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ABSTRACT 

Background:  

The lung CT images of COVID-19 patients can be characterized by three different regions – 

Ground Glass Opacity (GGO), consolidation and pleural effusion. GCOs  have been shown to 

precede consolidations. Quantitative characterization of these regions using radiomics can 

facilitate accurate diagnosis, disease progression and response to treatment. However, according 

to the knowledge of the author, regional CT radiomics analysis of COVID-19 patients has not 

been carried out. This study aims to address these by determining the radiomics features that can 

characterize each of the regions separately and can distinguish the regions from each other.  

Methods:  

44 radiomics features were generated with four quantization levels for 23 CT slice of 17 patients. 

Two approaches were the implemented to determine the features that can differentiate between 

lung regions – 1) Z-score and correlation heatmaps and 2) one way ANOVA for finding  

statistically significantly difference (p<0.05) between the regions. Radiomics features that show 

agreement for all cases (Z-score, correlation and statistical significant test) were selected as 

suitable features. The features were then tested on 52 CT images.  

Results:  

10 radiomics features were found to be the most suitable among 44 features. When applied on 

the test images, they can differentiate between GCO, consolidation and pleural effusion 

successfully and the difference provided by these 10 features between three lung regions are 

statistically significant.  

Conclusion:  
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The ten robust radiomics features can be useful in extracting quantitative data from CT lung 

images to characterize the disease in the patient, which in turn can help in more accurate 

diagnosis, staging the severity of the disease and allow the clinician to plan for more successful 

personalized treatment for COVID-19 patients. They can also be used for monitoring the 

progression of COVID-19 and response to therapy for clinical trials.  

 

Keywords: COVID-19; CT Radiomics; Ground Glass Opacity (GGO); Consolidation; Pleural 

Effusion.  
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INTRODUCTION 

COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is the 

worldwide leading cause of death at the moment and is a public health emergency concern across 

the globe  [1]. A total of 437,532 deaths with a confirmed infection 8,063,488  has been reported 

[2]. 

 

To control and minimize the spread of COVID-19, it is important to diagnose it as quickly and 

accurately as possible.  Though reverse transcription polymerase chain reaction (RT-PCR) is 

considered as a gold standard point-of-care diagnostic tool with the highest specificity [3], it 

requires several hours to get the results, the sensitivity is very low with a very high rate of false 

negatives and cannot provide the detail condition of the patient [4].   

 

On the other hand, it has been reported that 20% people who are suffering from COVID-19 

needs to visit hospital because of respiratory distress and 30% of them require intensive care [5]. 

In the absence of appropriate drug, two third of the COVID-19 patients who goes to critical care 

requires prolong period of mechanical ventilation within 24 hours of admission [6]. This group 

of patients also requires continuous monitoring of their lung health to assess their overall 

conditions.   

 

Because of its high sensitivity specially within the first two days of infection and capability to 

provide detail condition of the patient, computed tomography (CT) is routinely being used as a 

diagnostic and screening tool in several countries including China [7-11]. Quantitative imaging 

information such as the lesion percentage and the CT mean density values could help the 
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physician to monitor the progression of the disease and the response to therapy [12]. More in 

depth analysis of different first, second and third order statistical CT features known as 

radiomics have been successfully utilized for decoding the radiographic phenotype in cancer [13, 

14]. Accurate quantification of tumour radiomic features was made possible by utilizing AI [15].  

In case of COVID-19, only a very few studies have been carried out for radiomics analysis. One 

of the studies has shown that CT radiomics not only can help to screen patients [16] but also can 

be used as a discriminating tool for diagnosis and monitoring different stages of respiratory 

abnormalities [17].  Utilizing AI with radiomics can make the process faster and more accurate 

[18]. 

 

All the studies so far extracted the radiomics features from the whole CT lung region [16, 18, 

19]. The lung on a CT of a COVID-19 patient can contain either one or any combinations of 

three different regions - ground-glass opacities (GCO), consolidation and pleural effusion as 

shown in Figure 1.  

