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Abstract

Gambiense human African trypanosomiasis (gHAT) is a virulent disease declining in
burden but still endemic in West and Central Africa. Although it is targeted for
elimination of transmission by 2030, there remain numerous questions about the drivers
of infection and how these vary geographically.

In this study we focus on the Democratic Republic of Congo (DRC), which
accounted for 84% of the global case burden in 2016, to explore changes in transmission
across the country and elucidate factors which may have contributed to the persistence
of disease or success of interventions in different regions. We present a Bayesian fitting
methodology, applied to 168 endemic health zones (∼100,000 population size), which
allows for calibration of a mechanistic gHAT model to case data (from the World Health
Organization HAT Atlas) in an adaptive and automated framework.

It was found that the model needed to capture improvements in passive detection to
match observed trends in the data within former Bandundu and Bas Congo provinces
indicating these regions have substantially reduced time to detection. Health zones in
these provinces generally had longer burn-in periods during fitting due to additional
model parameters.

Posterior probability distributions were found for a range of fitted parameters in each
health zone; these included the basic reproduction number estimates for pre-1998 (R0)
which was inferred to be between 1 and 1.14, in line with previous gHAT estimates, with
higher median values typically in health zones with more case reporting in the 2000s.

Previously, it was not clear whether a fall in active case finding in the period
contributed to the declining case numbers. The modelling here accounts for variable
screening and suggests that underlying transmission has also reduced greatly – on
average 96% in former Equateur, 93% in former Bas Congo and 89% in former
Bandundu – Equateur and Bandundu having had the highest case burdens in 2000.
This analysis also sets out a framework to enable future predictions for the country.
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Author summary

Gambiense human African trypanosomiasis (gHAT; sleeping sickness) is a deadly disease
targeted for elimination of transmission by 2030, however there are still several
unknowns about what factors influence continued transmission and how this changes
with geographic location.

In this study we focus on the Democratic Republic of Congo (DRC), which reported
84% of the global cases in 2016 to try and explain why some regions of the country have
had more success than others in bringing down case burden. To achieve this we used a
state-of-the-art statistical framework to match a mathematical gHAT model to reported
case data for 168 regions with some case reporting during 2000–2016.

The analysis indicates that two former provinces, Bandundu and Bas Congo had
substantial improvements to case detection in fixed health facilities in the time period.
Overall, all provinces were estimated to have reductions in (unobservable) transmission
including ∼96% in former Equateur. This is reassuring as case finding effort has
decreased in that region.

The model fitting presented here will allow predictions of gHAT under alternative
intervention strategies to be performed in future studies.

Introduction 1

Gambiense human African trypanosomiasis (gHAT) is a disease caused by the protozoan 2

parasite Trypanosoma brucei gambiense which is transmitted by tsetse. The disease has 3

two distinct stages during which the disease progresses from mild to severe, and can 4

lead to death without treatment. 5

gHAT occurs throughout Western and Central Africa, with 15 countries reporting 6

new cases in the period 2000–2016 [1]. The majority of the detected gHAT cases are in 7

the Democratic Republic of Congo (DRC) where 84% of the new cases in 2016 were 8

reported [2]. While these cases are predominantly in the former province of Bandundu, 9

they are widespread across this large country (230 of 516 health zones had reported 10

cases between 2012 and 2016). 11

It has long been understood that treatment of gHAT patients not only prevents 12

excess mortality but it can also reduce the time spent infectious, and thereby reduce 13

onward transmission in the population. A combination of active screening and passive 14

surveillance followed by treatment of cases has resulted in a decline in the number of 15

new cases from 25,841 (16,951 in DRC) in 2000 to 2,110 (1,768 in DRC) in 2016 [1]. 16

During this time period both diagnostics and drugs for gHAT have evolved with vast 17

improvements for patients. 18

Traditional active screening of at-risk populations is done by mobile teams visiting 19

villages and performing an initial mass screen using serological tools (usually the card 20

agglutination test for trypanosomes - CATT), followed by microscopy for serologically 21

positive suspects to confirm presence of the parasite. This microscopic parasitological 22

confirmation of a case was required before drug administration. For the treatments 23

available in the previous two decades, a final “staging” test – a lumbar puncture to 24

establish whether a patient has trypanosomes or elevated white blood cell count in 25

cerebrospinal fluid – was required to select appropriate treatment. This necessary, 26

multi-step diagnostic pathway currently precludes the possibility of mass drug 27

administration as used in control programmes for other neglected tropical diseases 28

(NTDs). 29

For infected people who evade detection by active screening due to imperfect 30

diagnostics, non-attendance in active screening, or whose village is not screened, it is 31

possible for them to self-present at fixed health facilities and be diagnosed through 32
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passive surveillance. Not all fixed health facilities have gHAT diagnostics but this has 33

been improved over the last 20 years. Globally, WHO estimate that in 2012, 41%, 71%, 34

and 83% of at-risk population lived within 1, 3 and 5 hours of health facilities with 35

these diagnostics respectively [3], and by 2017 this increased to 58%, 79%, 89% [1]. It is 36

not clear what quantitative impact this improvement has had on time to detection. 37

Along with many other NTDs, gHAT is the subject of two World Health 38

Organisation goals; for gHAT these are (1) elimination as a public health problem by 39

2020 and (2) elimination of transmission (EOT) by 2030. If we are to truly strive to 40

reach this second elimination of transmission goal, then it is of utmost importance to 41

understand and quantify the reasons for success to date (indeed, it is expected that we 42

are on track for the first goal [1] with some countries identified as eligible for validation 43

of gHAT elimination as a public health problem in the latest WHO report [4]), and 44

identify what factors may have hindered progress. 45

gHAT transmission is known to be highly focal - now burden of disease is decreasing 46

globally, there remain pockets of infection in geographically disconnected areas [1]. 47

Previous mathematical modelling work has shown that, whilst persistence of infection at 48

very low prevalences is generally surprising for infectious diseases, the slow progression 49

of gHAT in individuals enables this infection to remain extant for long periods of time 50

in small settlements [5]. Other transmission modelling has examined drivers of gHAT in 51

specific foci and concluded that, by fitting to longitudinal human case data, there must 52

exist heterogeneity in risk of humans populations both in terms of exposure to tsetse 53

and also in participation in active screening [6, 7]. Other factors which are likely to vary 54

geographically include access to fixed health facilities with gHAT diagnostics - this can 55

impact the time individuals spend infected and the risk that they die without diagnosis - 56

and the regional density of tsetse. At present it is, however, unknown which drivers are 57

influencing transmission in different regions. 58

In the present study we consider what epidemiological variables are driving 59

transmission across the health zones (∼ 100,000 population size) of DRC using a 60

dynamic transmission model, and examine how control interventions from 2000 to 2016 61

have impacted infection and modified some of these variables over time. To achieve 62

parameter estimation across the country we utilise an automated Bayesian fitting 63

procedure with an adaptive Metropolis-Hastings random walk and in-built convergence 64

diagnostics. The samples from the posterior probability distributions of fitted 65

parameters from this method can be used to examine within health zone parameter 66

averages and uncertainty as well as comparing estimates across health zones. The 67

mechanistic model can be used to infer the level of transmission to humans over time 68

even though it is not directly observable in data; the posterior parameters are used to 69

do this. 70

There are three major outputs from this study. Firstly, the parameterisation of our 71

gHAT transmission model which allows future predictions to be made considering 72

different gHAT intervention strategies [8]. With future predictions based on realistic, 73

localised epidemiological parameters; economic evaluations of the cost-effectiveness of 74

different approaches to the control of gHAT are possible [9]. Secondly, the evaluation of 75

the effectiveness of interventions against gHAT in DRC across the period 2000 to 2016. 76

