1 **Title:** Antibodies against SARS-CoV-2 among health care workers in a country

2 with low burden of COVID-19

Authors: Mina Psichogiou^{1*}, Andreas Karabinis², Ioanna D. Pavlopoulou³, Dimitrios Basoulis¹,
Konstantinos Petsios⁴, Sotirios Roussos⁵, Maria Patrikaki⁶, Edison Jahaj⁶, Konstantinos Protopapas⁷,
Konstantinos Leontis⁸, Vasiliki Rapti⁸, Anastasia Kotanidou⁶, Anastasia Antoniadou⁷, Garyphallia
Poulakou⁸, Dimitrios Paraskevis⁵, Vana Sypsa⁵, Angelos Hatzakis⁵

7 Affiliations:

8 ¹First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece ²Onassis Cardiac Surgery Center, Athens, Greece 9 ³Pediatric Research Laboratory, National and Kapodistrian University of Athens, Faculty of Nursing, 10 Athens, Greece ⁴Clinical Research Office, Onassis Cardiac Surgery Center, Athens, Greece ⁵Department 11 12 of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece ⁶1st Department of Critical Care & Pulmonary Services, Medical School, 13 National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece ⁷4th Department 14 of Internal Medicine, Medical School, National and Kapodistrian University of Athens ⁸3rd Department 15 16 of Internal Medicine, Sotiria General Hospital, Medical School, National and Kapodistrian University of 17 Athens

- 18
- 19 Corresponding author: Mina Psichogiou, Address: 17 Ag Thoma Str, 1st Internal Medicine Department,
- 20 Laiko Hospital, Goudi, Athens, Greece. email: <u>mpsichog@med.uoa.gr</u>, telephone number: 0030-693-

21 2475847, fax number: 0030-213-2061049

22

23 Funding: The study was funded by research grant from Gilead Sciences

25 Abstract - word count:149

26	Greece is a country with limited spread of SARS-CoV-2 and cumulative infection attack rate of
27	0.12% (95% CI 0.06%-0.26%). Health care workers (HCWs) are a well-recognized risk group for
28	COVID-19. The study aimed to estimate the seroprevalence of antibodies to SARS-CoV-2 in
29	two hospitals and assess potential risk factors. Hospital-1 was involved in the care of COVID-19
30	patients while hospital-2 was not. A validated, rapid, IgM/IgG antibody point-of care test was
31	used. 1,495 individuals consented to participate (response rate 77%). The anti-SARS-CoV-2
32	weighted prevalence was 1.07% (95%CI 0.37-1.78) overall and 0.44% (95%CI 0.12-1.13) and
33	2.4% (95%CI 0.51-8.19) in hospital-1 and hospital-2, respectively. The overall, hospital-1, and
34	hospital-2 seroprevalence was 9, 3 and 20 times higher than the estimated infection attack rate in
35	general population, respectively. Suboptimal use of personal protective equipment was noted in
36	both hospitals. These data have implications for the preparedness of a second wave of COVID-
37	19 epidemic.

42 Main manuscript – Word count: 1773

43 Introduction

44	Coronavirus disease 2019 (COVID-2019) caused by a novel coronavirus [severe acute
45	respiratory syndrome coronavirus-2 (SARS-CoV-2)] emerged in Wuhan, China in December
46	2019 (1) and spread worldwide in 212 countries and territories causing more than 5.8 million
47	cases and 360,000 deaths within a period of 5 months (1).

In Greece, the first COVID-19 case was diagnosed on February 26. On March 23, a 48 nation-wide lockdown was enforced to reduce ongoing virus transmission as a response to this 49 50 pandemic. As of May 30, there were 2,915 confirmed cases and 175 related deaths in Greece with a death rate of 16 per 1,000,000 population, which is one of the lowest in Europe (2). 51 52 Modelling data suggest that by the end of April 2020, when the first wave of epidemic was 53 completed, the infection attack rate in Greece was 0.12% (95% Crl: 0.06-0.26%) which corresponds to 13,200 total infections (95% Crl: 6,206 - 27,700) and a case ascertainment rate of 54 55 19.1% (95 CI 9.1-40.6) (*3*).