 

Figure 1: (a) One CT image slice with three distinctive regions – GCO (red), consolidation 

(blue) and pleural effusion (green). (b) two distinctive regions GCO (red) and consolidation 

(blue). 
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Radiomics features extracted from the whole lung provides the combinatorial outcome of the 

features of each of the three different regions. On the other hand, not all the features are able to 

distinguish between regions and are suitable to be used as image based biomarkers for accurate 

diagnosis, evaluation as well as monitoring disease progression and response to therapy. Since 

GCOs  have been shown to precede consolidations, it is vital to determine the most suitable 

radiomics features that can distinguish and quantify different regions. This requires detail and 

careful investigation. According to the knowledge of the author, no such study has been 

conducted for COVID-19 lung CT regions. This study aims to address these by determining the 

radiomics features that can characterize each of the regions separately and can distinguish the 

regions from each other.  

 

 

MATERIALS AND METHODS 

COVID-19 CT images were collected from available data derived from Italian Society of 

Medical and Interventional Radiology website [20, 21]. A total of 100 CT slices of 43 COVID-

19 patients were available. GCO, consolidation and pleural effusion were segmented by a 

radiologists. Out of 100 slices, 96 slices have GCO, 78 slices have consolidation and 25 slices 

have pleural effusion. Only 23 of slices of 17 patients have all three regions. Rest of the slices 

had any one or two regions. A total of 44 radiomics features were extracted as shown in Table 1. 

Out of these 44 radiomics features, 43 features are textural features with the first three features 

are global features extracted from image histogram [22]. These 43 features can be broadly 

categorized into six different groups- 1) global texture based on histogram, 2) Grey Level Co-

Occurrence Matrix (GLCM), 3) Grey Level Run Length Matrix (GLRLM), 4) Grey Level Size 
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Zone Matrix (GLSZE) and 5) NGTDM. To extract the rest 40 features, each region needs to be 

quantized to remove dependency on the image intensity.  

 

Table 1: Radiomics Features [22] 

No. Feature Name Feature Type No Feature Name Feature Type 

1 Variance Histogram 

(global texture) 
23 Long Run High Gray-Level 

Emphasis (LRHGE) 

GLRLM 

2 Skewness 24 Gray-Level Variance (GLV) 

3 Kurtosis 25 Run-Length Variance (RLV) 

4 Energy GLCM 26 Small Zone Emphasis (SZE) GLSZM 

5 Contrast 27 Large Zone Emphasis (LZE) 

6 Entropy 28 Gray-Level Non-uniformity 

(GLN) 

7 Homogeneity 29 Zone-Size Non-uniformity 

(ZSN) 

8 Correlation 30 Zone Percentage (ZP) 

9 Sum Average 31 Low Gray-Level Zone 

Emphasis (LGZE) 

10 Variance 32 High Gray-Level Zone 

Emphasis (HGZE) 

11 Dissimilarity 33 Small Zone Low Gray-Level 

Emphasis (SZLGE) 

12 Autocorrelation 34 Small Zone High Gray-Level 

Emphasis (SZHGE) 

13 Short Run Emphasis 

(SRE) 

GLRLM 35 Large Zone Low Gray-Level 

Emphasis (LZLGE) 

14 Long Run Emphasis 

(LRE) 
36 Large Zone High Gray-Level 

Emphasis (LZHGE) 

15 Gray-Level Non-

uniformity (GLN) 
37 Gray-Level Variance (GLV) 

16 Run-Length Non-

uniformity RLN 
38 Zone-Size Variance (ZSV) 

17 Run Percentage (RP) 39 Coarseness NGTDM 

18 Low Gray-Level Run 

Emphasis (LGRE) 
40 Contrast  

19 High Gray-Level Run 

Emphasis (HGRE) 
41 Busyness 

20 Short Run Low Gray-

Level Emphasis 

(SRLGE) 

42 Complexity 

21 Short Run High Gray-

Level Emphasis 

(SRHGE) 

43 Strength 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.20139410doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.24.20139410


22 Long Run Low Gray-

Level Emphasis 

(LRLGE) 

44 Edgeness Edge 

 

To investigate if quantization has any impact on the features, four different levels of quantization 

were used (16, 32, 64 and 128). The final feature is an edge feature where numbers of pixels 

having edges more than a certain threshold within a region were counted.  

