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Abstract 13 

 14 

We present a simple epidemiological model that includes demographic density, social 15 

distancing, and efficacy of massive testing and quarantine as the main parameters to model 16 

the progression of COVID-19 pandemics in densely populated urban areas (i.e., above 17 

5,000 inhabitants km2). Our model demonstrates that effective containment of pandemic 18 

progression in densely populated cities is achieved only by combining social distancing and 19 

by widespread testing for quarantining of infected subjects. This finding has profound 20 

epidemiological significance and sheds light on the controversy regarding the relative 21 

effectiveness of widespread testing and social distancing. Our simple epidemiological 22 

simulator is also useful for assessing the efficacy of governmental/societal responses to an 23 

outbreak.  24 

This study also has relevant implications for the concept of smart cities, as densely 25 

populated areas are hotspots that are highly vulnerable to epidemic crises.    26 

 27 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 9, 2020. ; https://doi.org/10.1101/2020.06.23.20138743doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.06.23.20138743
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Keywords: COVID-19, SARS-CoV2, mathematical modeling, social distancing, massive 28 

testing, pandemic, demographic density 29 

 30 

Submitted to Science Advances 31 

 32 

Introduction 33 

COVID-19 has clearly illustrated that we were unprepared for the second pandemic of the 34 

21st century. By the fourth week of June 2020, the official cumulative number of infected 35 

persons worldwide was more than 10,000,000, with a death toll higher than 500,000. 36 

COVID-19 has not recognized frontiers; it started in China, migrated to Iran, and formed a 37 

later epicenter in Italy and Spain. It then extended to France, England, Germany, and other 38 

European Countries. Now, COVID-19 has a strong presence in Las Americas, mainly in the 39 

USA, Brazil, and Mexico(1, 2). Among all affected territories, pandemic COVID-19 has 40 

encountered containment responses ranging from aggressive to mediocre. Some of these 41 

responses, namely the ones that appear to be more successful, have been based on a 42 

combination of social distancing and massive testing and selective quarantine(3). Social 43 

distancing effectively decreases the progression of the disease essentially by decreasing the 44 

demographic density, while massive testing enables the identification of infected subjects 45 

and opportune quarantining (which is technically a version of selective social distancing). 46 

However, discussion persists regarding the relative effectiveness of countermeasures such 47 

as social distancing or massive testing. Countries like South Korea have based their strategy 48 

of containment on strict social distancing and massive testing in their open populations(4). 49 

Spain initially based its strategy on gradual social distancing. Later, it significantly 50 
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increased its diagnostic efforts to plateau the pandemic. England started by using testing 51 

mainly for epidemiological recording, but later significantly scaled up its efforts to 52 

aggressively diagnose its population. By contrast, Mexican officials have openly declared 53 

that massive testing and quarantine have no significant value as a countermeasure for 54 

COVID-19 progression and that diagnostics is merely informative. Consequently, Mexico 55 

is one of the countries with the fewest diagnostic tests conducted per 100,000 56 

inhabitants(5).  57 

The benefit of social distancing and massive diagnostics has not only been a subject of 58 

controversy(6), but assessing the potential benefit has also been challenging. Here, we 59 

introduce a simple mathematical model with a formulation that explicitly considers 60 

demographic variables (i.e., the demographic density and the total population) to calculate 61 

the progression of COVID-19 in urban areas. The model also considers the effectiveness of 62 

social distancing measures and of massive testing for expeditious identification and 63 

quarantining of infective subjects as inputs. We present a wide range of simulation 64 

scenarios for “representative” urban areas and show that both social distancing and 65 

widespread and effective testing should be combined for effective containment of the 66 

pandemic advance in densely populated urban areas.  67 

 68 

Rationale of the model formulation 69 

We developed a very simple epidemiological model for the propagation of COVID-19 in 70 

urban areas. The model considers two variable populations of individuals, infected (X) and 71 

retrieved (R). The cumulative number of infected patients (X) is the total number of 72 

subjects among the population that have been infected by SARS-CoV-2. The number of 73 
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retrieved patients should be interpreted as the number of individuals that have been 74 

retrieved from the general population and are not contributing to the propagation of 75 