Lastly, but potentially of most value to our research going forwards, the provision of a 77

rapid, repeatable model fitting framework to facilitate future research around the model 78

presented here and other variants of it. 79
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Materials and methods 80

Data 81

Data on gHAT cases in DRC were obtained from the WHO who curate the global HAT 82

Atlas database [1, 10,11]. The data in the HAT Atlas are case data aggregated by 83

location, year and surveillance type. Location was defined by the available geolocation 84

and geographical identifier information, while surveillance type was either active or 85

passive screening. There were 117,573 records in the HAT Atlas data file covering the 86

period 2000–2016. Although many data entries for 2015 and 2016 have information of 87

the stage (1 or 2) of disease, very little staging information was available prior to 2015. 88

Because administrative areas may be redefined or renamed over time, the HAT Atlas 89

records were matched to a single, recent map obtained as a shapefile (UCLA, personal 90

communication). Matching to the shapefile was performed by geolocation, where 91

available, plus an identifier matching both to geolocated locations and directly to the 92

administrative areas stored in the shapefile. Other geographical data were sourced from 93

the Humanitarian Data Exchange – an older United Nations Office for the Coordination 94

of Humanitarian Affairs (OCHA) health zone shapefile, and geolocations of localities 95

(OCHA) and health facilities (Global Healthsite Mapping Project) within DRC. The 96

additional geographical data provided alternative names for administrative/health areas 97

as well as names and geolocations of locations and hence facilitate the data cleaning and 98

matching process. While geolocations (longitude and latitude) were available for most 99

records they may not be reliable indicators of position as they may have been assigned 100

as the centroid of the lowest available level administrative/health area if not recorded 101

directly. A standardisation procedure was performed on area and location names from 102

all sources. Sequential matching was then carried out, with unmatched records being 103

carried forward to the next step. The location and health site lists were combined and 104

located on the UCLA shapefile to obtain administrative area names consistent with this 105

map. Detail on this process is available in the Supplementary Information (S1 Materials 106

and Methods). 107

Following data matching, the data were aggregated within health zone, year and 108

surveillance type to produce health zone level data sets for all health zones in which 109

cases were reported. It is noted that for a small number of health zone–year 110

combinations the reported number of cases detected by active screening was more than 111

the declared number of people screened, which was zero in some instances. 112

Cases of gHAT are not recorded across all of the DRC; for many regions this is 113

because they have not historically observed gHAT cases and are not believed to be 114

endemic for gHAT, but for others it is due to challenging accessibility. Fig 1 shows the 115

regions where there were no data as well as the status of the analysis performed in the 116

present study. Inference was not performed for all health zones where there were data 117

available; either because there were too few observations (Data < 10), no cases were 118

detected (No Detections) or because transmission is believed not to be taking place, 119

since there is an absence of tsetse habitat (No Transmission). Inference was deemed to 120

be possible where there were 10 or more observations, where an observation was an 121

aggregate record for a single year relating to either more than 20 people being actively 122

screened or cases detected passively. 123

Fig 2 contains three maps of aggregated numbers of new cases by health zone for 124

three non-consecutive five-year periods spanning the period 2000–2016 for which data 125

were available. These maps illustrate the decrease in cases reported over time, in 126

particular in the former provinces of Equateur (in the North-West of DRC), which had 127

the highest burden in 2000, and Bandundu (situated to the east of Kinshasa), which 128

despite its decrease is now the most highly-endemic region globally. In the North there 129

was an increase in reported cases due to the presence of Médecins Sans Frontières (MSF) 130
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Urban Kinshasa

Analysis status

Data < 10

No Data

No Detections

No Transmission

Inference performed

Fig 1. Status of the individual health zone-level analyses, if the analysis was not run
the reason is indicated.

who use an alternative diagnostic algorithm to that used by the national programme. 131

The MSF algorithm did not feature parasitological confirmation after serological testing, 132

and hence had a higher sensitivity but lower specificity (similar to those described 133

in [12]). Some cases were reported in urban Kinshasa (Fig 2), however these are 134

believed to be the result of infections that occurred elsewhere and there is assumed to 135

be no transmission within urban Kinshasa (Fig 1) and hence no model fitting was 136

performed for those health zones. 137

Model 138

gHAT infection model 139

The deterministic gHAT model equations are ordinary different equations given in Eq 140

(1) and correspond to the model schematic presented in Fig 3. The model is the variant 141

“Model 4” of that presented elsewhere [6, 7, 13–16]: in this model variant human hosts 142

are assumed to be either at low-risk and randomly participate in screening (subscript 143

H1), or high-risk and never participate in screening (subscript H4). Equation (1) 144

therefore uses indices to denote the risk classes, using only i ∈ {1, 4}, with other 145

subscripts being reserved for model variants with high-/low-risk structures as presented 146

in other publications [6,7] but not considered here. In Model 4, tsetse bites are assumed 147

October 26, 2020 5/25

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 27, 2020. ; https://doi.org/10.1101/2020.06.23.20138065doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.23.20138065
http://creativecommons.org/licenses/by/4.0/


Urban
Kinshasa

Urban
Kinshasa

Urban
Kinshasa

2000−2004: 68,478 cases 2006−2010: 35,210 cases 2012−2016: 17,868 cases

0 50 800 4000

Fig 2. Total number of new cases recorded within health zone and five-year period.

to be taken on humans or non-reservoir animals, however, the non-reservoir animal 148

species do not need to be explicitly modelled. Infection occurring in animals is not 149

modelled in the present study. 150

For simplicity we consider a closed population of size NH individuals, with natural 151

mortality and births. Furthermore, we assume that any deaths related to gHAT will be 152

replaced by new susceptibles entering the population, therefore the parameter γH 153

represents a mix of disease-induced deaths and detection in stage 2. To compute the 154

cases found in stage 2 passive detection we multiple the reporting rate u by the stage 2 155

exit rate γH . As we only expect disease-induced deaths from stage 2 infection, the same 156

does not apply to the stage 1 detection rate. 157

The model is parameterised with a combination of fixed and fitted parameters. 158

