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Abstract

Contact tracing can play a vital role in controlling human-to-human transmis-

sion of a highly contagious disease such as COVID-19. To investigate the bene-

fits and costs of contact tracing, we develop an individual-based contact-network

model and a susceptible-exposed-infected-confirmed (SEIC) epidemic model for

the stochastic simulations of COVID-19 transmission. We estimate the unknown

parameters (reproductive ratio R0 and confirmed rate δ2) by using observed con-

firmed case data. After a two month-lockdown, states in the USA have started

the reopening process. We provide simulations for four different reopening sit-

uations: under ”stay-at-home” order or no reopening, 25 % reopening, 50 %

reopening, and 75 % reopening. We model contact tracing in a two-layer net-

work by modifying the basic SEIC epidemic model. The two-layer network is

composed by the contact network in the first layer and the tracing network in

the second layer. Since the full contact list of an infected individual patient can

be hard to obtain, then we consider different fractions of contacts from 60% to

5%. The goal of this paper is to assess the effectiveness of contact tracing to

control the COVID-19 spreading in the reopening process. In terms of benefits,

simulation results show that increasing the fraction of traced contacts decreases

the size of the epidemic. For example, tracing 20% of the contacts is enough

for all four reopening scenarios to reduce the epidemic size by half. Considering
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the act of quarantining susceptible households as the contact tracing cost, we

have observed an interesting phenomenon. When we increase the fraction of

traced contacts from 5% to 20%, the number of quarantined susceptible people

increases because each individual confirmed case is mentioning more contacts.

However, when we increase the fraction of traced contacts from 20% to 60%,

the number of quarantined susceptible people decreases because the increment

of the mentioned contacts is balanced by a reduced number of confirmed cases.

The main contribution of this research lies in the investigation of the effective-

ness of contact tracing for the containment of COVID-19 spreading during the

initial phase of the reopening process of the USA.

Keywords: SARS-CoV-2, parameter estimation, reopening phase, data,

individual-based multi-layer network model, epidemic model, configuration

network model, contact tracing.

1. Introduction

COVID-19 has affected the lives of billions of people in 2019-2020. The

COVID-19 disease is caused by severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) and has caused a global health emergency. The world health

organization (WHO) declared it as a Public Health Emergency of International5

Concern on January 30, 2020 [1]. The number of confirmed reported cases by

SARS-CoV-2 has been rising. On May 31, 2020, worldwide there were 5, 939, 234

laboratory-confirmed cases with 367, 255 deaths [2].

Many countries issued a pandemic lockdown to slow down the spreading of

COVID-19. In the United States, a ’stay-at-home’ order was issued in many10

states. However, those pandemic lockdowns have a massive impact on the econ-

omy. All the States of the USA started reopening gradually from early May.

Understanding the impact of mitigation strategies on the spreading dynamic of

COVID-19 during the reopening phase of the USA is essential. In this work,

we assess the impact of contact tracing under four reopening scenarios: 25%15

reopening, 50% reopening, 75% reopening, and 100% reopening.
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Individual-based contact-network models are a powerful tool to model COVID-

19 spreading due to its person-to-person spreading nature. In this work, we

develop an individual-based network model for a college town, Manhattan, KS,

where households represent nodes of the network. We select Manhattan, KS,20

as our study area, since it is a typical college town in a rural region of Kansas,

the home of Kansas State University. There are 20, 439 occupied households

in Manhattan, KS, according to census 2018 [3]. The connections between two

individual households represent the contact probabilities between the members

of the households. The individual-based approach provides the flexibility to25

observe the local dynamic at the individual level. It also allows us to include in

the model a mitigation strategy at the individual level, such as contact tracing.

To design an epidemic model for COVID-19 is challenging, as many epidemic

features of the disease are yet to be investigated, such as, for example, the trans-

mission rate, the pre-symptomatic transmission rate, and the percentage of the30

asymptomatic population. These uncertain characteristics make epidemic mod-

eling challenging as the outcomes of the model are sensitive to the assumption

made on the uncertainties. Therefore, we use a simple epidemic model with

four compartments –susceptible-exposed-infected-confirmed (SEIC)– capable of

imitating the COVID-19 transmission and flexible enough to cope with new35

information. This model has only two unknown parameters: the reproductive

ratio R0, and the confirmed case rate or reporting rate δ2. We use confirmed

COVID-19 cases from March 25, 2020 to May 4, 2020 in Manhattan, KS as

data, and estimate the unknown parameters from data. We consider that a con-

firmed COVID-19 patient cannot spread the disease anymore except in his/her40

own household. In the spreading of COVID-19, there are pre-symptomatic and

asymptomatic cases that do not show any sign of illness [4]. Besides, there is a

strong possibility that infected cases not detected exist. In our epidemic model,