COVID-19. Retrieved subjects include subjects who have recovered from the infection and 76 

do not shed virus, quarantined individuals, and deceased patients. Importantly, the model 77 

assumes that infection results in (at least) short-term immunity upon recovery. This 78 

assumption is based in experimental evidence that suggests that rhesus macaques that 79 

recovered from SARS-CoV-2 infection could not be reinfected(7). However, the 80 

acquisition of full immunity to reinfection has not been confirmed in humans, although it is 81 

well documented for other coronavirus infections, such as SARS and MERS(8, 9).  82 

Two set of parameters, demographic and clinical/epidemiological, determine the interplay 83 

between these two main populations and other subpopulations that include asymptomatic 84 

infected (A), symptomatic infected (S), and deceased (D). Clinical parameters include an 85 

intrinsic infection rate constant (µo) that is calculated from the initial stage of the pandemic 86 

in that particular region, the fraction of asymptomatic patients (a), the delay between the 87 

period of viral shedding by an infected patient (delay_r), the period from the onset of 88 

shedding to the result of first diagnosis and quarantine in the fraction of patients effectively 89 

diagnosed (delay_q), and the fraction of infected patients effectively diagnosed and 90 

retrieved from the population (α). Demographic parameters include the population of the 91 

region (Po), the relative demographic density (δ), the social distancing (σ), and the fraction 92 

of infected individuals retrieved from the population due to massive and effective testing 93 

(α). The model is based on a set of two simple differential equations.  94 

 95 

dX/dt = µo δ (1-σ) (X-R) (Po-X)/Po   equation (1) 96 

dR/dt = α� ��/��
���������_


���
 – (1- α) � ��/��

���������_�

���
 equation (2)  97 
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 98 

The first equation of the set (equation 1) states that the rate of accumulation of infected 99 

habitants (symptomatic and asymptomatic) in an urban area (assumed to be a closed 100 

system) is proportional to the number of infective subjects (X-R) present in that population 101 

at a given point  and the fraction of the population susceptible to infection ((Po-X)/Po). Note 102 

that the number of infective subjects is given by the difference between the accumulated 103 

number of infected subjects (X) and the number of retrieved subjects (R). The fraction of 104 

the susceptible population decreases over time as more inhabitants in the community get 105 

infected. The proportionality constant in equation 1 (µo) is an intrinsic rate of infection that 106 

is weighted by the population density (δ) in that urban area, and the effective fractional 107 

reduction of social distancing on the population density (1- σ).  108 

The second equation (equation 2) describes the rate at which infected patients are retrieved 109 

from the infective population. Eventually, all infected subjects are retrieved from the 110 

population of infected individuals, but this occurs at distinctive rates. A fraction of infected 111 

individuals (α) is effectively retrieved from the general population soon after the onset of 112 

symptoms or after a positive diagnosis. Another fraction of infected subjects (1- α) is not 113 

effectively retrieved from the population until they have recovered or died from the disease. 114 

Therefore, in our formulation, the overall rate of retrieval (dR/dt) has two distinctive 115 

contributions, each one associated with different terms on the right-hand side of equation 2. 116 

The first term accounts for the active rate of retrieving infected patients through the 117 

diagnosis and quarantine of SARS-CoV-2 positive subjects. For this term, the delay from 118 

the onset of virus shedding to positive diagnosis and quarantine (delay_q) is considered 119 

short (i.e., between two or three days), to account for a reasonable time between the 120 

positive diagnosis and the action of quarantine. In our model formulation, this term is 121 
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represented by (1-α). A second term relates to the recovery or death of infected patients 122 

(symptomatic or asymptomatic) and is represented by the integral of all infected subjects 123 

recovered or deceased from the onset of the epidemic episode in the region, considering a 124 

delay of 21 days (delay_r), which accounts for the average time of recovery of an infected 125 

individual. 126 

Note that the simultaneous solution of equations 1 and 2 is sufficient to describe the 127 

evolution of the number of asymptomatic individuals (A), symptomatic individuals (S), and 128 

deceased patients (D) through the specification of several constants and simple relations.  129 

a dX/dt = dA/dt   equation (3) 130 

(1-a) dX/dt = dS/dt   equation (4) 131 

m [(1-a) dX/dt ] =dD/dt    equation (5) 132 

Here, a is the fraction of asymptomatic subjects among the infected population, (1-a) is the 133 