Health care workers (HCWs) is a well-known risk group for coronavirus infections (4,5),
accounted for a significant proportion of COVID-19 infections worldwide. By February 24,
2020, 3,387 HCWs out of 77,262 (4.4%) cases reported in China were HCWs (6). The majority
of these HCWs were documented at Hubei province, the epicentre of the epidemic. In a
comprehensive analysis of 9,684 HCWs from Tongji Hospital in Wuhan, Hubei, the
symptomatic infection rate was 1.1% while the respective asymptomatic infection rate was
estimated at 0.9%. Nurses held a higher infection risk than physicians [OR: 2.07 (95% CI 1.7-

63	4.3)] (7). The city of Daegu, South Korea, had the first large outbreak of COVID-19 outside
64	China. 121 HCWs were infected with infection rates 4.42 cases/1000 compared with 2.72 in the
65	general population. Among HCWs, the infection rates were 2.37, 4.85, and 5.14 cases/1,000
66	among doctors, nurses, and nurse assistants, respectively (8). In a large study among HCWs from
67	the Netherlands, of whom 9,705 were hospital employees, a total of 1,353 (14%) reported fever
68	and respiratory symptoms. Of those, 86 (6%) were infected with SARS-CoV-2, representing 1%
69	of all HCWs employed (9). Higher infection rates of SARS-CoV-2 by RT-PCR, ranging from 5-
70	44%, were observed in HCWs from UK, Spain, Italy and US (10-17).
71	Serologic methods based on antibody testing (anti-SARS-CoV-2) could provide a more
72	accurate estimate of epidemic size by detecting diagnosed and undiagnosed cases. Antibody
73	methods rely on detection of IgM, IgG, IgA, or total antibodies by a variety of methods (18,19).
74	The prevalence of the SARS-CoV-2 antibodies among HCWs was assessed in a number
75	of studies from countries with high burden of SARS-CoV-2 infection where the reported anti-
76	SARS-CoV-2 seroprevalence ranges from 1.6 - 45.3% (20-25) Few studies used serological
77	methods in the context of outbreak investigation (26,27).
78	This study aimed to assess the seroprevalence of antibodies to SARS-CoV-2 in HCWs of
79	two Greek hospitals during the current epidemic and identify potential risk factors for infection.
80	Patients and Methods
81	This cross-sectional study recruited HCWs aged more than 18 years from two hospitals.
82	The designated hospital-1 is a 500-bed tertiary General Hospital providing care to COVID-19

83 patients. Hospital-2 with 134 beds is a Cardiac Surgery Center not involved in the care of

COVID-19. The eligible personnel was in total 1,952, 1,120 in hospital-1, and 832 in hospital2.

86	Two groups were investigated 1) first-line health care workers (FL-HCWs), defined as
87	personnel whose activities involve contact with patients, and 2) second-line health care workers
88	(SL-HCWs), such as office employees, technical personnel, cleaning personnel etc.
89	Testing was offered at one specified location in each hospital for a period of 4 weeks, 13
90	April-14 May 2020, and 30 April – 15 May 2020 in hospital-1 and -2, respectively. Informed
91	consent was obtained from all participants who were interviewed using a structured
92	questionnaire including demographics, education, position within hospital, exposure to COVID-
93	19, use of personal protective equipment (PPE), and symptoms related to COVID-19. The data
94	were directly recorded in a secure database. All participants were immediately informed on their
95	test results, and they were offered a short posttest counseling session. The study was approved
96	by the Institutional Review Board of both hospitals.
97	Testing was based on the GeneBody COVID-19 IgM/IgG detection, which is a
98	chromatographic immunoassay for the rapid and differential test of immunoglobulin M and
99	immunoglobulin G against SARS-CoV-2. Serologic testing for SARS-CoV-2 antibodies was

performed using capillary blood according to the manufacturer's instructions (Genebody Inc.).