Fixed parameters (see Table 1) generally correspond to assumed biological values that 159

are unlikely to vary across the DRC, such as the human mortality rate (µH), tsetse bite 160

rate (α) and stage 1 to stage 2 disease progression in humans (ϕH). Fitted parameters 161

(see Table 2) are those which are likely to be correlated with region including the 162

proportion of the population at low-risk of infection (k1), the relative rate at which 163

high-risk humans are bitten by tsetse (r), the reporting rate (u) (corresponding to 164

access to health facilities with gHAT testing capacity), and parameters linked to the 165

time to passive detection or disease-induced mortality (ηH for stage 1 and γH for stage 166

2). Some parameters of the model are not fitted themselves but are functions of other 167

parameters. The proportion of high-risk people in the population was calculated as 168

k4 = 1− k1. The exit rate from stage 2 pre-1998 was assumed to be less than that 169

achieved post-1998, and was therefore calculated as γpreH = bγpre
H
γpostH , where γpostH was 170

the treatment rate from stage 2 post-1998 and bγpre
H

is a fitted value in the range zero to 171

one. The tsetse-to-human relative density, meff, is calculated from R0 using the next 172

generation matrix approach. 173
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Table 1. Model parameterisation (fixed parameters). Notation, a brief
description, and the values used for fixed parameters.

Notation Description Value

NH Total human population size
in 2015

Fixed for each health zone [17]

µH Natural human mortality rate 5.4795×10−5 days−1 [18]
BH Total human birth rate = µHNH
σH Human incubation rate 0.0833 days−1 [19]
ϕH Stage 1 to 2 progression rate 0.0019 days−1 [20, 21]
ωH Recovery rate or waning-

immunity rate
0.006 days−1 [22]

Sens Active screening diagnostic
sensitivity

0.91 [12]

BV Tsetse birth rate (per capita
rate of depositing new pupae)

0.0505 days−1 [13]

ξV Rate of pupal development to
adult flies

0.037 days −1

K Pupal carrying capacity = 111.09NH [13]
P(pupating) Probability of a pupa surviv-

ing to emerge as an adult fly
0.75

µV Tsetse mortality rate 0.03 days−1 [19]
σV Tsetse incubation rate 0.034 days−1 [23, 24]
α Tsetse bite rate 0.333 days−1 [25]
pV Probability of tsetse infection

per single infective bite
0.065 [19]

ε Reduced susceptibility factor
for non-teneral (previously
fed) flies

0.05 [6]

fH Proportion of blood-meals on
humans

0.09 [26]

dispact Overdispersion parameter for
active detection

4× 10−4 –

disppass Overdispersion parameter for
passive detection

2.8× 10−5 –

The value of BV was chosen to maintain constant population size in the absence of vector control
interventions. The value of K was chosen to reflect the observed bounce back rate.
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Table 2. Model parameterisation (fitted parameters). Notation, brief
description, and information on the prior distributions for fitted parameters.

Notation Description Prior distribution1 Percentiles of
prior distribution
[2.5, 50 & 97.5%]

Unit

R0 Basic reproduction
number
(NGM approach)

1 + Exp(10) [1.003, 1.069, 1.369] -

r Relative bites taken on
high-risk humans

1 + Γ(3.68, 1.09) [2.015, 4.654, 10.028] -

k1 Proportion of low-risk
people

B(16.97, 3.23) [0.6564, 0.8514, 0.9609] -

ηpostH
2 Treatment rate from

stage 1, 1998 onwards
Γ
(
3.54, 5.32× 10−5

)
[4.59, 17.1, 42.9]×10−5 days−1

γpostH
2 Combined treatment

and disease-induced
death rate from stage
2, 1998 onwards

Γ(2.45, 0.00192) [7.59, 40.7, 121]×10−4 days−1

bγpre
H

Relative treat-
ment/death rate
from stage 2 factor,
pre-1998

B(1, 1) [0.025, 0.500, 0.975] -

Spec Active screening diag-
nostic specificity

0.998 + (1− 0.998) B(7.23, 2.41) [0.9989, 0.9995, 0.9999] -

u Proportion of stage 2
passive cases reported

B(20, 40) [0.2208, 0.3315, 0.4564] -

dchange
3 Midpoint year for pas-

sive improvement
2000 + (2017− 2000) B(5, 6) [2003.2, 2007.7, 2012.5] Year

ηHamp
4 Relative improvement

in passive stage 1 detec-
tion rate

Γ(2.013, 1.049) [0.258, 1.775, 5.870] -

γHamp
4 Relative improvement

in passive stage 2 detec-
tion rate

Γ(1.001, 5) [0.127, 3.471, 18.455] -

dsteep
4 Speed of improvement

in passive detection
rate

Γ(39.57, 0.0270) [0.761, 1.058, 1.424] years−1

1Where Exp(.), Γ(.) and B(.) are the exponential, gamma (parameterised with shape and scale) and beta distributions, respectively.
2Former province-specific priors used for ηpostH and γpostH ; prior distributions and percentiles for Bandundu presented, see SI “S1 Materials
and Methods” for other former provinces. 3dchange is only fitted in the former province of Bandundu. 4ηHamp , γHamp and dsteep are only
fitted in the former provinces of Bandundu and Bas Congo; the prior distributions and percentiles presented relate to Bandundu, see SI
“S1 Materials and Methods” for Bas Congo.
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SH1 EH1 I1H1 I2H1 RH1

SH4 EH4 I1H4 I2H4 RH4

PV

SV

EV

GV

IV

Non-
reservoir
animals

λH1

ξV

σH ϕH γH(Y )

ηH(Y )

λH4 σH ϕH γH(Y )

ηH(Y )

λV

α− λV

ελV

σV

ωH

ωH

BH1

BH4

BV

low-risk
humans

high-risk
humans

tsetse

Fig 3. Illustration of compartmental gHAT model. Multi-host model of gHAT
with one host species able to confer T. b. gambiense (humans), a further non-reservoir
species and tsetse. After a short incubation period, infected human hosts follow the
progression which includes an infectious stage 1 disease, I1H , infectious stage 2 disease,
I2H , and a hospitalised/recovering class, R. Pupal stage tsetse, PV , emerge into unfed
adults. Unfed tsetse are susceptible, SV , and following a blood-meal become either
exposed, EV , or have reduced susceptibility to the trypanosomes with subsequent
bloodmeals, GV . Tsetse select their blood-meal from one of the host types dependant
upon innate feeding preference and relative host abundance. High-risk humans are
r-fold more likely to receive bites than low-risk humans. Any blood-meals taken upon
non-reservoir animals do not result in infection. The transmission of infection between
humans and tsetse is shown by grey paths. This figure is adapted from the original
model schematic [6].
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Humans



dSHi
dt

= µHNHi + ωHRHi − αmefffi
SHi
NHi

IV − µHSHi
dEHi

dt
= αmefffi

SHi
NHi

IV − (σH + µH)EHi

dI1Hi
dt

= σHEHi − (ϕH + ηH(Y ) + µH)I1Hi

dI2Hi
dt

= ϕHI1Hi − (γH(Y ) + µH)I2Hi

dRHi
dt

= ηH(Y )I1Hi + γH(Y )I2Hi − (ωH + µH)RHi

Tsetse



dPV
dt

= BVNH − (ξV + PV

K )PV

dSV
dt

= ξV P(pupating)PV − αSV − µV SV
dE1V

dt
= α

(
1− fT (t)