fraction of infected individuals that exhibit symptoms, and m is the mortality rate expressed 134 

as a fraction of symptomatic individuals.   135 

 136 

Selection of relevant epidemiological parameters for COVID-19 137 

As with any epidemiological model, this model relies on some basic assumptions that must 138 

be sustained in clinical or epidemiological data. We now briefly discuss the assumptions 139 

that were made and the rationale behind the relevant values of the parameters of the model: 140 

the fraction of asymptomatic infected, the average time to recover, the fraction of 141 

symptomatic patients that would require hospitalization, and the average time of bed 142 

occupancy per hospitalized patient.  143 
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The fraction of asymptomatic infected is one of the critical inputs to the model; it 144 

determines the final and maximum feasible threshold of symptomatic infected. However, 145 

the current evidence is not yet sufficient to support a conclusive value for this parameter. 146 

Nevertheless, a recent serological study conducted in New York City (NYC) found anti-147 

SARS-CoV-2 IGGs among 21.2% of the population(10) (www.cnn.com ), and this result is 148 

consistent with previous information related to massive epidemic episodes. For instance, in 149 

the context of the pandemic influenza A/H1N1/2009, up to 20–40% of the population in 150 

urban areas (i.e., Monterrey, México, and Pittsburgh, USA) (11, 12) exhibited specific 151 

antibodies regardless of experiencing symptoms, while the fraction of confirmed 152 

symptomatic infections was lower than less than 10%. This serological result based 153 

exclusively on information from NYC suggests that more than 90% of exposed New 154 

Yorkers (~91.4%) were asymptomatic or exhibited minor symptoms. Based on this (still 155 

unpublished) data, we assumed a symptomatic fraction of only 10% in the calculations and 156 

forecasts presented here.  157 

In addition, the average time of sickness was set at 21 days in our simulations, as this is 158 

within the reported range of 14 to 32 days(13), with a median time to recovery of 21 159 

days(14). Viral shedding can last for three to four weeks after the onset of symptoms, with 160 

a peak at day 10-11.(15)  Therefore, we assume that all those infected not quarantined 161 

could continue to transmit the virus until full recovery (21 days). Similarly, asymptomatic 162 

patients are only removed from the pool of susceptible persons after full virus clearance. 163 

Note that, in the current version of our model, asymptomatic patients are considered part of 164 

the population capable of transmitting COVID-19; reported evidence that suggests that 165 

asymptomatic subjects (or minimally symptomatic patients) may exhibit similar viral 166 
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loads(16) to those of symptomatic patients and may be active transmitters of the disease(17, 167 

18).  168 

The average fraction of deceased patients worldwide is estimated as 0.064 of those infected 169 

21 days before. This mortality percentage (case fatality rate) lies within the range reported 170 

in the recent COVID-19 literature(19–22). The time lapse of 14 days between the onset of 171 

disease and death was statistically estimated by Linton et al. in a recent report (23). We also 172 

consider that the average time for bed occupancy of hospitalized patients is 14 days. The 173 

estimated average hospitalization stays range from 9.3 to 13 days in the United States (24) 174 

and China(25, 26), but much longer stays have been reported in intensive care units in Italy 175 

(20 to 25 days)(27). Anecdotal data collected in México suggests that hospitalization stays 176 

of at least two weeks are a more accurate figure for Latin American societies.  177 

 178 

Definition of representative scenarios 179 

We aimed to reproduce representative settings for COVID-19 progression; therefore, we 180 

selected two hypothetical but realistic urban scenarios. Figure 1 shows the most densely 181 

populated cities in the world (according to information concentrated in 182 

www.citymayors.com)(28) represented by dots in a bidimensional plot of demographic 183 

density versus population. Two clusters of cities can be readily identified. The first group of 184 

5 to7 important cities in the world (i.e, Porto Alegre, Ankara, Athens, Guadalajara, 185 

