https://doi.org/10.7326/M20-0504.

[5] Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan,
H.; Lei, C.; Hui, D. S. C.; et al. Clinical Characteristics of Coron-
avirus Disease 2019 in China. N Engl J Med 2020, 382, 1708–1720.
https://doi.org/10.1056/NEJMoa2002032.

[6] Kong, T.K. Longer incubation period of coronavirus disease 2019
(COVID-19) in older adults. Aging Medicine 2020.

[7] Jiang, A. B.; Lieu, R.; Quenby, S. Significantly Longer Covid-19 In-
cubation Times for the Elderly, from a Case Study of 136 Patients
throughout China. medRxiv 2020.

[8] Yang, L.; Dai, J.; Zhao, J.; Wang, Y.; Deng, P.; Wang, J. Estimation
of Incubation Period and Serial Interval of COVID-19: Analysis of
178 Cases and 131 Transmission Chains in Hubei Province, China.
Epidemiology and Infection 2020, 148, e117.

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.06.27.20141002doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.27.20141002
http://creativecommons.org/licenses/by-nc-nd/4.0/


[9] DXY: COVID-19 Epidemic situation in real time. Available
online: https://docs.google.com/spreadsheets/d/e/2PACX-
1vQU0SIALScXx8VXDX7yKNKWWPKE1YjFlWc6VTE
VSN45CklWWf-uWmprQIyLtoPDA18tX9cFDr-aQ9S6/pubhtml
(accessed on 20 March 2020).

[10] Xu, B.; Gutierrez, B.; Mekaru, S.; Sewalk, K.; Goodwin, L.; Loskill, A.;
Cohn, E. L.; Hswen, Y.; Hill, S. C.; Cobo, M. M.; et al. Epidemiological
Data from the COVID-19 Outbreak, Real-Time Case Information. Sci
Data 2020, 7, 106. https://doi.org/10.1038/s41597-020-0448-0.

[11] Dabrowska, D. M.; Doksum, K. A. Estimation and Test-
ing in a Two-Sample Generalized Odds-Rate Model. Journal
of the American Statistical Association 1988, 83 , 744–749.
https://doi.org/10.1080/01621459.1988.10478657.

[12] R Core Team (2019). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
URL https://www.R-project.org/.

[13] Cowling, B. J.; Muller, M. P.; Wong, I. O. L.; Ho, L.-M.; Louie, M.;
McGeer, A.; Leung, G. M. Alternative Methods of Estimating an In-
cubation Distribution: Examples from Severe Acute Respiratory Syn-
drome. Epidemiology 2007, 18, 253–259.

[14] World Health Organization (WHO). Considerations for quarantine
of individuals in the context of containment for coronavirus disease
(COVID-19). Available online: https://www.who.int/publications-
detail/considerations-forquarantine-of-individuals-in-the-context-of-
containment-forcoronavirus-disease-(covid-19) (accessed on 12 April
2020)

[15] The White House. Press Briefing by Members of the
President’s Coronavirus Task Force. Available online:
https://www.whitehouse.gov/briefings-statements/press-briefing-
members-presidents-coronavirus-task-force (accessed on 1 February
2020).

[16] Moons K. G.; Altman D. G.; Reitsma J. B., et al. Transparent Re-
porting of a multivariable prediction model for Individual Prognosis or

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.06.27.20141002doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.27.20141002
http://creativecommons.org/licenses/by-nc-nd/4.0/


Diagnosis (TRIPOD): explanation and elaboration. Annals of internal
medicine 2015, 162(1), W1-73. 2015.

[17] Royston P.; Altman D. G.; Sauerbrei W. Dichotomizing continuous
predictors in multiple regression: a bad idea. Stat. Med. 2006, 25,
127–141. 2015.

[18] Chowdhury, M.A.; Hossain, N.; Kashem, M.A.; Shahid, M.A.; Alam,
A. Immune response in COVID-19: A review. Journal of Infection and
Public Health 2020.

[19] van Dorp, L.; Acman, M.; Richard, D.; Shaw, L. P.; Ford, C. E.; Or-
mond, L.; Owen, C. J.; Pang, J.; Tan, C. C. S.; Boshier, F. A. T.; Ortiz,
A. T.; Balloux, F. Emergence of Genomic Diversity and Recurrent Mu-
tations in SARS-CoV-2. Infection. Genetics and Evolution 2020, 83,
104351.

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.06.27.20141002doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.27.20141002
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Exposure History Reports for Confirmed COVID-19 Cases
	Model and Estimation
	Application
	Discussion