those unreported cases are included indirectly through infected to confirmed

transitions.45

Since a vaccine is not available for COVID-19, contact tracing is a key mitigation

strategy to control the spreading of COVID-19. Contact tracing is a mitigation

3
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strategy that aims at identifying people who may have come into contact with

a patient. This mitigation strategy prevents further spreading by isolation of

exposed people. The public health personnel have used contact tracing as a50

tool to control disease-spreading for a long time [5]. We implement the contact

tracing strategy according to CDC guidance [6] through a two-layer network

model with a modified SEIC epidemic model. Contact tracing is effective at the

early stage of an epidemic when there is a limited number of cases. We choose

a college town, Manhattan (KS), for our study. Most college towns have a lim-55

ited number of cases because educational institutes have been closed since early

March 2020. Feasibility of contact tracing to control COVID-19 spreading was

analyzed using a branching process stochastic simulation for three reproductive

ratios R0 = 1.5, 2.5, and 3.5 [7]. The authors find that sufficient contact tracing

with quarantine can control a new outbreak of COVID-19. They mostly focus60

on the question of how much contacts need to be traced to control an epidemic

for the three levels of reproductive ratio. However, this article neither explored

the effectiveness of contact tracing for a specific location, nor investigated the

cost of contact tracing.

In this research, we develop an individual-based network framework to assess the65

impact of contact-tracing in the reopening process in a college town of Kansas.

To analyze the cost of contact-tracing represented by the number of quarantined

susceptible people, we develop a contact network and estimate the reproductive

ratio R0 and confirmed rate (infected to laboratory-confirmed transition) from

observed confirmed case data in Manhattan KS. We use our individual-based70

network model and the estimated parameters to run simulations of COVID-19

transmission. We use our framework to understand the spreading of COVID-19

and assess the contact-tracing strategy in the different reopening situations and

different levels of tracing contacts

Summarizing, the main contributions of this paper are the following:75

• A novel individual-level network-based epidemic model to assess the im-

pact of contact tracing.
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• A rigorous estimation of the reproductive ratio R0 and confirmed case rate

(infected to laboratory-confirmed transition) from observed confirmed case

data.80

• A thorough investigation of costs and benefits of contact-tracing in the

reopening process in a college town of Kansas.

The individual-based network model is developed to represent the heterogeneity

in people mixing. Our individual-based network epidemic model is general and

flexible. It can be used to estimate, and model contact-tracing for COVID-1985

in any location. It can also be used for any other disease that has a similar

spreading mechanism like COVID-19.

This paper is organized as follows: section 2 proposes an individual-based con-

tact network framework with two networks: the full network and the limited

network, to represents the contact situation namely before the reopening pro-90

cess (under ‘stay-at-home’ order) and after the reopening process. Section 3

presents an epidemic model for the stochastic simulations of COVID-19 spread-

ing. Section 4 provides the implementation of the contact-tracing on a two-layer

individual-based network framework and investigate the effectiveness of contact

tracing in the reopening process. Finally, we provide a concluding remark of95

our research in section 5.

2. Individual-based contact network model

This section proposes a method to develop an individual-based contact net-

work model capable of representing heterogeneous social mixing. In this net-

work, occupied households are in the individual node level, a connection be-100

tween two households represents the contact probability between members of

these households. The network has N nodes and n people. To develop this net-

work, we consider five age-ranges: under 18, 18− 24, 25− 34, 35− 59, and over

60. Each age-range has ni people, where i ∈ {1, 2, 3, 4, 5}. We distribute the n

people randomly into the N occupied households according to five social char-105

acteristics: age, average household sizes, family households, couple, living-alone
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[3]. We maintain the average household sizes, number of family households,

number of couples, and number of living-alone households. Besides, a person

under 18 years old is always assigned in a house with at least one adult person.