Samples were concluded as reactive if the IgM or the IgG or both bands were positive using a
colorimetric reader (Confiscope G20 analyser). Positive individuals were immediately retested

and the concordant were considered positive.

104	The antibody assay was validated in a serological panel of 107 hospitalized,
105	symptomatic, positive by RT-PCR, COVID-19 patients (Panel A) and in a second panel (Panel
106	B) including 150 samples collected before SARS-CoV-2 epidemic (see Appendix).
107	To calculate the prevalence of antibodies to SARS-CoV-2, firstly, we calculated the
108	unweighted proportions of positive testsand then we obtained the prevalence after weighting for
109	the age distribution of the adult population (18-69 years old) in Athens Metropolitan area from
110	the 2011 census. Secondlywe adjusted the weighted proportion for the sensitivity and specificity
111	of the test, as assessed from the validation in the serological panels A and B, using the epiR
112	package (R version 3.6.3, R Foundation for Statistical Computing, Vienna, Austria).
113	Results
114	A total of 1,495 HCWs consented to participate. The overall participation rate was 77%
115	(81% and 71% in hospitals-1 and 2, respectively). Of 1,495 individuals tested, 69.7% were
116	women, 61.7% were aged 35 to 54 years old, with a mean age (SD) of 46.4(10.3) years. FL-
117	HCWs accounted for 73.4 % of those tested. Subjects' characteristics are listed in Table.
118	A total of 15 individuals tested positive for anti-SARS-CoV-2, eleven of them for IgG
119	only, three for IgM only and one for both IgM/IgG. After adjusting for age and test performance-
120	assuming 87% sensitivity and 100% specificity the weighted seroprevalence for anti-SARS-
121	CoV-2 in the total population was 1.07% (95%CI 0.37, 2.78). The weighed seroprevalence in
122	hospital-1 was 0.44% (95%CI 0.12, 1.13) and in hospital-2 2.40% (95%CI 0.51, 8.19) (Table).
123	The seroprevalence was 9, 3 times and 20 times higher in the overall hospital population, in
124	hospital-1 and in hospital-2, respectively compared with the general population (0.12%,

125	Crl:0.06-0.26) (3). No significant associations were noted in the seroprevalence according to
126	gender, country of birth, education, number of members in the household, FL-HCWs, SL-HCWs
127	and use of PPE. Anti-SARS-CoV-2 prevalence was higher with increasing age, but the trend was
128	not statistically significant (p=0.10). The use of PPE was suboptimal in both hospitals. In
129	hospital-1 and among the personnel treating COVID-19 the use of gloves, masks, glasses, gown
130	was 96%, 99%, 56% and 63%, respectively. In hospital-2 the use of gloves and mask was
131	reported in 99.7% and 100% while the use of glasses and gown occasionally (15%).
132	Among all participants, 150 (10.1%) reported some symptoms indicative of COVID-19
133	in the previous 3 months; 82 reported fever, and 111 of them cough; 27 reported shortness of
134	breath. Overall, 1,345 (89.9%) reported no symptoms. The prevalence of anti-SARS-CoV-2 was
135	2.02% (95%CI 0.15, 13.78) and 0.98% (95%CI 0.28, 2.80) in those who reported and those not
136	reporting symptoms, respectively but the difference was not statistically significant.
137	Discussion
138	In this survey of SARS-CoV-2 antibodies among hospital personnel, the overall
139	seroprevalence was 1.07% (95% CI 0.37, 2.78) using a validated point-of care assay. This low
140	seroprevalence rate is consistent with the low burden of COVID-19 in Greece. However, in the
141	total hospital population and in that of hospital-2, it was 9 and 20 times higher, respectively,
142	compared to the cumulative infection attack rate estimated by mathematical modeling for the
143	general population in Greece (3). This is not surprising since the spread of SARS-CoV-2 is
144	highly heterogeneous (28). In New York State the prevalence of anti-SARS-CoV-2 was found
145	14.0% with a range of 3.6-22.7% (28).