 

Two approaches were implemented to determine the features that can differentiate between lung 

pathological regions. Firstly, Z-score and correlation heatmaps were generated for all regions for 

all 100 slices to identify the features that can classify different regions and to remove redundant 

features respectively. Secondly, one way ANOVA was then performed only on 23 slices that 

contain all the three regions to determine the features that are statistically significantly different 

(      ) between the regions. Radiomics features that show agreement for all cases (Z-score, 

correlation and statistical significant test) were selected as suitable features and were applied on 

separate 52 slices containing only GGO and consolidation to test their accuracies by evaluating 

their p-values.  

  

RESULTS 

Figure 2 shows the Z-score heatmap of all 44 features. The Z-score for each patient were 

calculated and arranged according to different regions. The correlation coefficients along with 

the p-values for testing the hypothesis of no correlation for all the 44 features are shown in 

Figure 3. Careful investigation of Figure 2 reveals that 10 radiomics features have better 

classification ability between GGO, consolidation and pleural effusion. These features are also 

have lower correlation (Figure 3).  
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Figure 2: Z-score heatmap of all 44 features. Each row corresponds to one feature represented 

by one number (Table 1). Each column represent one regions. Left 96 column represent GGO, 

middle 78 represent consolidation and last 25 represent pleural effusion. The features that can 

distinguish between these three pathological regions are shown by the white bounding box. 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.20139410doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.24.20139410


Figure 3: (a) correlation coefficient of 44 radiomics features. (b) p values describing the 

relationship between the features.  

Out of 44 radiomics features, the same 10 features were found to be statistically significantly 

different between GCO, consolidation and plural effusion and do not depend on the quantization 

level. The features are shown in Table 2 along with their corresponding p values for three 

different regions.  

Table 2: p-values extracted with one way ANOVA 

No. Feat

ure 

No. 

Feature Name p p(GCO, 

consolidation) 

p(GCO, 

pleural 

effusion) 

p(consolidation, 

pleural 

effusion) 

1 2 Skewness 0.000 0.000 0.000 0.000 

2 9 GLCM - Sum Average 0.000 0.000 0.000 0.000 

3 12 GLCM - Autocorrelation 0.000 0.000 0.000 0.000 

4 19 GLRLM - High Gray-

Level Run Emphasis 

(HGRE) 

0.000 0.000 0.000 0.000 

5 21 GLRLM - Short Run 

High Gray-Level 

Emphasis (SRHGE) 

0.000 0.000 0.000 0.000 

6 23 GLRLM - Long Run 

High Gray-Level 

Emphasis (LRHGE) 

0.000 0.000 0.000 0.000 

7 24 GLRLM - Gray-Level 

Variance (GLV) 
0.000 0.001 0.000 0.000 

8 32 GLSZM - High Gray-

Level Zone Emphasis 

(HGZE) 

0.000 0.000 0.000 0.000 

9 34 GLSZM - Small Zone 

High Gray-Level 

Emphasis (SZHGE) 

0.000 0.000 0.000 0.000 

10 37 GLSZM - Gray-Level 

Variance (GLV) 

0.000 0.048 0.000 0.001 

 

The corresponding boxplots of all the three regions for 10 different radiomics features are shown 

in Figure 4. 
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Figure 4: Box plot of 23 slices (notches in the boxplot representing group medians) of 10 

radiomics features that are significantly different for three different regions (1- GGO, 2-  

Consolidation and 3- Pleural Effusion). 

These 10 radiomics features (Table 2) for GGO and consolidation for the other 52 slices as 

shown in Figure 5. All these features were statistically significantly different between the two 

regions with the corresponding p-values were always less than 0.05.  
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Figure 5: Box plot of 52 slices (notches in the boxplot representing group medians) of 10 

radiomics features for GGO and consolidation (represented by 1 and 2 on the X-axis 

respectively).  

 

DISCUSSION 

Because of its high sensitivity specially within the first two days of infection and capability to 

provide detail condition of the patient, computed tomography (CT) is routinely being used as a 

diagnostic and screening tool in several countries [23]. It also shows earlier positive sign of 

improvement for those patients who recover compared to RT-PCR results [23, 24]. 