)
pV
(∑

i fi
(I1Hi + I2Hi)

NHi
+ fA

IA
NA

)
(SV + εGV )

−(3σV + µV + αfT (t))E1V

dE2V

dt
= 3σV E1V − (3σV + µV + αfT (t))E2V

dE3V

dt
= 3σV E2V − (3σV + µV + αfT (t))E3V

dIV
dt

= 3σV E3V − (µV + αfT (t))IV

dGV
dt

= α(1− fT (t))SV

−α
(
fT (t) + (1− fT (t))pV ε

(∑
i fi

(I1Hi + I2Hi)

NHi
+ fA

IA
NA

)
GV

)
−µVGV

(1)
The actual number of vectors is SV , E1V , E2V , E3V , IV and GV multiplied by 174

NV /NH , where NV is the total population of adult tsetse and NH = NH1 +NH4 175

denotes the total human population. Then, the effective probability of human infection 176

per single infective tsetse bite meff is defined as NV pH/NH with the original 177

vector-to-human transmission probability pH . 178

Whilst the tsetse population size is assumed constant in almost all simulations 179

presented, we use an explicitly host-vector model to enable us to simulate the impact of 180

tsetse interventions. Vector control is included in Eq (1) as fT (t), the probability of a 181

fly both hitting a tiny target and subsequently dying at time t. The value of fT (t) is 182

dependent on the population reduction achieved by any vector control performed. For 183

Yasa Bonga health zone, the only health zone in which vector control took place prior to 184

the end of the data collection period, a 90% reduction in tsetse population in the first 185

year after biannual deployment of tiny targets was introduced [27]; more details are 186

given in the SI (S1 Materials and Methods) about the functional form of fT (t), which 187

was originally presented elsewhere [13]. Other tsetse parameters include the pupal stage 188

PV from which new, unfed (teneral) adult flies emerge and it is on this pupal class 189

where we place our density-dependent carrying capacity K, which governs the 190

bounceback speed of the population in the case where fT (t) 6= 0. Teneral flies, SV , are 191

considered susceptible to T. b. gambiense infection with probability pV on their first 192

blood meal, after this time the “teneral phenonmenon” results in previously fed flies, 193
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GV , having reduced susceptibility to infection by a factor ε compared to unfed flies. 194

The proportion of tsetse bites taken on low-risk and high-risk humans are f1 and f4, 195

depending on the relative abundance and proximity of the two risk groups. If si is the 196

relative availability of host type i and high-risk humans are assumed to be r-fold more 197

likely to receive bites, then s1 = 1 and s4 = r. Therefore, fi’s can be calculated using 198

fi =
siNHi∑
j sjNHj

. 199

Improvements to passive case detection 200

For simulations in this study, we assumed that prior to 1998 there was limited passive 201

case detection, which would not detect stage 1 cases (ηpreH = 0) and have a slower time 202

to detection for stage 2 (γpreH = bγpre
H
× γpostH where bγpre

H
= [0, 1]). In 1998 we assume 203

that the introduction of the card agglutination test for trypanosomes (CATT) enabled 204

better diagnosis and stage 1 and 2 rates were increased to ηpostH and γpostH respectively. 205

As explored in a previous modelling study focusing on former Bandundu 206

province [16], there is strong evidence of improvements to the passive surveillance 207

system during 2000–2012 from examining the changes to the proportion of passive cases 208

identified in stage 1 compared to stage 2. The health-zone level data utilised here for 209

the main model fitting do not contain staging information before 2015 (and generally 210

there are relatively few cases in 2015 and 2016). The staged case information from 2015 211

and 2016 were aggregated to the former province level and used alongside the 212

provincial-level staged case data for 2000–2012 [28] to set prior distributions for logistic 213

functions which we use to describe improvements to both the passive stage 1 and stage 214

2 detection rates in each year: 215

ηH(Y ) = ηpostH

1 +
ηHamp

1 + exp
(
−dsteep(Y − dchange)

)
 (2)

γH(Y ) = γpostH

1 +
γHamp

1 + exp
(
−dsteep(Y − dchange)

)
 (3)

These functional forms were used in former Bandundu and Bas Congo provinces 216

where there was strong evidence of improvement in the data. In Bas Congo the “change 217

year”, dchange, was fixed to 2015.5 as this corresponds to the year in which there was a 218

substantial increase in the number of fixed health facilities with gHAT rapid diagnostic 219

tests (RDTs) [29]. 220

It is noted that only the stage 1 detection rate was changed in Model W in Castaño 221

et al. [16] as this provided a good fit to the data at the province level. Here we alter 222

both stage 1 and stage 2, firstly because it is logical that passive detection improvements 223

would lead to faster rates for both stages of disease, and secondly as this is better able 224

to capture passive detection patterns observed in health zone level data. In the present 225

study other provinces were assumed to have constant passive detection rates since 1998. 226

Active screening algorithms 227

Active screening since 2000 has generally comprised mobile teams screening as many 228

people as possible in villages using a multi-diagnostic algorithm. The first diagnostic 229

used is the CATT test on finger prick blood, and this may be followed by CATT 230

dilutions and finally microscopy to visually confirm presence of the parasite. After 231

parasite confirmation, the individual is a confirmed case and required further testing 232

using lumbar puncture to diagnose disease stage to be able to provide the correct 233
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stage-specific treatment. In the model we assume this algorithm has a sensitivity of 234

0.91, and very high but imperfect specificity with a prior around 0.9995 and fitted to 235

health zone level data. 236

Whilst the national programme, PNLTHA, have consistently used the algorithm 237

with parasitilogical confirmation, in former Oriental province in the North of the 238

country, some of the screening activities (pre-2013) were performed by MSF. The MSF 239

algorithm was more contracted and individuals who were found positive on a CATT 240

1:32 were reported as cases and given treatment. Therefore, a higher fixed sensitivity 241