Monterrey, Barcelona) have populations between 3.0 and 3.7 million inhabitants and a 186 

demographic density of ~5,000 inhabitants per square kilometer (hab km2). A second group 187 

is centered on the coordinates of a population of 10 million citizens and a demographic 188 

density of 10,000 hab km2 (i.e., Baghdad, Ho Chi Minh, Bangalore, Tianjin, Kinshasa, 189 
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Hyderabad). Based on this analysis, we centered our estimates of COVID-19 progression in 190 

these two classes of “representative” cities (3.5 million inhabitants, 5,000 hab km2; and 10 191 

million citizens, 10,000 hab km2).   192 

 193 

 194 

 195 

Figure 1. Population and demographic density of the world largest cities. (a) Two clusters of 196 

cities, referred here as Type I (green cluster) and Type II (red cluster) are indicated in a plot of 197 

population versus demographic density. The 51 largest cities in the world, according to 198 

www.citymayors.com/, are included(28). Madrid Spain is indicated in yellow (•), New York City in 199 

red (•), and Mexico City in green (•). (b) Natural log of the number of symptomatic versus time in 200 

Madrid from March 2 to March 17 (initial stage of the pandemics in Spain). The initial rate of 201 

infection (µo) can be calculated from the slope of this straight line.   202 

 203 
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We also based our estimates of µo, the intrinsic rate of COVID_19 propagation, on data 204 

extracted from the local dynamics of the pandemics in Madrid (a city in our first category) 205 

and New York City (a city in our second category). These two cities also belong to a 206 

limited number of cities that have generated reliable datasets on the local progression of the 207 

number of COVID-19 positive cases over time. We calculate the value of µo (i.e., the 208 

intrinsic rate of infectivity of SARS-CoV2 before interventions) by assuming that the initial 209 

rate of propagation is d(X)/dt = µo [X], where [X] is the number of initially infected 210 

subjects. We then simply calculate the intrinsic rate of infection from the initial slope of a 211 

plot of ln [X] vs time, which is a usual procedure for calculation of intrinsic growth rates in 212 

cell culture scenarios under the assumption of first order rate growth dependence. 213 

Following this rationale, we set µo for all our simulations. Consistently, we noted that the 214 

initial rate of propagation observed in NYC, a city with twice the demographic density of 215 

Madrid, doubles this µo value. Therefore, we take the demographic density of Madrid as a 216 

reference (5,185 hab km2) and assume that multiplying µo by the normalized demographic 217 

density (with respect to that in Madrid) is a reasonable procedure for adapting the model to 218 

any urban area.  219 

 220 

Effect of social distancing and massive testing 221 

Social distancing has been regarded as the one of the most effective buffering measures for 222 

containment of local COVID-19 epidemics(29–32). However, the effectiveness of massive 223 

testing, either alone or in combination with social distancing, has not been evaluated 224 

formally.  225 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 9, 2020. ; https://doi.org/10.1101/2020.06.23.20138743doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.23.20138743
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

First, we conducted simulations in which we evaluated the independent impact of different 226 

degrees of social distancing and massive testing in a Type I city (3.5 million inhabitants and 227 

medium demographic density). Figure 2a shows the impact of different degrees of social 228 

distancing at a fixed and basal value of massive testing. In this simulation, a basal value of 229 

social distancing (α=0.1) means that only 10% of the infected patients are diagnosed and 230 

quarantined, while the rest of the infected subjects continue active until recovery. This 231 

strategy is consistent with that adopted by countries that diagnosed essentially only those 232 

subjects who were symptomatic and asked for medical assistance (i.e., México, Chile, and 233 

Bolivia, with fewer than 2 tests per confirmed case). The pandemic progression (number of 234 

cumulative symptomatic cases, new infections per day, and bed occupancy per day) is 235 

indicated with grey curves for a reference scenario with no social distancing and basal level 236 

of testing. Higher degrees of enforcement of social distancing (i.e., such that the 237 

demographic density is effectively reduced by 20, 40, and 60%) are presented with blue, 238 

green, and red lines, respectively. Levels of social distancing of 20% and 40% delay the 239 

pandemic curve by 15 and 30 days, whereas the pandemic progression is successfully 240 

buffered only when social distancing effectively reduces demographic density (and 241 

therefore activity) by 60% for extended times (i.e., for 6 months). Although eventually 242 

effective, this strategy of drastic and prolonged social distancing may be unsustainable or 243 

drastically damaging for the economy of low and medium income societies(31).  244 