After assigning the people, an age-specific network is developed for each age110

range and a random mixing network for all ages. Then a combination of the six

networks provides the full network. A full network represents a contact network

for a typical situation. The configuration network model [8] is used to develop

age-specific networks and the random mixing network. The steps to develop

age-specific networks are:115

Step 1: For each person j (here, j ∈ 1, 2, ..., n), contacts cj is assigned from a

Gaussian distribution N (µ, σ2). The mean µ of the Gaussian distribu-

tions are taken from the daily average number of contacts per person in

each age-range [9, 10, 11]. The average daily contacts per person are given

in Table 1. For an under 18-year-old person, the number of contacts is120

assigned randomly from the N (13.91, 6.95) distribution. For a person in

18− 24 years age, the number of contacts is assigned randomly from the

N (21.25, 10.62) distribution. For a person in 25− 34 years age, the num-

ber of contacts is assigned randomly from the N (21.3, 10.65) distribution.

For a person in 35−59 years age, the number of contacts is assigned from125

the N (20.912, 10.46) distribution. For an over 60-year-old person, the

number of contacts is assigned randomly from the N (10.7, 5.35) distribu-

tion. In the random-mixing-network, the number of contacts is assigned

randomly from the N (2, 1) distribution for a person j. The Gaussian

or normal distribution is the distribution of real numbers; therefore, the130

number from the N (µ, σ2) distribution is rounded to the closest integer.

Step 2: For each person j, contacts for its belonging household k is assigned by

(cj − hk − 1). Here, cj is the number of contacts for a person j, hk is the

household size or number of people of the household k, person j lives in

the household k, j = 1, 2, 3......n, and k = 1, 2, 3......N .135

6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.20139204doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.24.20139204
http://creativecommons.org/licenses/by-nc/4.0/


Step 3: From the mixing patterns of different age-ranges, people have a strong

tendency to meet people with their same age range (more than 80%)

[9, 10, 11]. Therefore, We keep the maximum number of contacts among

the same age ranges and a small percentage for the other age ranges. The

percentage of contacts in the same age-specific-network for each age-range140

is given in Table 1. Degree dki of a node k in the age-specific network

i is s% of (cj − hk − 1), here, s% of average daily contacts of a person

happens with the people of his same age-range.

Step 4: After assigning degree, dki for N nodes or households, The configuration

network model [8] creates half-edges for each node, then chooses two145

nodes randomly and connect their half-edges to form a full edge [8].

The population and network characteristics for the five age-specific networks for

Manhattan, KS are given in Table 1. According to census 2018, Manhattan, KS

has n = 55, 489 people and N = 20, 439 occupied households [3].

The full network is a combination of five age-specific networks and a random-150

mixing network. Adjacency matrix for the full network Af is a summation of

six adjacency matrices: Af =
∑5
i=1Ai + Ar. Here, Ai is the adjacency matrix

for the age-specific network i, and Ar is the adjacency matrix for the random

mixing network. Age-specific networks and the random mixing network are

unweighted and undirected. However, the full network is a weighted and undi-155

rected network. The full network for Manhattan (KS) has 445, 350 edges. The

average node degree for an individual household in the full-network is 43.647,

and for an individual person is 16.0518 (which is consistent with [9]). The degree

distribution is presented in Fig. 1. The networks are given in the supplementary

materials.160

The full network is a contact network in the normal situation; we modify it

to represent the contact network in the pandemic lockdown; we name it limited

network. Manhattan, KS, is the home of Kansas State University. Most of the

people living in Manhattan, KS are closely related to Kansas State University,165

7
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Table 1: Properties of the Age-specific-networks of the Manhattan, KS.

Age-range under 18 18-24 25-34 35-59 over 60

population 8074 20378 9887 10581 6567

average daily contacts per

person [9]

13.91 21.25 21.3 20.912 10.7

average daily contacts with

non-household members per

person

12.00 20.001 19.98 19.00 7.05

% of neighbors in the same

age-specific networks [10]

85.63 90.48 90.29 84.95 71.43

Number of edges in the age-

specific networks

40466 187723 88806 90835 16511

8
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Figure 1: Degree distribution of the full network. In the network, households are at the node

level. The network has 20, 439 nodes and 445, 350 edges. The average degree of this network

is 43.647. The maximum degree in the network is 227.

which is closed since early March 2020. Besides, Manhattan, KS was under the

“Stay-At-Home“ order from March 27, 2020 to May 4, 2020 [12]. To represent

this unusual situation, the full network is modified to a limited network ver-

sion. As the educational institute was closed, we randomly reduce 90% links

from the age-specific networks for the age-ranges under 18, and 18 − 24. The170

Google COVID-19 community mobility reports provide a percentage of move-

ment changes in different places (for example, workplaces, recreational areas,

parks) [13]. We reduced 40% links randomly from the age-specific networks for

25 − 34, and 35 − 59 age-ranges for the movement changes in the workplaces

[13]. The number of links in the limited network is 155762. The limited network175

is given in the supplementary materials.