(MSF sensitivity = 0.95 in contrast to PNLTHA sensitivity = 0.91) and a lower fitted 242

specificity (= bspecificity × specificity with targeted mean = 0.991, where 243

bspecificity = [0, 1]) are used for years up to 2012 in these regions. 244

Since 2015, video confirmation of parasitological diagnosis was introduced to 245

Mosango and Yasa Bonga health zones in former Bandundu province. This additional 246

validation diagnostic is designed to ensure quality control of case confirmation, which is 247

especially important as elimination is approached and very few cases remain. The 248

model uses the assumption that there have therefore been no false positives in active 249

screening since 2015 in Mosango and Yasa Bonga. 250

Vector control 251

Between 2000–2016 there were very limited vector control activities in DRC, with tsetse 252

control implemented in a single health zone, Yasa Bonga in former Bandundu province, 253

via the deployment of tiny targets since mid-2015. This method of control, using 254

insecticidal impregnanted blue targets, has successfully reduced fly populations in other 255

countries (90% in Uganda [30], 80% in Guinea, and 99% in Chad). In the present study 256

we incorporate vector control with a 90% reduction in tsetse for Yasa Bonga [27] (see SI 257

“S1 Materials and Methods” for further details). 258

Likelihood 259

Eight parameters; R0, r, η
post
H , γpostH , bγpre

H
, k1, u, and Spec were fitted in all health zones. 260

Additional parameters were included as required (combinations of dchange, ηHamp
, γHamp

, 261

dsteep and bspecificity as appropriate, see above). 262

The Metropolis-Hastings MCMC used a log-likelihood function:

LL(θ|x) = log(P (x|θ))

∝
2016∑
t=2000

(
log

[
BetaBin

(
AD1(t) +AD2(t); z(t),

AM1(t) +AM2(t)

z(t)
,dispact

)]
+ log

[
Bin

(
AD1(t);AD1(t) +AD2(t),

AM1(t)

AM1(t) +AM2(t)

)]
+ log

[
BetaBin

(
PD1(t) + PD2(t);NH ,

PM1(t) + PM2(t)

NH
,disppass

)]
+ log

[
Bin

(
PD1(t);PD1(t) + PD2(t),

PM1(t)

PM1(t) + PM2(t)

)])

The model takes parameterisation θ, x is the data, PDj(t) and ADj(t) are the 263

number of passive/active cases (of stage j) in year t of the data, PMj(t) and AMj(t) are 264

the number of passive/active cases (of stage j) in year t of the model, and z(t) is the 265

number of people screened in year t. BetaBin(m;n, p, ρ) gives the probability of 266

obtaining m successes out of n trials with probability p and overdispersion parameter ρ. 267
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The overdispersion accounts for larger variance than under the binomial. The pdf of 268

this distribution is given by: 269

BetaBin(m;n, p, ρ) =
Γ(n+ 1)Γ(m+ a)Γ(n−m+ b)Γ(a+ b)

Γ(n−m+ 1)Γ(n+ a+ b)Γ(a)Γ(b)

where a = p(1/ρ− 1) and b = a(1− p)/p. 270

Consequently larger ρ yield more overdispersion. To avoid overfitting, the 271

overdispersion parameters were left fixed at a value appropriate for a health zone level 272

fit across MCMC runs (Table 1). The value of ρ was chosen based on the median of the 273

log posterior probability distribution achieved from MCMC runs with ρ fixed at a range 274

of values for two example health zones. 275

For four health zones there was no screening reported in one or two years in which 276

there was more than 20 active cases recorded. In this scenario the number of negative 277

test results in year t, A−
D(t), was sampled from a negative binomial distribution and 278

ẑ(i) = AD1(t) +AD2(t) +A−
D(t) was used in the calculation of the log-likelihood in 279

place of zt. More detail is provided in the Supplementary Information (S1 Materials and 280

Methods). 281

Health zone results are aggregated by provinces and are compared to the province 282

level data as a check that the health zone fits make sense. 283

Priors 284

Prior distributions for the fitted parameters are given in Table 2 for the parameters 285

fitted in all health zones and those fitted in former Bandundu province. Information on 286

other former province–specific priors is given in the SI (S1 Materials and Methods). 287

Informative priors were used for most parameters. There was little information on 288

the stage of the disease in the data, essentially none before 2015. Former–province level 289

staged case numbers were available from 2000–2012 [28] and we augmented these with 290

our data aggregated to the former–province level for the years 2013 to 2016. The model 291

was fitted to these staged former–province level data and informative priors for the 292

parameters relating to treatment rates from stages 1 and 2 (ηpostH and γpostH ), and 293

improvement in passive detection (ηHamp
, γHamp

and dsteep) were based on the 294

respective posterior distributions from these analyses. 295

Markov chain Monte Carlo algorithm 296

For each health zone the model was fitted using the adaptive Metropolis-Hastings 297

random walk algorithm [31]. Two independent chains were run in parallel from different 298

starting values. The chains were run in 3 phases: a transient phase, an adaptive phase 299

and a sampling phase and only samples from the final phase were used in the analysis. 300

The aim of the transient phase was to move the chains towards the posterior mass. 301

In this phase, lasting B = 500 iterations, single site parameter updates were used with 302

proposal standard deviation σin for parameter i in proposal n. If proposal n was 303

accepted then σin+1 = 2σin and if it was rejected then σin+1 = 2a/(a−1)σin. Here, we 304

target an acceptance rate of a = 0.44, which was found to be optimal in [32]. 305

The aim of the adaptive phase was to begin learning the covariance matrix of the
posterior in order to find an efficient proposal. In this phase proposals were drawn from

Y n+1 ∼ Nd(Xn,
2.382λ2

n

d Σn), where Xn is the location of the chain after n iterations.
The covariance matrix was initially ΣB (the initial variances used can be found in the
parameter file which accompanies the code in the SI, “S6 Analysis Code”) and
subsequently

Σn+1 =
n−B

n−B + 10
Cov(XB+1, . . . ,Xn) +

10

n−B + 10
ΣB .
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The scaling factor was λn = 1 on even iterations and updated adaptively on odd 306

iterations, namely λn+2 = xnλn if iteration n was accepted and λn+2 = x
a/(a−1)
n λn if 307

rejected. We used xn = 1 + 50
50+n−B and targeted an acceptance rate of a = 23.4%, 308

which was found to be optimal in [32]. 309

The duration of the last two phases was determined adaptively, by examining the 310

Gelman-Rubin convergence diagnostic [33] and the Effective Sample Size (ESS) 311

diagnostic [34]. The adaptive phase was increased iteratively by 100 up to a maximum 312

of 105 iterations until the following convergence criteria were satisfied for the most 313

recent 2000 observations. First R
(i,j)
within < 1.1 for every parameter i and chain j; and 314

second R
(i)
between < 1.5 for all i. 315

Finally, in the sampling phase, proposals were drawn as for the adaptive phase. The 316

duration of this phase was determined based on ESS. To achieve a sample of 2,000 317

states with an ESS of at least 1,000, each chain was run for 1,000 iterations, thinned by 318

a factor κ = 1 and the ESS calculated to be twice the minimum ESS over the 319

parameters and the two chains. If the ESS criterion was not satisfied then a further 320