146	Due to the low burden of infection, the study is underpowered for pointing out risk
147	factors. The difference in the prevalence between hospital-1 [0.44% (95% CI 0.12, 1.13)] and
148	hospital-2 [2.40% (95%CI 0.51, 8.19)] is not significant. However, it is consistent with data
149	suggesting that HCWs in hospitals involved in COVID-19 care could have a lower burden of
150	infection than those not participating in COVID-19 care (7, 21). This is probably due to the use
151	of PPE, which is the main determinant for risk of SARS-CoV-2 infection in the health care
152	environment (30). In this study the use of PPE was suboptimal in both hospitals. Other reported
153	risk factors are working in high- risk departments, long duty hours, practicing suboptimal hand
154	hygiene (31). Of the 42,600 HCWs caring for COVID-19 patients in the second half of the China
155	epidemic, none was infected, suggesting that sufficient precautions and rigorous enforcement of
156	PPE are the major determinants for eliminating COVID-19 infection (6).

A further challenge is whether SARS-CoV-2 infection can be truly attributed to hospital-157 acquired infections, especially in countries with a high burden of community infection (28). In 158 159 the study of Lai Y et al, contact with patients (59%), colleagues with infection (11%), and community acquired infection (13%) were the main routes of exposure among HCWs (7). 160 161 Contradicting results are noted in two large studies from Madrid and Birmingham. The anti-SARS-CoV-2 prevalence is higher in HCWs working in areas with exposure to COVID-19 (31-162 163 34%) compared with low-risk area (26%) and external workers (30%) in Madrid (24). On the 164 contrary in Birmingham study the anti-SARS-CoV-2 prevalence was higher among general 165 medicine and housekeeping general personnel (30-35%) compared with intensive care and 166 emergency medicine (13-15%) (21).

167	Several study limitations are noted: 1) The sensitivity of the currently existing antibody
168	assays is not well known since they were registered using convalescent sera from symptomatic
169	hospitalized patients and their sensitivity was not assessed in asymptomatic or mildly
170	symptomatic patients (18,19). 2) At present, data on post-infection immunity are lacking. Studies
171	from the previous SARS-CoV-1 outbreak have shown a steady prevalence decrease with time
172	(18,19) 3) Higher antibody titers are associated with infection severity (18,19). 4) The study,
173	due to the low anti-SARS-CoV-2 prevalence, is underpowered to detect risk factors. 5) The
174	prevalence of anti-SARS-CoV-2 in the Greek population is not known and the infection attack
175	rate estimated from a modelling study was used as surrogate of the general population
176	prevalence. 6) Several studies, non-peer reviewed available as preprint, were used.
177	In conclusion, the burden of SARS-CoV-2 infection among hospital personnel in Athens
178	is low, consistent with the low burden of infection in the country. The use of PPE was
179	suboptimal. These findings have implications for the preparedness of a second wave of COVID-
180	19.

181 Acknowledgments

The authors would like to thank: Panayiotis Axaopoulos, Georgios Goumas, Evangelos
Kokolesis, Michaella Alexandrou, Sofia Radi, Dimitra Siakali, Erica Alexandrou, Dimosthenis
Theodosiadis, Ilias Sinanidis, Charalambos Kazamiakis, as well as Onassis C.S.C. staff
members: George Stravopodis & Sofia Hatzianastasiou, and the Advisory board members in
Laiko General Hospital: John Boletis, Nikolaos Sypsas, Michalis Samarkos, Ioannis Floros,
Theoni Zougkou, Amalia Karapanou, Michalis Sambanis