9
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3. Epidemic model

In this section, we design an epidemic model to simulate the COVID-19

spreading; later, we estimate the unknown parameters (reproductive ratio R0180

and confirmed rate δ2) of the epidemic model. We simulate four reopening

scenarios using the estimated parameters: under ”Stay-At-Home” order, 25%

reopening, 50% reopening, and 75% reopening. This model assumes that there

is no particular mitigation strategies have applied except general lockdown.

185

3.1. Susceptible-exposed-infected-confirmed (SEIC) epidemic model

This research propose a susceptible-exposed-infected-confirmed (SEIC) epi-

demic model to simulate the spreading of COVID-19 (Fig. 2). This model has

four compartments: susceptible S, exposed E, infected I, confirmed C. A sus-

ceptible node does not introduce to the virus yet, an exposed node introduces190

to the virus, but the viremia level is not strong enough to infect others, an

infected node has strong viremia to infect others, and a confirmed node is a

laboratory-confirmed COVID-19 case. The SEIC model has three transitions,

which are divided into two categories: edge-based (S → E), and nodal (E → I;

I → C) transitions [14, 15].195

An edge-based transition of a node depends on the state of its contacting nodes

or neighbors in the contact network with its own state. A nodal transition of

a node only depends on the own state. Each edge-based transition has an in-

fluencer compartment. A transition from susceptible to exposed (S → E) of

a susceptible node depends on the infected neighbors of that node. Therefore200

it is an edge-based transition, and the infected compartment is the influencer

compartment of this transition. In this work, we are using the term ‘neighbors

of a node k’ for the nodes, which have the shortest path length 1 from the

node k. The transition rate of the susceptible to exposed (S → E) transition

of a node k is β1
N∑
l

Ac(k, l)Il, here, Ac is the adjacency matrix of the contact205

network, if l node is infected then Il = 1 otherwise Il = 0, and
N∑
l

Ac(k, l)Il

10
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is the number of infected neighbors of the node k. The transition rate for the

transition exposed to infected (E → I) is δ1. The confirmed rate of an infected

person is δ2. We assume that a laboratory-confirmed case will be isolated and

cannot spread the disease outside of his household anymore. An infected node210

will spread the disease for an exponentially distributed period with an expected

value of δ−12 . The unknown infected cases are present indirectly in our model

through infected to confirmed transition. An unknown infected case will not

be detected as a COVID-19 patient. If the estimated time for the infected to

confirmed transition is higher than the average, it indicates that the system has215

more COVID-19 patient than laboratory-confirmed cases. A detail of the SEIC

epidemic model is stated in Table 2.

Figure 2: Node transition diagram of the susceptible-exposed-infected-confirmed (SEIC) epi-

demic model. This model has four compartments: susceptible (S), exposed (E), infected (I),

and confirmed (C) compartments. The SEIC model has three transitions (presented by solid

lines): S → E (edge-based), E → I (nodal), and I → C (nodal). The infected (I) compart-

ment is the influencer compartment of the edge-based S → E transition. The dashed line

presents the influence of the I compartment on the S → E transition. We estimate R0 and

δ2 transition rate from data. we deduce β1 from R0.

3.2. Stochastic simulation

To do the simulation, we use GEMFsim; it is a stochastic simulator for the220

generalized epidemic modeling framework (GEMF), which was developed by the

Network Science and Engineering (NetSE) group at Kansas State University

[17]. The GEMFsim is a continuous-time, individual-based, numerical simula-

tor for the GEMF-based processes [14]. The network and epidemic model is the

input of the GEMFsim, and the time dynamic of each node state is the output.225

In GEMF, the joint state of all nodes follows a Markov process that arises from

11

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.20139204doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.24.20139204
http://creativecommons.org/licenses/by-nc/4.0/


Table 2: Description of the susceptible-exposed-infected-confirmed (SEIC) epidemic model.