 

The CT images of COVID-19 patients show distinctive patterns of infection with the hallmarks 

being bilateral and peripheral ground-glass and consolidation [25].  Sometimes  CT examination 

showed a mixed and diverse pattern with the involvement of both lung parenchyma and 

interstitium [26] that includes bilateral multilobar ground-glass opacification (GGO) with a 
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peripheral or posterior distribution [27]. It has been reported that temporal changes in CT 

manifestations can indicate progression and recovery of COVID-19 [28]. A manual chest CT 

severity score (CT-SS) has been proposed for COVID-19 to rapidly identify patients with severe 

forms of the disease [29]. 83.3% sensitivity and 94% specificity were achieved with this 

approach. Lung abnormalities on chest CT scans reported to show greatest severity 

approximately 10 days after initial onset of symptoms [30]. 

 

All these studies were performed retrospectively where radiologist had the time to examine each 

scan in detail. However, with the increasing number of CT scans performed on COVID-19 

patients, it becomes difficult for the radiologists to examine the scan accurately in real time. On 

the other hand, intra- and inter-observer variability can introduce uncertainty in the staging the 

disease. Moreover, all the textural pattern that are considered to be the hallmark of COVID-19 

may not be visible to the naked human eye especially it becomes more challenging in 3D.  

 

Because of these reason, there is a dire need of a CT diagnostic method that can perform the task 

of rapid and early detection and monitoring quantitatively with high repeatability. Radiomics 

features can provide quantitative information regarding tissue heterogeneity and have been 

correlated with disease progression and prognosis in cancer.   

 

In contrast to the previous radiomics studies where the focus was to extract the radiomics 

features for the whole lung of the COVID-19 patient [18, 19], this study focused on the regional 

extraction of the radiomics features from CT images.  The argument for such approach is that 

when radiomics features are extracted for whole lung the regional information is diluted that can 
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carry vital information regarding the disease stage, progression and response to therapy. So it 

was important to find the radiomics features that can distinguish different regions.  

 

This investigation confirms that not all the proposed radiomics features can distinguish between 

GGO, consolidation and pleural effusion. Only a handful of features are able to differentiate 

between these regions and can be used for accurate quantitation of the disease.  

 

 

CONCLUSION 

To the best of author’s knowledge, this paper presents the first study to determine radiomics 

features that can differentiate between ground glass opacity, consolidation and pleural effusion 

from CT data for COVID-19 patients. The study reveals that only ten radiomics features can 

differentiate between these regions. They are – 1) Skewness, GLCM – Sum Average, 3) GLCM 

–Autocorrelation, 4) GLRLM - High Gray-Level Run Emphasis (HGRE), 5) GLRLM - Short Run 

High Gray-Level Emphasis (SRHGE),  6)  GLRLM - Long Run High Gray-Level Emphasis (LRHGE), 

7) GLRLM - Gray-Level Variance (GLV), 8) GLSZM - High Gray-Level Zone Emphasis (HGZE), 9)  

GLSZM - Small Zone High Gray-Level Emphasis (SZHGE) and 10) GLSZM - Gray-Level Variance 

(GLV). These ten features can be useful in extracting quantitative data from CT lung images to 

characterize the disease in the patient, which in turn can help in more accurate diagnosis, staging 

the severity of the disease and allow the clinician to plan for more successful personalized 

treatment for COVID-19 patients. Future work is planned to link these quantitative radiomics 

information with the clinical outcomes so that they can be used for monitoring the progression of 

COVID-19 and response to therapy for clinical trials. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.20139410doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.24.20139410


Funding: 

The author extend his appreciation to the Deputyship for Research & Innovation, Ministry of 

Education, Saudi Arabia for funding this research work. 

 

Disclosure and conflicts of interest 

The author declares that he has no conflict of interest. 

 

REFERENCES 

1  https://www.who.int/  

2 https://coronavirus.jhu.edu/map.html 

3 Chan, J.F., Yuan, S., Kok, K.H., To, K.K., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C.C., 

Poon, R.W., Tsoi, H.W., Lo, S.K., Chan, K.H., Poon, V.K., Chan, W.M., Ip, J.D., Cai, J.P., 