1,000 iterations were sampled from each chain and the thinning factor κ was increased 321

by 1, up to a maximum of 200. If the ESS criterion was still not satisfied then the 322

health zone was flagged for investigation. If an analysis finished with ESS ≤ 500 or 323

maxR
(i)
between ≥ 1.2 then that analysis was flagged for investigation, consisting of 324

manual appraisal of the joint posterior distributions and progress to convergence. None 325

of the analyses had maxR
(i)
between ≥ 1.2, and there was no evidence that those with 326

ESS ≤ 500 were not converging correctly. Additional sampling was carried out for all 327

analyses where ESS < 1, 000, allowing κ to exceed 200. 328

Results 329

Fig 4 shows the final maximum values of the Gelman-Rubin convergence diagnostic for 330

each health zone level analysis within former province. A good level of convergence was 331

achieved, with only 1 of 168 analyses having maxR
(i)
between > 1.02 while 149 of the 168 332

analyses had maxR
(i)
between ≤ 1.01. 333

The maximum number of iterations for the adaptive phase was required in 28 334

analyses. Of these, 18 were in the former province of Bandundu in which all health zone 335

analyses included fitting of additional parameters to account for changes in the 336

effectiveness of passive surveillance. It may be possible to improve the adaptive MCMC 337

to reduce the number of analyses carrying out the maximum adaptive phase length, 338

however the levels of convergence already achieved imply that the effort required may 339

not result in markedly improved analysis results. 340

The observed effective sample size (ESS) exceeded 1,000 in 140 of the individual 341

health zones analyses, and was less than 500 for 13 analyses. As with the adaptive 342

phase, 14 of 28 analyses with an ESS less than 1,000 were for health zones in Bandundu. 343

This again reflects the additional complexity of fitting the model in this former province. 344

The fitting process matches model outcomes to reported timeseries of actively- and 345

passively-detected cases. Fig 5 shows examples of these trends for two example health 346

zones; Kwamouth (in the former province of Bandundu) and Tandala (in the former 347

province of Equateur). Kwamouth has a much higher incidence of gHAT infection than 348

Tandala, and consequently has higher numbers of people being actively screened each 349

year – the average number of people actively screened annually in Kwamouth was 52% 350

of the estimated population in 2015 (127,205), while this was 6.8% for Tandala 351

(estimated 2015 population of 274,945). Fig 5 shows how well the model fits to the 352

timeseries of reported cases both actively and passively detected. In addition, Fig 5 also 353

shows the unobservable downward trend in new infections estimated by the model. The 354
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Fig 4. Maximum between-chain Gelman-Rubin convergence diagnostics for the final
posterior samples, grouped by former province and whether or not the maximum length
of adaptive phase (100,000 iterations) was reached.

results of all 168 health zone level fits including inferences about annual numbers of new 355

infections, are available online (S5 Online Results). 356

In Kwamouth health zone there is a noticeable “humped” trend in passive case 357

detection, with higher case reporting in 2005–2008. The model is able to replace this 358

trend by increasing the passive detection rates, ηH(Y ) and γH(Y ), and importantly we 359

infer that underlying transmission actually declines during this time period, despite 360

increased case reporting (see Fig 5 and S5 Online Results). This humped shape of 361

passive case reporting is observed in many health zones of former Bandundu province, 362

such as Bokoro, Bolobo, Ipamu, and Yasa Bonga. Much of former Equateur province 363

has a different typical pattern in its passive detection trend which looks similar to 364

exponential decay, especially in the north (e.g. Bominenge, Boto, Budjala, Gemena, 365

Karawa, Kungu, Libenge, Tandala) where there was very high case reporting in the 366

early 2000s. In these locations we reproduce the trend using fixed passive case detection 367

rates combined with successful active screening. 368

Table 3 contains former province-level estimates of the number of new infections in 369

2000, 2008 and 2016 and the percentage reduction in new infections between these years. 370
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The values from each of 1,000 posterior samples for each analysed health zone within a 371

former province were summed to give 1,000 former province–level values, each health 372

zone being independent in our analyses. Over this period, a 96% median reduction in 373

the number of new infections has been achieved in Equateur. The largest percentage 374

reductions in the number of new infections are seen in the former provinces with the 375

highest reported cases in 2000. Notably the province with the highest reporting in 2000 376

(Equateur), was not estimated to have the highest transmission (Bandundu was higher), 377

but does have a huge inferred reduction in transmission of 96%. Despite a calculated 378

89% transmission reduction, Bandundu province remained the province with most 379

ongoing transmission in 2016. 380

Table 3. Reduction in new gHAT infections by former province. Medians and 95%
credible intervals (CIs) of aggregated health zone-level outcomes.

Former province New infections (median [95% CI]) Percentage reduction
2000 2008 2016 2000–2008 2000–2016

Bandundu 7336 [6758,7929] 3186 [2917,3433] 801 [682,954] 57 [54,59] 89 [87,91]
Bas Congo 804 [721,891] 204 [181,231] 58 [45,76] 75 [72,77] 93 [90,94]
Equateur 4564 [4149,4978] 446 [405,490] 160 [136,190] 90 [89,91] 96 [96,97]
Kasai Occidental 700 [597,835] 313 [268,364] 163 [133,198] 55 [51,59] 77 [72,81]
Kasai Oriental 3534 [3232,3880] 1461 [1330,1623] 857 [746,1021] 59 [55,61] 76 [72,79]
Katanga 145 [109,193] 135 [102,178] 117 [85,161] 7 [-3,17] 20 [-1,37]
Kinshasa 238 [173,322] 135 [102,184] 85 [57,125] 43 [32,53] 64 [50,75]
Maniema 233 [191,285] 174 [147,209] 150 [121,186] 25 [17,34] 36 [22,49]
Orientale 2301 [2054,2550] 1528 [1324,1742] 739 [596,897] 33 [26,41] 68 [61,74]

The fits of the model to the reported case timeseries as exemplified in Fig 5 reflect 381

the parameters of the model, many of which are estimated within the fitting process. 382

Fig 6 illustrates the posterior distribution of R0 within each health zone for which 383

inference was performed. The map of DRC was partitioned into hexagons and partial 384

hexagons, based on health zone boundaries, which were then filled with a colour based 385

on a random value from the posterior distribution of R0 for that health zone. By 386

representing the posterior distributions in this way the aim is to illustrate how both the 387

level and variability of the parameter differs between health zones. The geographical 388

unit of interest here is the health zone and the locations of the hexagons within the 389

healthzone are meaningless. Further examples of this representation of posterior 390

distributions are available for the parameters fitted across all health zone analyses in 391

the supplementary information (S2 Posteriors of fitted parameters) and online (S5 392