States type transition transition rate

(days−1)

influencer source

S (Susceptible)

E (Exposed)

I (Infected)

C (Confirmed)

Edge-

based

S → E β1
N∑
l

Ac(k, l)Il

here, β1 = R0δ2
〈d〉〈w〉 ;

〈d〉 = average

degree; 〈w〉 =

average weight

Neighbors

in state I

R0 is esti-

mated

nodal E → I δ1 = 1
5.1 - [16]

I → C δ2 = 1
6.54 - estimated

node-level transition. A node can change its state by moving from one com-

partment to another compartment through a transition. One assumption of the

GEMF system is, all the events or transitions are independent Poisson processes

with the constant rate; this assumption leads the system to a continuous-time230

Markov process. Initially, the simulation starts by setting two infected nodes

randomly.

3.3. Parameter estimation for the SEIC epidemic model

The SEIC model has two unknown parameters: reproductive ratio R0, and235

confirmed or reporting rate δ2. To estimate the R0 and δ2, we have used con-

firmed cases in Riley County (Kansas) from March 25, 2020 to May 4, 2020. In

this period, Kansas State University was closed, and ’Stay-At-Home’ order was

there. For the simulation of this period, a limited network is used (explained

in section 2), which is a modified version of the Full network to simulate the240

particular situation under the ”Stay-At-Home” order.

The estimated value for R0 is 0.71 (95% confidence interval: 0.702− 0.724) and

for reporting rate δ2 is 1
6.54day−1 (95% confidence interval: 1

7.89 −
1

6.05day−1).

12
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These estimated values are specific for Manhattan, KS. We have considered that

some people will develop severe symptoms, and they will be reported as a con-245

firmed case of COVID-19 sooner. However, some people will produce deficient

symptoms, and may they will not be tested. Therefore, the estimated confirmed

rate is an average of all possibilities. We use approximate Bayesian computation

based on sequential Monte Carlo sampling (ABS-SMC) approach to estimate

the parameters [18, 19].250

A sensitivity analysis for R0 and δ2 on the mean-squared error between con-

firmed cases data and simulated results is presented in Fig. 6. From the sensi-

tivity analysis, the mean-squared error is low when the reporting time is high.

It indicates undetected COVID-19 patients in the system. It means that an

infected node needs to be infected for a longer time for the better fitting with255

the data. It also indicates that the testing of COVID-19 is not sufficient.

3.4. Simulation in the reopening process without contact tracing

In this subsection, we simulate the confirmed cases (or cumulative new cases

per day) for two months: June and July using the SEIC epidemic model with

the estimated parameters. To simulate, we assume that there is no change260

except reopening from pandemic lockdown. We are presenting four reopening

situations: Stay-at-home is still there or no reopening, 25% reopening, 50%

reopening, and 75% reopening. Kansas has started to reopen step by step after

May 4, 2020. We use the limited network to simulate from March 25, 2020 to

May 4, 2020; then, we change the network concerning the reopening situation.265

For example, for a 25% reopening situation, we add 25% missing links randomly

(which are present in the full network but not in the limited network). We

preserve the states of each node at May 4, 2020 in the network then use it as

the initial condition for the simulation for the reopening situation (from May 4,

2020 to July 1, 2020). Fig. 4 is showing the mean (dashed lines) and median270

(solid lines) of the confirmed cases of the 1000 stochastic realizations of the four

reopening situations. The zoom-in window in Fig. 4 shows the time period

when data was used to estimate the parameters of the epidemic model.

13

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.20139204doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.24.20139204
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3: A sensitivity analysis. Mean-squared error (mse) between the time series of the

confirmed cases (or cumulative new cases per day) of March 25, 2020 to May 4, 2020 and

simulated results for a different combination of reproductive ratio and average reporting time

(in days). The light-colored boxes represent more mse than dark-colored boxes. The color

boxes with number “1” means that mse≤ 3, number “2” means that 3 <mse ≤ 10, number

“3” means that 10 <mse ≤ 50, number “4” means that 50 <mse ≤ 100,number “5” means

that 100 <mse ≤ 500,number “6” means that 500 <mse ≤ 1000,number “7” means that

1000 <mse. More than 80% times epidemic dies out in the combinations of the black squares,

and confirmed cases are less than 10. The minimum error combination is showing by the red

circle. We estimate R0 = 0.71 and average reporting time= 6.5 days.
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Figure 4: Confirmed cases in the four reopening scenarios after ’stay at home’ order lifted on

May 4, 2020. Solid lines represent the median, and dashed lines represent the mean of the

1000 stochastic realizations. The blue circle in the zoom-in window presents the confirmed

case data of the COVID-19 in Manhattan (Kansas) for the time period from March 25, 2020

to May 4, 2020. We have used this time period to estimate the reproductive ratio and the

average confirmed time.
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4. Contact tracing