Cheng, V.C., Chen, H., Hui, C.K., and Yuen, K.Y.: ‘A familial cluster of pneumonia associated 

with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family 

cluster’, Lancet, 2020, 395, (10223), pp. 514-523 

4 Bai, H.X., Hsieh, B., Xiong, Z., Halsey, K., Choi, J.W., Tran, T.M.L., Pan, I., Shi, L.B., 

Wang, D.C., Mei, J., Jiang, X.L., Zeng, Q.H., Egglin, T.K., Hu, P.F., Agarwal, S., Xie, F., Li, S., 

Healey, T., Atalay, M.K., and Liao, W.H.: ‘Performance of radiologists in differentiating 

COVID-19 from viral pneumonia on chest CT’, Radiology, 2020, pp. 200823 

5 Myers, L.C., Parodi, S.M., Escobar, G.J., and Liu, V.X.: ‘Characteristics of Hospitalized 

Adults With COVID-19 in an Integrated Health Care System in California’, Jama, 2020 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.20139410doi: medRxiv preprint 

http://www.who.int/
https://doi.org/10.1101/2020.06.24.20139410


6 Elisabeth, M.: ‘Covid-19: most patients require mechanical ventilation in first 24 hours of 

critical care’, BMJ 2020, 2020, 368:m1201 

7 Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Tao, Q., Sun, Z., and Xia, L.: 

‘Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in 

China: A Report of 1014 Cases’, Radiology, 0, (0), pp. 200642 

8 Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., and Ji, W.: ‘Sensitivity of Chest 

CT for COVID-19: Comparison to RT-PCR’, Radiology, 2020, pp. 200432 

9 Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., 

Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., Gao, H., 

Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J., and Cao, B.: ‘Clinical features of 

patients infected with 2019 novel coronavirus in Wuhan, China’, Lancet, 2020, 395, (10223), pp. 

497-506 

10 Xu, B., Xing, Y., Peng, J., Zheng, Z., Tang, W., Sun, Y., Xu, C., and Peng, F.: ‘Chest CT 

for detecting COVID-19: a systematic review and meta-analysis of diagnostic accuracy’, 

European radiology, 2020 

11 Huang, Y., Cheng, W., Zhao, N., Qu, H., and Tian, J.: ‘CT screening for early diagnosis 

of SARS-CoV-2 infection’, The Lancet. Infectious diseases, 2020 

12 Qi, X., Lei, J., Yu, Q., Xi, Y., Wang, Y., and Ju, S.: ‘CT imaging of coronavirus disease 

2019 (COVID-19): from the qualitative to quantitative’, Annals of translational medicine, 2020, 

8, (5), pp. 256 

13 van Griethuysen, J.J.M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., 

Beets-Tan, R.G.H., Fillion-Robin, J.C., Pieper, S., and Aerts, H.: ‘Computational Radiomics 

System to Decode the Radiographic Phenotype’, Cancer research, 2017, 77, (21), pp. e104-e107 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.20139410doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.24.20139410


14 Aerts, H.J., Velazquez, E.R., Leijenaar, R.T., Parmar, C., Grossmann, P., Carvalho, S., 

Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F., Rietbergen, M.M., 

Leemans, C.R., Dekker, A., Quackenbush, J., Gillies, R.J., and Lambin, P.: ‘Decoding tumour 

phenotype by noninvasive imaging using a quantitative radiomics approach’, Nature 

communications, 2014, 5, pp. 4006 

15 Choi, Y., Ha, S., Lee, Y.S., Kim, Y.K., Lee, D.S., and Kim, D.J.: ‘Development of tau 

PET Imaging Ligands and their Utility in Preclinical and Clinical Studies’, Nuclear medicine and 

molecular imaging, 2018, 52, (1), pp. 24-30 

16 Mengjie, F., Bingxi, H., Li, L., Di, D., Xin, Y., Cong, L., Lingwei, M., Lianzhen, Z., 

Hailin, L., Hongjun, L., and Jie, T.: ‘CT radiomics can help screen the Coronavirus disease 2019 

(COVID-19): a preliminary study’, SCIENCE CHINA Information Sciences, 2020, 63, (7) 

17 Xiaolong, Q., Zicheng, J., QIAN, Y., Chuxiao, S., Hongguang, Z., Hongmei, Y., Baoyi, 

M., Yuancheng, W., Chuan, L., Xiangpan, M., Shan, H., Jitao, W., Dan, X., Junqiang, L., 