189 **References**

190	1.	Coronavirus disease (COVID-19) Situation Report – 131 (30 May 2020) WHO
191	2.	COVID-19 situation updates for the EU/EEA and the UK, as of 1 June 2020, European
192		Centre for Disease Prevention and Control
193	3.	Sypsa V, Roussos S, Paraskevis D, Lytras T, Tsiodras S, Hatzakis A. Modelling the
194		SARS-CoV-2 first epidemic wave in Greece: social contact patterns for impact
195		assessment and an exit strategy from social distancing measures. medRxiv
196		2020.05.27.20114017; doi: https://doi.org/10.1101/2020.05.27.20114017.
197	4.	Kawana A, Teruya K, Kirikae T, Sekiguchi J, Kato Y, Kuroda E, et al. Syndromic
198		surveillance within a hospital for the early detection of a nosocomial outbreak of acute
199		respiratory infection. Jpn J Infect Dis. 2006;59:377-379.
200	5.	Aghaizu A, Elam G, Ncube F, Thomson G, Szilágyi E, Eckmanns T, et al. Preventing the
201		next 'SARS' - European healthcare workers' attitudes towards monitoring their health for
202		the surveillance of newly emerging infections: qualitative study. BMC Public Health.
203		2011;11:541. doi: 10.1186/1471-2458-11-541.
204	6.	Zhan M, Qin Y, Xue X, Zhu S. Death from Covid-19 of 23 Health Care Workers in
205		China. N Engl J Med. 2020;2267-68.
206	7.	Lai X, Wang M, Qin C, Tan L, Ran L, Chen D, et al. Coronavirus Disease 2019
207		(COVID-19) Infection among Health Care Workers and implications for prevention
208		measures in a tertiary hospital in Wuhan, China. JAMA. 2020; 3(5):e209666.
209	8.	Kim JH, An JAA, Min PK, Bitton A, Gawande AA. How South Korea responded to the
210		COVID-19 outbreak in Daegu. N Engl J Med. 2020; June 3:DOI:10.1056/CAT.20.0159

211	9.	Kluytmans-van den Bergh MFQ, Buiting AGM, Pas SD, Bentvelsen RG, van den
212		Bijllaardt W, van Oudheusden AJG, et al. Prevalence and Clinical Presentation of Health
213		Care Workers with Symptoms of Coronavirus Disease 2019 in 2 Dutch Hospitals During
214		an Early Phase of the Pandemic. JAMA Netw Open. 2020; 3(5):e209673.
215	10	. Keeley AJ, Evans C, Colton H, Ankcorn M, Cope A, State A, et al. Roll-out of SARS-
216		CoV-2 Testing for Healthcare Workers at a Large NHS Foundation Trust in the United
217		Kingdom, March 2020. Euro Surveill. 2020;25(14):2000433.
218	11	. Treibel TA, Manisty C, Burton M, McKnight Á, Lambourne J, Augusto JB, et al.
219		COVID-19: PCR Screening of Asymptomatic Health-Care Workers at London Hospital.
220		Lancet.2020; 395(10237):1608-1610.
221	12	. Khalil A, Hill R, Ladhani S, Pattisson K, O'Brien P. COVID-19 Screening of Health-
222		Care Workers in a London Maternity Hospital. Lancet Infect Dis. 2020; S1473-
223		3099(20)30403-5.
224	13	. Hains DS, Schwaderer AL, Carroll AE, Starr MC, Wilson AC, Amanat F, et al.
225		Asymptomatic Seroconversion of Immunoglobulins to SARS-CoV-2 in a Pediatric
226		Dialysis Unit. JAMA. 2020; e208438.
227	14	. Lombardi A, Consonni D, Carugno M, Bozzi G, Mangioni D, Muscatello A, et al.
228		Characteristics of 1,753 healthcare workers who underwent nasopharyngeal swab for
229		SARS-CoV-2 in Milano, Lombardy, Italy. medRxiv 2020.05.07.20094276; doi:
230		https://doi.org/10.1101/2020.05.07.20094276.
231	15	. Folgueira MD, Munoz-Ruiperez C, Alonso-Lopez MA, Delgado R, on behalf of the
232		Hospital 12 Octubre COVID-19 Study Groups. SARS-CoV-2 infection in Health Care