Contact tracing is a crucial mitigation strategy to control the spreading of275

COVID-19. In this section, we will implement contact tracing and observe the

efficiency of the contact tracing in the different reopening scenarios. To imple-

ment contact tracing, we modify the basic SEIC epidemic model and propose

a two-layer network model. In the implementation of the contact tracing, we

follow the CDC’s guidance for contact tracing [6].280

4.1. Two-layer individual-based network model

This work implements contact tracing in a two-layer network model: the

contact network is in the first layer, and the tracing network is in the second

layer (Fig. 5). We will call the first layer as the contact-layer and second layer as

the tracing-layer in the rest of the paper. In the t%-tracing-layer, t% of links of285

each node in the contact-layer are preserved randomly to form tracing-layer (A

50% tracing-layer is presented in Fig. 5). The contacts/neighbors of a confirmed

(C) node in the tracing-layer will be tested and quarantined.

4.2. Epidemic model for contact tracing

For the contact tracing mitigation strategy, we consider two approaches for290

isolation: I) only infected neighbors of a confirmed case in the tracing layer will

be isolated, II) all the neighbors of a confirmed case in the tracing layer will be

isolated. For the case I, we propose the SEICQ1 epidemic model, and for case

II, we propose the SEICQ2 epidemic model.

The SEICQ1 model has six compartments: susceptible (S), exposed (E), in-295

fected (I), confirmed (C), quarantined-infected (QI), and removed (R). The

SEICQ2 model has eight compartments: susceptible (S), exposed (E), infected

(I), confirmed (C), quarantined-susceptible (QS), quarantined-exposed (QE),

quarantined-infected (QI), and removed (R). The transitions S → E, E → I,

and I → C are the same as the base SEIC model.300

In the SEICQ1 model, neighbors of a confirmed node in the tracing-layer

will be monitored, and infected neighbors will go to the quarantined-infected
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Figure 5: Two-layer network model: contact-layer NC , and tracing-layer Nt. In this example,

50% of contacts of each node is traced; for example; node 4 has four neighbors in the contact

network (2,3,5,8) however two neighbors in the tracing layer (2,3).

17

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.20139204doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.24.20139204
http://creativecommons.org/licenses/by-nc/4.0/


(a)

(b)

Figure 6: Node transition diagrams. a) SEICQ1 epidemic model, b) SEICQ2 epidemic model.

The solid lines represent the node-level transitions, and the dashed lines represent the influence

of the influencer compartment on an edge-based transition.
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(QI) state immediately with rate β2, therefore infected to quarantined-infected

(I → QI) transition is an edge-based transition and confirmed compartment is

the influencer of this transition. Here, β2 ≥ 1. A COVID-19 positive neighbor305

of a confirmed node will go to the confirmed state immediately with δ3 rate,

QI → C is a nodal transition. A confirmed node will be removed from the

system with δ4 rate (here, δ4 = 1
14days−1), and its neighbors are not going to

be monitored anymore after 14 days. A confirmed or removed node can not

spread the disease anymore. The purpose of the transition C → R is to monitor310

the neighbors of a confirmed node for 14 days. The node transition diagram of

the SEICQ1 model is given in Fig. 6a. A description of the 6 transitions of the

SEICQ1 model is given in the Table 3.

In the SEICQ2 model, neighbors (susceptible, exposed, and infected) of a315

confirmed node in the tracing-layer will be monitored and quarantined. The SE-

ICQ2 model has four new transitions than the SEICQ1 model: susceptible to

quarantined-susceptible (S → QS), exposed to quarantined-exposed (E → QE),

quarantined-exposed to quarantined-infected (QE → QI), and quarantined-

susceptible to susceptible (QS → S). The SEICQ2 model is presented in Fig320

6b. A description of the 10 transitions of the SEICQ2 model is given in Table

4.

4.3. Impact of contact tracing

Contact tracing can minimize the effect of the reopening process and control

the spreading of COVID-19. We apply contact tracing after May 4, 2020 in325

Manhattan, KS. The plot of confirmed cases on Jul 1, 2020 is presented in Fig.

7 for four reopening situations : 25% reopening, 50% reopening, 75% reopening,

and 100% reopening for the different levels of contact tracing. The dashed lines

in Fig. 7 represents the mean, and solid lines represent the median of the 1000

stochastic realization for the SEICQ1 and SEICQ2 model.330

The difference between SEICQ1 and SEICQ2 is that SEICQ1 quarantines only

the infected neighbors of a confirmed case in the tracing layer however SEICQ2
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Table 3: Description of the SEICQ1 epidemic model.