Figure 2b presents predictions for scenarios where no social distancing is implemented, but 245 

where the level of diagnostic testing is increased from a basal value (10% of infected are 246 

diagnosed and quarantined) to situations were 20, 30, and 40% of infected patients 247 

(symptomatic and asymptomatic) are diagnosed within the first 3 days of viral shedding 248 
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and quarantined. These levels of massive testing, in the absence of social distancing 249 

enforcement, are not sufficiently effective to buffer the pandemic.  250 

Figure 2c shows a scenario in which social distancing is set at 20% and different testing 251 

emphasis is applied. As before, trends related to the reference scenario of low testing and 252 

no social distance enforcement are indicated in grey. The combination of moderate social 253 

distancing and testing renders better results than any one of the two strategies 254 

independently applied. When social distancing is elevated to a 40% and combined with 255 

more intensive testing efforts, the epidemic peak is dramatically delayed. 256 

 257 

 258 

 259 

Figure 2. Pandemic progression scenarios for a Type I city (3.5 × 106 citizens) with a medium 260 

demographic density (5,500 inhabitants km-2). The number of new infections per day (thin and 261 

light line curves), the bed occupancy (thick line curves) and the cumulative number of infections 262 

(thin cumulative curve) are presented for each scenario. (a) Scenario I: basal level of testing (α=0.1) 263 

and increasingly higher levels of social distancing: σ=0.0 (gray), σ=0.2 (blue), σ=0.4 (green), and 264 
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σ=0.6 (red). (b) Scenario II: social distance not enforced (σ=0.0), and increasing values of testing 265 

α=0.1 (gray), α=0.2 (blue), α=0.3 (green), and α=0.4 (red). (c) Scenario III: social distance modestly 266 

enforced (σ=0.2), and increasing values of testing, α=0.1 (blue), α=0.2 (green), and α=0.3 (red). (d) 267 

Scenario IV: social distance moderately enforced (σ=0.4), and increasing values of testing α=0.2 268 

(blue), α=0.3 (green), and α=0.4 (red). Gray curves correspond to the pandemic progression with 269 

minimum intervention (no social distancing and α=0.1). 270 

 271 

A value of 40% social distancing in combination with an effort to identify and quarantine 272 

30% of newly infected subjects delays the peak of maximum bed occupancy from day 25 to 273 

day 75, and lowers the highest demand of beds from 75,000 to fewer than 30,000. Increased 274 

testing at 40% social distancing further contributes to extinguish the epidemic peak.   275 

We also estimated the pandemic progression under the same set of scenarios for a densely 276 

populated city (Type II: 5×106 citizens and 10,000 hab km2). The results similarly indicate 277 

that only a combined strategy of social distancing and scaled-up testing and quarantine may 278 

effectively control the pandemic progression due to “selective social distancing”. However, 279 

the higher population leads to increases in the number of cases in the same time frame (let 280 

us say, the first 120 days from pandemic onset) and in the maximum threshold of 281 

symptomatic cases. The higher demographic density also causes a higher rate of transition. 282 

Therefore, the containment strategies need to be stronger than those required for Type I 283 

cities. For example, in the absence of intensified testing, the degree of social distancing 284 

required to buffer the pandemic is much higher in a Type II city (α=0.75) than in a type I 285 

city (α=0.60). Similarly, only aggressive social distancing interventions combined with 286 

intensified testing, i.e., (σ=0.6, α=0.3) or (σ=0.7, α=0.5) can mitigate the pandemic 287 

progression in larger or denser cities (Type II).  A summary of the results for different 288 

combinations of scenarios is presented in Tables 1 and 2. 289 
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 290 

Figure 3. Pandemic progression scenarios for a Type II city (5.0 × 106 citizens) with a high 291 

demographic density (10,000 inhabitants km-2). The number of new infections per day (thin and 292 

ligth line curves), the bed occupancy (thick line curves) and the cumulative number of infections 293 