Online Results). 393

The R0 posterior maps shows that some of the highest R0 estimates are in 394

Kwamouth health zone, former Bandundu province, although more generally R0 395

estimates remain very low - typically only slightly above one - for the whole country. R0 396

is a bundled parameter, linked to the ability of an infection to persist for a particular 397

geographic setting. Higher R0 values on the map roughly correspond to health zones 398

which have reported high number of cases historically. 399

Maps showing posterior passive detection rates (see ηpostH in SI; file S2, Fig S2.3) 400

show that there is geographic variability in time to detection, with typically quicker 401

diagnosis in 2000 in former Equateur province and slower times in former Orientale, 402

Maniema and Katanga. The average time that a person spent infectious, if not 403

identified by active screening, can be estimated in each health zone using the posterior 404

parameters (see S3 Using posteriors to infer time infected and reporting, section S3.1); 405

in Kwamouth health zone this duration changes from a median of 1224 days in 2000 to 406

813 days in 2016 and in Tandala this is fixed at 716 days between 2000 and 2016. 407
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Fig 5. Demonstration of fit to the observed trends in new case detection over time and
predicted numbers of new infections for two example health zones; Kwamouth in former
Bandundu province and Tandala in former Equateur province.

The specificity of the active screening diagnostic algorithm is computed to be very 408

high, with former Equateur province having near perfect specificity. The parameter u 409

corresponds to the proportion of cases that are reported if not picked up in active 410

screening. High u is interpreted as high reporting and fewer deaths outside the health 411

care system. Average reporting generally follows the prior of u although it appears that 412

former Equateur has better reporting (lower under-reporting/fewer deaths). The 413

estimated proportion of reporting including active screening can be computed using 414

model outputs for cases and deaths (see S3 Using posteriors to infer time infected and 415

reporting, section S3.2). In Kwamouth this is estimated to have changed from 0.67 416

(95%: 0.54–0.84) in 2000 to 0.82 (95%: 0.62–0.93) in 2016, while in Tandala it 417

fluctuated over time from 0.65 (95%: 0.53–0.75) in 2000 and finishing back at 0.65 (95%: 418
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0.0–1.0) in 2016, with the median varying between 0.40 (in 2010) and 0.76 (in 2003). 419

The low case numbers in later years are the cause of the higher uncertainty in the 420

percentage reporting in 2016. 421

Fig 6. Within health zone posterior distribution of R0. Fill colours for hexagons within
a health zone are determined by randomly sampled values from the posterior
distribution of R0 from the analysis of that health zone.

Discussion 422

The fitting process presented in this study enabled exploration of the underlying 423

epidemiology of gHAT at the health zone level, estimating parameters of the 424

transmission model based on historical data. The fits highlight the success of past 425

interventions, both in the obvious decline in the number of reported cases but also 426

through quantification of improvements in surveillance, such as in the case of changes in 427

passive surveillance over time in Bandundu and Bas Congo. 428

Even in areas where there has been a decline in active screening activity over time 429

(especially in former Equateur province where the mean annual screening from 430

2012–2016 was ∼150,000 compared to a maximum in 2003 of around 900,000), the 431

modelling indicates that there has been a real reduction in transmission (∼96% in 432

Equateur), rather than simply a decline in reported cases due to scaling back the 433
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detection effort. 434

We note that the health zone-level longitudinal case data typically did not have 435

staging information associated with them prior to 2015. The staging information for 436

2015 and 2016 were highly informative in quantifying passive detection improvements 437

when combined with provincial-level staged data published separately [28]. We reiterate 438

the recommendation of Castaño et al. [16], in collecting and digitising staged case data 439

whenever possible to enable continued assessment of the passive surveillance system. 440

The number and type of diagnostic tests used in passive surveillance would also be 441

valuable in assessing the effectiveness and activity levels of the passive surveillance 442

system. 443

There are other areas where additional data recording, either routine or as part of 444

systematic surveys could be beneficial. For example, the age and gender profile of gHAT 445

cases and populations screened would provide valuable information regarding high- and 446

low-risk groups of individuals, and potentially also their participation in screening. 447

Vector control activities are expanding in DRC. In the data used here, vector control 448

had only begun in 2015 in Yasa Bonga health zone and the model with respect to vector 449

control was parameterised using a fixed value for the reduction in tsetse population 450

taken from the entomological follow-up studies in this area. Incorporation of repeated 451

entomological survey data and human tsetse exposure data as in, for example, Courtin 452

et al. (2015) [35] may help the model be parameterised appropriately for each vector 453

control region, incorporating uncertainty about the vector control-related parameters. 454

In this study we have been able to estimate the relative vector-to-host ratio for 455

different regions through our adaptive MCMC. Maps of meff are shown in SI “S2 456

Posteriors of fitted parameters”, Fig S2.8, however these alone do not tell the whole 457

story and are not necessarily reflective of where one might find the highest density of 458

flies in DRC. In particular the high-/low-risk structure of the model (associated with 459

parameters k1, the proportion of the population who are low risk, and r the relative 460

exposure of high-risk individuals) is intimately entwined with the relative vector-to-host 461

ratio. It would, therefore, be possible in this framework to have a comparatively low 462

meff in a health zone, but high r due to dense pockets of tsetse habitat which only 463

high-risk people are exposed to; overall this could lead to a high burden health zone due 464

to population-level heterogeneity in risk. 465

Despite the complex nature of inferring the role of tsetse, we do examine a single 466

case where deliberate vector control has been deployed during the time period of our 467

dataset. In Yasa Bonga, tiny targets were used from 2015 and although it is not 468

strongly apparent by simply looking at case detections in 2016, we estimate that 469

transmission in the region has sharply fallen from around 22.6 (95% CI: 11.2–41.2) new 470

infections per year in 2015 to 1.3 (95% CI: 0.6–2.5) in 2016. Due to the slow progression 471

of the disease, it would be expected to take several years of case data until there is a 472

marked decline in both active and passive case detections. In future studies, more years 473

of human case and tsetse monitoring data from Yasa Bonga and other health zones, 474

which have subsequently begun tsetse control, will help to provide deeper insight into 475

the role of these vectors in transmission dynamics. 476

The model used here did not consider the presence of possible animal reservoirs or 477

transmission via asymptomatic humans. Historically, gHAT has been generally regarded 478

as an anthroponosis [36], lacking an animal reservoir which would hinder or prevent 479

elimination of the disease. More recently there have been concerns that this may not be 480

the case; T.b. gambiense has been identified in various animals, and have been shown to 481

be transmissible to tsetse experimentally [37]. Mathematical modelling has attempted 482