States type transition transition rate

(days−1)

inducer source

S (Susceptible)

E (Exposed)

I (Infected)

C (Confirmed)

QI

(Quarantined-

Infected)

R (Removed)

edge-

based

S → E β1
N∑
l

Ac(k, l)Il

here, β1 = R0δ2
〈d〉〈w〉 ;

〈d〉 = average

degree; 〈w〉 =

average weight

Neighbors of

state I in the

contact layer

R0 is esti-

mated

I → QI β2
∑
l

At(k, l)Cl

here, β2 ≥ 1

Neighbors of

state C in

the tracing

layer

model

nodal

E → I δ1 = 1
5.1 [16]

C → R δ4 = 1
14 model

I → C δ2 = 1
6.54 - estimated

QI → C δ3 ≥ 1 - model

C → R δ4 = 1
14 [6]
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Table 4: Description of the SEICQ2 epidemic model.

States type transition transition rate

(days−1)

inducer source

S (Susceptible)

E (Exposed)

I (Infected)

C (Confirmed)

QS

(Quarantined-

Susceptible)

QE

(Quarantined-

Exposed)

QI

(Quarantined-

Infected)

R (Removed)

edge-

based

S → E β1
N∑
l

Ac(k, l)Il

here, β1 = R0δ2
〈d〉〈w〉 ;

〈d〉 = average

degree; 〈w〉 =

average weight

Neighbors of

state I in the

contact layer

R0 is esti-

mated

S → QS
Neighbors of

state C in the

tracing layer

E → QE β2
∑
l

At(k, l)Cl

here, β2 ≥ 1

model

I → QI

nodal

E → I
δ1 = 1

5.1 [16]

QE → QI -

C → R δ4 = 1
14 [6]

I → C δ2 = 1
6.54 - estimated

QI → C δ3 ≥ 1 - model

QS → S δ4 = 1
14 - [5]

21

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.20139204doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.24.20139204
http://creativecommons.org/licenses/by-nc/4.0/


(a) (b)

(c) (d)

Figure 7: Impact of contact tracing. Total reported cases in two months after ’Stay home

order’ lifted for different movement restrictions scenarios. Contact tracing is applied after

May 4, 2020. This figure is showing the median (solid lines) and mean (dashed lines) value of

1000 stochastic realizations.
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quarantines susceptible, exposed, and infected neighbors of a confirmed case in

the tracing layer. The SEICQ2 model is always efficient than the SEICQ1 epi-

demic model. However, both approaches can reduce the number of confirmed335

cases, even in the 100% reopening situation. For any reopening situations, trac-

ing more than 60% of the contacts in the SEICQ2 can reduce the median of the

1000 stochastic realizations of the confirmed cases more than 96.5% on July 1,

2020 and in the SEICQ1 can reduce the median of the 1000 stochastic realiza-

tions of the confirmed cases more than 92%. The SEICQ2 model can reduce the340

confirmed cases on July 1, 2020 for more than 75% in the 25% reopening, more

than 82% in the 50% reopening, more than 92% in the 75%, and more than 96%

in the 100% reopening with compare to no-contact-tracing (SEIC model).

The SEICQ2 model can reduce the reported cases further compared to SEICQ1

for the same amount of contact tracing (Fig. 7). However, the SEICQ2 model345

has a drawback; it isolates susceptible persons. The number of total quaran-

tined susceptible households in the simulation time period for different amounts

of traced contacts for the SEICQ2 model is presented in Fig. 8. The quarantined

susceptible households increase with the increase of tracing; however, after trac-

ing 20% of contacts, the quarantined susceptible households start to decrease350

with the increase of tracing (Fig. 8). If we consider quarantined susceptible

households are the cost of SEICQ2 model, then it is cost-effective to trace con-

tacts of the confirmed cases more than 20%. The possible reason for decreasing

the number of quarantined households with the increasing of contact-tracing

after 20% is the smaller number of the infected cases or the smaller epidemic355

size. Although each confirmed case will give a long list of possible contacts, this

effect will be balanced out by a decreasing number of the confirmed cases.