(thin cumulative curve) are presented for each scenario. (a) Scenario I: basal level of testing (α=0.1) 294 

and increasingly higher levels of social distancing: σ=0.00 (gray), σ=0.25 (blue), σ=0.50 (green), 295 

and σ=0.75 (red). (b) Scenario II: social distance not enforced (σ=0.0), and increasing values of 296 

testing α=0.1 (gray), α=0.3 (blue), α=0.5 (green), and α=0.7 (red). (c) Scenario III: social distance 297 

enforced (σ=0.6), and increasing values of testing: α=0.1 (blue), α=0.3 (green), and α=0.5 (red). (d) 298 

Scenario IV: social distance moderately enforced (σ=0.7), and increasing values of testing: α=0.1 299 

(blue), α=0.3 (green), and α=0.5 (red). Gray curves correspond to the pandemic progression with 300 

minimum intervention (no social distancing and α=0.1). 301 

 302 

We present scenarios for both moderately and densely populated cities (Type I and II). Four 303 

different indicators are calculated for each scenario, including the day of the epidemic peak, 304 

the number of new infection cases at the epidemic peak, the cumulative number of 305 

symptomatic infections after 120 days of the local pandemic onset (4 months), and the 306 

maximum bed occupancy. 307 
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Table 1. Effect of social distancing and testing in a city with a demographic density of 5,500 inhabitants/km2 and a population of 3.5 × 106 
308 

persons). 309 

 
  

α 

  
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

σ: 

0.00 

peak @ day: 38.00 39.00 42.00 45.00 50.00 56.00 64.00 70.00 100.00 

infected after 120 days: 349037.52 349072.31 349410.58 349731.45 349801.94 349008.93 323718.47 134600.03 5963.75 

peak of infection (hab/day) 29155.11 26837.36 24343.10 21633.49 18652.11 15311.81 11469.93 2849.59 90.84 

maximum oc beds: 43076.11 41297.81 39084.22 36297.24 32740.85 28128.49 20667.05 5774.46 190.73 

  
         

0.25 

peak @ day: 51.00 54.00 59.00 64.00 65.00 70.00 81.00 90.00 90.00 

infected after 120 days: 349994.09 349980.90 349723.77 342776.43 274280.90 122542.87 24923.94 2614.45 248.17 

peak of infection (hab/day) 21114.08 19067.32 16862.56 14462.14 8280.49 2397.63 398.56 37.26 2.59 

maximum oc beds: 35889.86 33437.60 30474.06 25109.72 14935.49 4900.12 833.91 78.27 5.45 

  
         

0.5 

peak @ day: 67.00 67.00 76.00 81.00 82.00 86.00 88.00 
 

infected after 120 days: 175936.83 91893.77 38845.99 13861.23 4332.07 1227.77 341.99 
 

peak of infection (hab/day) 3803.14 1649.97 632.51 215.77 64.49 17.03 4.18 
 

maximum oc beds: 7523.66 3411.07 1325.73 452.39 135.43 35.79 8.78 
 

  
         

0.6 

peak @ day: 77.00 81.00 83.00 86.00 
    

infected after 120 days: 18919.36 8432.49 3534.87 1408.84 
    

peak of infection (hab/day) 298.44 129.46 52.56 20.02 
    

maximum oc beds: 625.81 271.66 110.40 42.07 
    

  
         

0.7 

peak @ day: 88.00 
       

infected after 120 days: 1147.06 
       

peak of infection (hab/day) 16.38 
       

maximum oc beds: 34.42 
       

(*) Conditions at which the progression can be controlled or extinguished are indicated in light and intense green, respectively.  310 

 311 
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 312 

Table 2. Effect of social distancing and testing in a city with a demographic density of 10,000 inhabitants/km2 and a population of 5.0 × 106 
313 

persons). 314 

   
α 

  
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

σ: 

0.00 

peak @ day: 19.00 19.00 19.00 20.00 21.00 21.00 22.00 24.00 25.00 

infected after 120 days: 499989.80 499971.06 499917.90 499766.95 499336.94 498102.78 494503.52 483634.61 446996.48 

peak of infection (hab/day) 86423.60 82575.85 78404.48 73841.74 68794.07 63125.83 56629.06 48953.93 39422.43 

maximum oc beds: 73747.96 73345.63 72776.58 71953.49 70731.66 68861.46 65889.88 60938.49 52151.75 

  
         