- 233 Workers in a large public hospital in Madrid, Spain, during March 2020. medRxiv
- 234 2020.04.07.20055723; doi: https://doi.org/10.1101/2020.04.07.20055723.
- 16. Barrett ES, Horton DB, Roy J, Gennaro ML, Brooks A, Tisschfield J, et al. Prevalence of
- SARS-CoV-2 infection in previously undiagnosed health care workers at the onset of the
- 237 U.S. COVID-19 epidemic. medRxiv 2020.04.20.20072470; doi:
- 238 https://doi.org/10.1101/2020.04.20.20072470.
- 17. Vahidy F, Sostman HD, Bernard DW, Boom ML, Drews AL, Christensen P, et al.
- 240 Prevalence of SARS-CoV-2 infection among asymptomatic health care workers in
- 241 greater Houston: a cross-sectional analysis of surveillance data from a large healthcare
- system. medRxiv 2020.05.21.20107581; doi:
- 243 <u>https://doi.org/10.1101/2020.05.21.20107581</u>.
- 18. National Academies of Sciences, Engineering, and Medicine 2020. Rapid Expert
- 245 Consultation on SARS-CoV-2 Viral Shedding and Antibody Response for the COVID-19
- Pandemic (April 8, 2020). Washington, DC: The National Academies Press.
- 247 <u>https://doi.org/10.17226/25774</u>.
- 248 19. Evidence summary of the immune response following infection with SARS-CoV-2 or
- other human coronaviruses. Published by the Health Information and Quality Authority
- 250 (HIQA). 9 June 2020.
- 251 20. Korth J, Wilde B, Dolff S, Anastasiou OE, Krawczyk A, Jahn M, et al. SARS-CoV-2-
- specific Antibody Detection in Healthcare Workers in Germany With Direct Contact to
- 253 COVID-19 Patients. J Clin Virol. 2020; May 13;128:104437.

- 254 21. Shields AM, Faustini SE, Perez-Toledo M, Jossi S, Aldera E, Allen JD, et al. SARS-
- 255 CoV-2 seroconversion in health care workers. medRxiv 2020.05.18.20105197; doi:
- 256 https://doi.org/10.1101/2020.05.18.20105197.
- 257 22. Houlihan C, Vora N, Byrne T, Lewer D, Heaney J, Moore DA, et al. SARS-CoV-2 virus
- and antibodies in front-line Health Care Workers in an acute hospital in London:
- preliminary results from a longitudinal study. medRxiv 2020.06.08.20120584; doi:
- 260 https://doi.org/10.1101/2020.06.08.20120584.
- 261 23. Garcia-Basteiro, Moncunill G, Tortajada M, Vidal M, Guinovart C, Jimenez A, et al.
- Seroprevalence of antibodies against SARS-CoV-2 among health care workers in a large
- 263 Spanish reference hospital. medRxiv 2020.04.27.20082289; doi:
- 264 https://doi.org/10.1101/2020.04.27.20082289.
- 265 24. Galan I, Velasco M, Casas ML, Goyanes J, Rodriguez-Caravaca G, Losa JE, et al. SARS-
- 266 CoV-2 seroprevalence among all workers in a teaching hospital in Spain: Unmasking the
- risk. medRxiv 2020.05.29.20116731; doi: https://doi.org/10.1101/2020.05.29.20116731.
- 268 25. Mansour M, Leven E, Muellers K, Stone K, Mendu DR, Wajnberg A. Prevalence of
- 269 SARS-CoV-2 antibodies among health Care Workers at a tertiary academic hospital in
- 270 New York City. medRxiv 2020.05.27.20090811; doi:
- 271 https://doi.org/10.1101/2020.05.27.20090811.
- 272 26. Brandstetter S, Roth S, Harner S, Buntrock-Döpke H, Toncheva A, Borchers N, et al.
- 273 Symptoms and Immunoglobulin Development in Hospital Staff Exposed to a SARS-
- 274 CoV-2 Outbreak. Pediatr Allergy Immunol. 2020; May 15.doi: 10.1111/pai.13278.
- 275 27. Solodky ML, Galvez C, Russias B, Detourbet P, N'Guyen-Bonin V, Herr AL, et al.
- 276 Lower Detection Rates of SARS-COV2 Antibodies in Cancer Patients Versus Health