5. Conclusion

This research studies contact tracing as a key mitigation strategy to control

the COVID-19 transmission in the reopening process of a college town in the360

rural region of the USA. Therefore, we propose a general framework to develop
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Figure 8: Total quarantined susceptible household in two months after May 4, 2020 for

SEICQ2 epidemic model for the four reopening situations.This figure is showing the median

(solid lines) and mean (dashed lines) value of 1000 stochastic realizations.
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an individual-based contact network epidemic model to estimate parameters

and implement contact tracing. This model is used to estimate the reproduc-

tive ratio (R0) and confirmed rate (δ2) in Manhattan, KS, for the COVID-19

spreading. The outcomes of this research are valuable in the reopening process365

of the USA. Furthermore, this framework is generic enough to use any locations

and for other diseases as well.

The individual-based network model represents the heterogeneous mixing nature

of a population. To investigate transmission at the individual level, we develop

an individual-based contact network model where households are presented by370

network nodes. The contact network is a combination of five age-specific net-

works and one random-mixing network; this approach allows us to change an

age-specific network according to any change in the society (for example, sum-

mer break, pandemic lockdown). The pandemic lockdown reduces the contacts

mostly among the people who are students. Therefore, age-specific networks for375

under 18 and 18-24 changed. Pandemic lockdown also affects people in 25-34,

35-59 age-ranges. We propose a ‘full network’ to represent the usual situa-

tion; then, we modify the age-specific networks of the full network to represent

pandemic lockdown. The modified network is the limited network, a reduced

version of the full network. The average degree of the full network is 43.647 for380

Manhattan, KS which means that each household has probable direct connec-

tions with an average of 43.647 households. The full network is connected and

provides an approximation of the contact network at the household level, which

is useful for doing the simulation anonymously.

We propose a susceptible-exposed-infected-confirmed (SEIC) epidemic model in385

the limited network to simulate COVID-19 transmission from March 25, 2020 to

May 4, 2020. We estimate the unknown parameters of the SEIC model for the

Manhattan, KS, using approximate Bayesian computation based on sequential

Monte Carlo sampling. We use confirmed cases as an observed data set. De-

signing an optimal epidemic model to simulate epidemic spreading is essential.390

However, it is challenging to design an epidemic model for COVID-19 spread-

ing with limited knowledge; understanding the spreading of COVID-19 needs
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more investigation. Asymptomatic carriers of the SARS-CoV-2 are present in

the spreading of COVID-19 [20]. However, more research is needed to get infor-

mation about how much an asymptomatic case can transmit the SARS-CoV-2395

virus. Asymptomatic cases are included in our model indirectly. Concerning the

unclear role of immunity, we assume that the immunity of a recovered COVID-

19 patient is not going to fade in the short period analyzed in our simulations.

In addition, it is important to keep the model simple, since the data available

to estimate parameters is limited. Therefore, we propose a simple but dynamic400

and flexible epidemic model to simulate COVID-19 spreading, which has only

two unknown parameters. The model can easily cope with additional informa-

tion that may be available in the future.

The estimated reproductive ratio is much smaller in Manhattan, KS (estimated

R0 = 0.71) because of the ‘Stay at home’ order. In Manhattan, 51% of peo-405

ple have age below 24 years, who get a chance to stay at home because of the

online curriculum in educational institutions. However, the reproductive ratio

will change when educational institutes start their in-person curriculum (in the

100% reopening R0 = 2.0301). There are 301 college towns in the USA [21],

which have a similar population structure like Manhattan, KS. A practical con-410

tact tracing approach can help to control the epidemic in those college towns.

We implement contact tracing by using a two-layer network model. We assess

the impact of contact tracing in the four reopening situations: 25 % reopening,

50 % reopening, 75 % reopening, and 100 % reopening. Reopening without

vaccination can produce more infected cases. It is essential to access the effi-415

cacy of the contact tracing in the reopening path. Our investigation indicates

that more than 50% contact tracing can control the spreading of COVID-19

even in the 100% reopening situation. The number of quarantined susceptible

people increases with the increase of traced contacts, however after 20%, the

number of quarantined susceptible people decreases with the increases of the420

traced contacts. We consider that quarantined susceptible people represent the

cost of contact tracing with a quarantined strategy. Therefore it is cost-effective

to trace more than 20% contacts of a confirmed case.
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Our investigation indicates that a sufficient amount of contact tracing can re-

duce the impact of COVID-19 spreading in the reopening process of a location425

where the epidemic is in an initial stage. At first, the quarantined susceptible

people increase with the percentage of traced contacts, however after a certain

amount of traced contacts, the quarantined susceptible people start to decrease

with the increase in the percentage of traced contacts.
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