to ascertain the likelihood of animal transmission through various model comparison 483

exercises [6, 7], and also quantify relative transmission if it occurs. To date there is 484

inconclusive evidence, although declines in transmission due to medical intervention 485
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over the last decades appear to rule out substantial animal transmission (see [38] for 486

more discussion on this topic). A more detailed analysis of the presence and/or role of 487

animal reservoirs is beyond the scope of the present study. 488

The gHAT model presented is an explicitly Ross-Macdonald-style, host-vector model 489

capable of simulating the impact of vector population size changes on transmission to 490

humans. This was introduced to enable the simulation of intentional vector control 491

which was deployed in Yasa Bonga health zone from 2015 and so that future modelling 492

using this framework could explore the possible impact of vector control in other 493

locations. We did not, however, consider other sources of fluctuation of tsetse 494

populations, although it is noted that anthropogenic change in particular could result in 495

loss of tsetse habitat and inadvertently reduce tsetse populations [39]. There are limited 496

data available on temporal changes in tsetse density across DRC to inform such an 497

analysis, however it could be a potential avenue for future research in areas of known 498

deforestation or urbanisation. 499

One published review [40] has previously suggested that the primary transmission 500

mechanism of gHAT is not tsetse. In the present modelling study, for the most part, it 501

would be unlikely to make any difference to our results to assume human-to-human 502

transmission as we assume stable vector populations which could be readily substituted 503

by a quasi-equilibrium assumption or even modelled as a contagion without substantial 504

quantitative differences. However, where vector control is implemented, our assumption 505

that gHAT is a vector-borne infection would produce very different results compared to 506

assuming no or limited tsetse transmission. This would be very pronounced if the model 507

is subsequently used to make projections of future vector control impact. We are 508

reassured by various other recent studies that our tsetse-transmission assumption is 509

valid as (i) the host-vector gHAT model predictions for regions with vector control 510

appear to match the case reductions well [7] and (ii) the natural experiment which 511

occurred in Guinea during the 2014–15 West African Ebola outbreak found that even 512

following interruption of medical screening activities, regions that had vector control 513

remaining in situ had much lower case burden following resumption of screening than 514

those without [41,42]. 515

The model framework utilised in the present study is deterministic, always yielding 516

the same outputs for the same set of input parameters – deterministic models can be 517

considered to represent expected average dynamics. Whilst we do address some 518

observational uncertainty through the overdispersion in the likelihood function and 519

drawing model case reporting outputs, the use of stochastic models which capture 520

chance events in transmission and reporting will become increasingly important as 521

infections approach zero. Other modelling studies utilising stochastic model 522

formulations have found that, even at low reported case numbers and for relatively 523

small populations (>2000 people), gHAT persists with high probability over long 524

periods [5]. At the health zone level (∼100,000 people) model dynamics follow closely to 525

deterministic ones until reaching extremely low case numbers [16]. We therefore consider 526

that the deterministic model fits presented here would be similar to those obtained using 527

a stochastic model variant in health zones with appreciable case reporting in the 2000s 528

and regular good-coverage active screening. In health zones with limited case detection 529

despite good screening coverage, a stochastic model would be more appropriate to 530

obtain robust model fits. Future analysis should consider how the adaptive MCMC 531

framework presented here could be built upon to fit stochastic model variants, especially 532

for fits at smaller geographic scales (e.g. health areas ∼10,000 people) are required. 533
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Conclusions 534

The gHAT model and automated adaptive MCMC approach presented here has 535

facilitated the fitting of longitudinal case data across the whole DRC for the first time. 536

The flexible framework will support future studies with straightforward fitting of other 537

model variants (such as those with animal reservoirs or asymptomatic human infection) 538

or to updated data sets in DRC or elsewhere. 539

The results of the fitting suggest that dwindling case reporting in many parts of the 540

country does correspond to a real reduction in underlying transmission, even in 541

locations where active screening coverage has also declined; Equateur province is a 542

prime example of this. The passive detection posterior parameters found for Bandundu 543

province indicate that substantial improvements have been made to reduce time to 544

detection in the region since the turn of the century - we are now able to quantify the 545

increase in the proportion of infections that are eventually reported rather than die 546

undiagnosed for each health zone. 547

These country-wide analyses have given an insight into why transmission may persist 548

in some locations more than others, for example the results indicate that passive 549

detection rates were higher in Equateur province in the early 2000s than in Bandundu 550

province and teamed with active screening this resulted in a more marked decline in 551

both cases and transmission. As well as interventions, epidemiological factors, including 552

human behaviour, are likely driving infection differences: the relative risk of high-risk 553

people compared to low-risk appears to be greater in known persistent regions of 554

Bandundu – including the health zones of Kwamouth, Bolobo, Mushie and Bagata – 555

compared to other provinces. 556

This finding raises the question of whether current medical-only interventions are 557

sufficient to reduce transmission to the point of interruption before 2030 in all regions, 558

or whether other approaches may be needed in locations with moderate but less 559

substantial reductions. Indeed, previous modelling for specific health zones in DRC has 560

suggested intensified interventions such as targeting high-risk groups in active screening 561

or vector control may be needed to speed up progress and meet the 2030 goal [13,15]. A 562

larger challenge is to identify where this may be needed across the country, and where 563

should be prioritised for bolstered interventions. 564

This study is a necessary first step towards providing modelling information which 565

can assist in the formulation of policy appropriate to the varying needs across the 566

country. Whilst beyond the scope of the present study, the fits obtained here may now 567

be used to simulate projections of the disease into the future under various different 568

interventions. Once forecasts have been made, the results can be used to examine 569

minimal strategies to achieve the 2030 elimination of transmission goal and economic 570

modelling can be used to ascertain location-specific, cost-effective options, refining more 571

general health economic analyses presented previously [43]. 572

Supplementary Information 573

S1 Materials and Methods More detailed description of materials and 574

methods. 575

S2 Posteriors of fitted parameters Additional results figures and tables. 576

Representations of posterior distributions of fitted parameters for the two example 577

health zones, across the country and within the former provinces of Bandundu and Bas 578

Congo. 579
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S3 Using posteriors to infer time infected and reporting Calculating the 580

average time spent infected and the proportion of infections that are reported. 581

S4 PRIME-NTD criteria Addressing the PRIME-NTD criteria for good modelling 582

practises. 583

S5 Online Results Results for each health zone level fit can be viewed at 584

https://hatmepp.warwick.ac.uk/fitting/v2/. 585

S6 Analysis Code Model code. The MATLAB code used to fit the model and 586

perform the adaptive MCMC is available from 587

https://doi.org/10.17605/osf.io/ck3tr. 588

S7 Posterior samples Posterior parameter sets. The health zone-specific 589

parameter sets obtained through this MCMC are available from 590

https://doi.org/10.17605/osf.io/ck3tr. 591
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