0.25 

peak @ day: 25.00 26.00 27.00 28.00 30.00 32.00 35.00 39.00 47.00 

infected after 120 days: 499846.93 499665.38 499268.89 498409.15 496596.85 493100.98 487611.16 479682.50 443985.07 

peak of infection (hab/day) 63930.77 60111.56 55971.34 51440.99 46422.90 40772.27 34255.89 26450.93 16419.13 

maximum oc beds: 70822.64 69733.12 68276.26 66293.98 63540.74 59619.71 53853.41 44986.81 30352.40 

  
         

0.50 

peak @ day: 38.00 41.00 44.00 46.00 51.00 57.00 64.00 72.00 96.00 

infected after 120 days: 498882.25 499096.74 499540.23 499809.64 499807.31 498253.90 446201.67 158799.47 6043.61 

peak of infection (hab/day) 41649.98 38338.88 34775.60 30904.68 26645.47 21873.49 15986.09 3184.80 92.64 

maximum oc beds: 61537.12 58996.65 55834.29 51852.80 46772.08 40182.73 27909.42 6544.93 194.56 

  
         

0.60 

peak @ day: 49.00 52.00 56.00 61.00 64.00 67.00 80.00 90.00 90.00 

infected after 120 days: 499990.74 499988.72 499925.44 498000.70 455117.57 259517.01 62505.34 6072.10 390.58 

peak of infection (hab/day) 32518.26 29514.18 26280.30 22762.02 17097.07 6020.73 1047.72 91.03 4.37 

maximum oc beds: 53795.88 50486.51 46503.25 41012.07 29013.61 11822.72 2187.91 191.19 9.19 

  
         

0.70 

peak @ day: 63.00 65.00 67.00 67.00 76.00 82.00 94.00 
 

infected after 120 days: 486459.87 414489.06 263372.49 115959.71 36130.22 8585.78 1674.53 
 

peak of infection (hab/day) 21722.22 13239.99 5938.16 2056.64 581.04 130.80 23.44 
 

maximum oc beds: 35466.46 23463.24 11668.79 4276.82 1216.45 274.64 49.25 
 

(*) Conditions at which the progression can be controlled or extinguished are indicated in light and intense green, respectively315 
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Next, we investigated the fidelity of the model prediction by simulating the advance of the 316 

pandemic in Madrid, NYC, and Mexico City. The number of new infections per day in 317 

these three cities has been made available by government officials. Interestingly, the 318 

demographic characteristics of these major cities exhibit important differences, as well as 319 

the types of counter-measures adopted to contain COVID-19.  320 

Madrid (a Type-I city) and NYC (nearly a Type-II city) have practically extinguished the 321 

pandemic. Therefore, the position and magnitude of the pandemic peak offers valuable 322 

information to estimate values of the magnitude of social distancing (σ) and diagnostic 323 

effort (α). In contrast, Mexico City has not reached the pandemic peak yet, and struggles to 324 

contain COVID-19 in a challenging demographic situation. We found sets of parameters 325 

that properly describe the evolution of COVID-19 in each of these cities, despite the 326 

obvious differences in the behavior of each progression curve (Figure 4). For Madrid, our 327 

simulations suggest that social distancing measures have achieved a degree of 58% of 328 

reduction in population density (α=0.58). However, even considering these relatively 329 

higher values of social distancing, an aggressive testing program (α=0.50) was needed to 330 

bend the curve at a cumulative number of ~70,000 cases and reduce the emergence of new 331 

cases to the current levels (less than 10 per day). This implies that overall approximately 332 

50% of the active infected subjects were found and quarantined through testing.  333 

We also fitted the model to the pandemic progression observed in NYC. NYC is a densely 334 

populated area with a population mark of 8,400,000 inhabitants (i.e., nearly a Type-II city). 335 

Therefore, only a combination of social distancing and intensified testing can stop 336 

progression effectively (Table 1). Our results suggest that NYC has applied a strategy 337 

mostly based on aggressive testing. 338 
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 339 