Guanghang, X., Huihong, H., Jie, Y., Jiansong, J., Hongqiu, P., Shengqiang, Z., and Shenghong, 

J.: ‘Machine learning-based CT radiomics model for predicting hospital stay in patients with 

pneumonia associated with SARS-CoV-2 infection: A multicenter study ’, medRxiv : the 

preprint server for health sciences, 2020 

18 Cheng, J., Weixiang, C., Yukun, C., Zhanwei, X., Zimeng, T., Xin, Z., Lei, D., 

Chuansheng, Z., Jie, Z., Heshui, S., and Jianjiang, F.: ‘Development and Evaluation of an AI 

System for COVID-19 Diagnosis’, medRxiv : the preprint server for health sciences, 2020 

19 Julien, G., Akshayaa, V., Louis, D., Fadila, Z., Denis, D., Anne-Noelle, F., Marie, T., 

Monique, H., Gregory, C., Stephane, M., Eva, E., Philippe, L., Nathan, T., Benjamin, M., Sean, 

W., Michel, M., Renaud, L., Paul, M., Wim, V., Ralph, L., and Pierre, L.: ‘Development and 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.20139410doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.24.20139410


validation of an automated radiomic CT signature for detecting COVID-19 ’, medRxiv : the 

preprint server for health sciences, 2020 

20 https://www.sirm.org/en/ 

21 https://medicalsegmentation.com/covid19/ 

22 Vallieres, M., Freeman, C.R., Skamene, S.R., and El Naqa, I.: ‘A radiomics model from 

joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue 

sarcomas of the extremities’, Physics in medicine and biology, 2015, 60, (14), pp. 5471-5496 

23 Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Tao, Q., Sun, Z., and Xia, L.: 

‘Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in 

China: A Report of 1014 Cases’, Radiology, 2020, pp. 200642 

24 Xie, X., Zhong, Z., Zhao, W., Zheng, C., Wang, F., and Liu, J.: ‘Chest CT for Typical 

2019-nCoV Pneumonia: Relationship to Negative RT-PCR Testing’, Radiology, 2020, pp. 

200343 

25 Bernheim, A., Mei, X., Huang, M., Yang, Y., Fayad, Z.A., Zhang, N., Diao, K., Lin, B., 

Zhu, X., Li, K., Li, S., Shan, H., Jacobi, A., and Chung, M.: ‘Chest CT Findings in Coronavirus 

Disease-19 (COVID-19): Relationship to Duration of Infection’, Radiology, 2020, 295, (3), pp. 

200463 

26 Zhou, S., Wang, Y., Zhu, T., and Xia, L.: ‘CT Features of Coronavirus Disease 2019 

(COVID-19) Pneumonia in 62 Patients in Wuhan, China’, AJR. American journal of 

roentgenology, 2020, 214, (6), pp. 1287-1294 

27 Salehi, S., Abedi, A., Balakrishnan, S., and Gholamrezanezhad, A.: ‘Coronavirus Disease 

2019 (COVID-19): A Systematic Review of Imaging Findings in 919 Patients’, AJR. American 

journal of roentgenology, 2020, 215, (1), pp. 87-93 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.20139410doi: medRxiv preprint 

http://www.sirm.org/en/
https://doi.org/10.1101/2020.06.24.20139410


28 Wang, Y., Dong, C., Hu, Y., Li, C., Ren, Q., Zhang, X., Shi, H., and Zhou, M.: 

‘Temporal Changes of CT Findings in 90 Patients with COVID-19 Pneumonia: A Longitudinal 

Study’, Radiology, 2020, pp. 200843 

29 Ran, Y., Xiang, L., Huan, L., Yanling, Z., Xianxiang, Z., Qiuxia, X., Yong, L., Cailiang, 

G., and Wenbing, Z.: ‘Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-

19’, Radiology: Cardiothoracic Imaging, 2020, 2, (2) 

30 Pan, F., Ye, T., Sun, P., Gui, S., Liang, B., Li, L., Zheng, D., Wang, J., Hesketh, R.L., 

Yang, L., and Zheng, C.: ‘Time Course of Lung Changes at Chest CT during Recovery from 

Coronavirus Disease 2019 (COVID-19)’, Radiology, 2020, 295, (3), pp. 715-721 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.20139410doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.24.20139410