277	Care Workers	After Symptom	atic COVID-19. Ann	Oncol. 2020 May 1;S0923-

- 278 7534(20)39793-3.
- 279 28. Rosenberg E, Tesoriero JM, Rosenthal EM, Chung R, Barranco MA, Styer LM, et al.
- 280 Cumulative incidence and diagnosis of SARS-CoV-2 infection in New York. medRxiv
- 281 2020.05.25.20113050; doi:https://doi.org/10.1101/2020.05.25.20113050.
- 282 29. Zheng L, Wang X, Zhou C, Liu Q, Li S, Sun Q, et al. Analysis of the Infection Status of
- the Health Care Workers in Wuhan During the COVID-19 Outbreak: A Cross-Sectional
- 284 Study. Clin Infect Dis.2020 May 15; ciaa588.
- 30. Chou R, Dana T, Buckley DI, Selph S, Fu R, Totten AM. Epidemiology of and Risk
- Factors for Coronavirus Infection in Health Care Workers. Ann Intern Med. 2020 May 5;
 M20-1632.
- 31. Ran L, Chen X, Wang Y, Wu W, Zhang L, Tan X. Risk factors of Healthcare workers
- with Corona Virus Disease 2019: A retrospective cohort study in a designated hospital of
- 290 Wuhan in China. Clin Infect Dis. 2020 Mar 17; ciaa287.

291

292

294 Table: Socio-demographic characteristics and weighted prevalence of anti-SARS CoV-2 of

295 1,495 participants in two hospitals in Athens.

Covariate	Population (N)	Anti-SARS- CoV-2 (+)	Weighted prevalence with 95% CI ¹	
Overall	1,495	15	1.07 (0.37, 2.78)	
Hospital				
Hospital 1	906	4	0.44 (0.12, 1.13)	
Hospital 2	589	11	2.40 (0.51, 8.19)	
Gender				
Male	453	5	1.36 (0.11, 5.90)	
Female	1,042	10	0.97 (0.31, 3.14)	
Age (y)				
18-34	231	1	0.50 (0.01, 2.75)	
35-54	922	8	1.00 (0.43, 1.96)	
55-70	342	6	2.02 (0.74, 4.34)	
Country of birth				
Greece	1,355	14	1.10 (0.36, 2.94)	
Other	140	1	0.67 (0.02, 14.50)	
Marital status				
Married	910	11	1.01 (0.35, 5.99)	
Divorced / widowed	134	0	0.00 (0.00, 4.04)	
Single	451	4	0.89 (0.08, 6.52)	

Members of household			
1	260	2	0.91 (0.02, 6.79)
2	407	2	0.65 (0.02, 4.40)
3	313	5	1.53 (0.28, 9.24)
4	383	5	1.32 (0.20, 10.46)
5+	132	1	0.55 (0.01, 16.92)
Highest completed level of			
education			
Master's degree/Doctorate	416	2	0.39 (0.05, 4.93)
University or equivalent	632	10	1.81 (0.47, 5.18)
Technical education or below	447	3	0.56 (0.05, 8.25)
Job title			
Healthcare workers	1,097	11	1.00 (0.50, 1.79)
Nonhealthcare workers	398	4	1.01 (0.27, 2.55)
Symptoms ²			
Any symptom	150	3	2.02 (0.15, 13.78)
No symptom	1,345	12	0.98 (0.28, 2.80)

- 296
- ¹Weighted prevalence for age and test performance
- ² Among fever, cough, and shortness of breath