Figure 4. Progression of the COVID-19 Pandemic in (a) Madrid, (b) New York City (NYC), 340 

and (c) Mexico City. Actual data points, as officially reported, are shown using circles. Model 341 

predictions of new COVID-19 cases (yellow line) and simulation predictions of the cumulative 342 

number of symptomatic patients (blue line). The values of α and σ used in the simulations for each 343 

city are indicated within the corresponding pannels.  344 
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Indeed, a scenario based on a sustained level of social distancing of 27% efficacy (σ=0.27; 345 

effective reduction of 30% in demographic density) and a massive testing effort (α=0.98) is 346 

the combination that better recapitulates the actual pandemic evolution in NYC. NYC is, 347 

therefore, a remarkable example of the efficacy of massive diagnosis and quarantine, as a 348 

city that was able to stop COVID-19 progression at a cumulative count of ~250,000 349 

symptomatic subjects, which is about 25% of the maximum expected. In perspective, with 350 

an effective distancing of 27% and no aggressive testing (i.e., α=0.50 instead of α=0.98), 351 

the peak of bed occupancy in the city would have been three-fold higher, causing a total 352 

collapse of the hospital system. Our results also show that demographic density is a key 353 

factor in COVID-19 progression. Note that the testing effort in NYC was more intense than 354 

in Madrid. However, NYC has double the demographic density of Madrid, resulting in a 355 

higher number of those infected than in Madrid (250,000 versus 70,000).  356 

While Madrid and NYC have transitioned through the pandemic peak and successfully 357 

extinguished the pandemic, Mexico City is still in the middle of it. Several mathematical 358 

models have been used to forecast pandemic scenarios for Mexico City (33, 34). However, 359 

the predictions of the progression of COVID-19 and the occurrence of the pandemic peak 360 

in the capital of Mexico have not been accurate. Mexico City has a demographic density of 361 

1.69 times that of Madrid and a population of more than 15,000 within the city limits.  362 

In terms of demographic density, Mexico City lies between a Type-I and Type-II city, 363 

possessing a demographic density 1.69 times greater than Madrid. However, in terms of 364 

population, Mexico City is double that of NYC. The Mexico City Metropolitan Area, 365 

which comprehends the city and its surrounding municipalities in Estado de México, 366 

houses 25,000,000 inhabitants. From the scenarios simulated before (Figure 3), we may 367 

readily infer that only a combination of aggressive social distancing and massive testing 368 
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effort can stop pandemic progression in Mexico City. However, Mexican public health 369 

officials have publicly stated their decision to deemphasize diagnostics, instead privileging 370 

social distancing in the entire Mexican territory. Figure 4c compares the actual evolution of 371 

the number of cases in Mexico City versus the prediction of our model for a scenario where 372 

social distancing is set at σ=0.75 (75% effective reduction on demographic density) and the 373 

testing effort at α=0.10% (only 10% of infected individuals are effectively quarantined after 374 

being diagnosed). The Mexican strategy has been successful in delaying the pandemic’s 375 

progression, but not in bending the slope of the epidemic curve. As a result, Mexico City is 376 

steadily positioned in a pandemic plateau, with a nearly constant number of cases per day 377 

(600 cases), which is consistent with journalistic information and official data 378 

(https://coronavirus.gob.mx/datos/)(35).  379 

 380 

Concluding remaks 381 

Here we introduce a mathematical model, based on demographic and clinical data that 382 

enables evaluating the relative benefit of social distancing and massive testing. Using this 383 

simple model, we investigate scenarios of COVID-19 evolution in two types of 384 

representative cities (i.e., 3,500,000 inhabitants and 5,000 hab km2, and 5.0 X 106 
385 

inhabitants and 10,000 hab km2). 386 

Our modeling simulations show that for Type-I cities, extreme and sustained social 387 

distancing (i.e., effectively decreasing the demographic density by 60% or more) may 388 

extinguish the pandemic progression. However, in Type-II cities (or larger), only 389 

combinations of social distancing and aggressive testing can effectively control the 390 

pandemic evolution. This finding has relevant implications for the planning of 391 

countermeasures for the effective containment of pandemic progression and for the 392 
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design/redesign of urban areas. The concept of sustainability and cost-effectiveness of 393 

densely populated urban areas has to be revisited. Our results make explicit that large cities 394 

are highly vulnerable to epidemic crisis.  395 

In principle, this model can be adapted to any urban area by setting the population and the 396 

demographic density. The predictions on the evolution of COVID-19 based on this 397 

mathematical model could represent important tools for designing and/or evaluating 398 

countermeasures.  399 
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