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Abstract: 
 
Background:  
As countries begin to ease the lockdown measures instituted to control the COVID-19 
pandemic, there is a risk of a resurgence of the pandemic, and early reports of this are 
already emerging from some countries. Unlike many other countries, the UK started easing 
lockdown in England when levels of community transmission were still high, and this could 
have a major impact on case numbers and deaths. However thus far, the likely impacts of 
easing restrictions at this point in the pandemic have not been quantified.  Using a Bayesian 
model, we assessed the potential impacts of successive lockdown easing measures in 
England, focussing on scenarios where the reproductive number (R) remains ≤1 in line with 
the UK government’s stated aim. 
 
Methods: 
We developed a Bayesian model to infer incident cases and R in England, from incident 
death data from the Office of National Statistics. We then used this to forecast excess cases 
and deaths in multiple plausible scenarios in which R increases at one or more time points, 
compared to a baseline scenario where R remains unchanged by the easing of lockdown.  
 
Findings: 
The model inferred an R of 0.752 on the 13th May when England first started easing 
lockdown. In the most conservative scenario where R increases to 0.80 as lockdown was 
eased further on 1st June and then remained constant, the model predicts an excess 257 
(95% 108-492) deaths and 26,447 (95% CI 11,105-50,549) cumulative cases over 90 days. 
In the scenario with maximal increases in R (but staying £1) with successive easing of 
lockdown, the model predicts 3,174 (95% 1,334-6,060) excess cumulative deaths and 
421,310 (95% 177,012-804,811) excess cases. 
 
Results: 
When levels of transmission are high, even small changes in R with easing of lockdown can 
have significant impacts on expected cases and deaths, even if R remains ≤1. This will have 
a major impact on population health, tracing systems and health care services in England.. 
Following an elimination strategy rather than one of maintenance of R below 1 would 
substantially mitigate the impact of the COVID-19 epidemic within England. This study 
provides urgently needed information for developing public health policy for the next 
stages of the pandemic.  
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Introduction: 
 
As countries around the world negotiate the first wave of the COVID-19 pandemic, 
governments have had to make critical decisions about when and how they ease the 
lockdown measures that were instituted to control the pandemic. Given the risks of a 
resurgence of the pandemic and the consequent implications, these decisions need to be 
informed by best available scientific evidence available at the time.  
 
Different countries have eased lockdown in different ways, and at different points in their 
epidemic trajectory.1 The UK imposed lockdown relatively late in its epidemic trajectory 
and began easing lockdown relatively early, when community transmission levels (incident 
cases) were still high.2 By contrast, Germany, Denmark, Italy and Spain started easing 
lockdown when incident cases and deaths were at much lower levels. Despite mitigating 
strategies such as test, trace and isolation systems in place, countries like Germany have 
seen increases in reproduction number (R) after easing lockdown, with increases to above 
1 in June.3 South Korea, and China have also recently seen a resurgence in new cases, 
leading to new localised restrictions being put in place to control the spread of infections.  
 
Easing lockdown when community transmission remains high likely increases the risk of a 
resurgence of the epidemic but the more precise impacts are insufficiently understood. 
Several experts, including SAGE, the scientific advisory body to the UK government, 
cautioned against easing lockdown at this point,2 warning that the testing and contact 
tracing services that are meant to mitigate the impact of easing lockdown, could be 
overwhelmed and the health service greatly impacted. Nevertheless, the UK has proceeded 
with easing lockdown with the stated aim of doing so while keeping R ≤1. On the 13th May, 
people who could not work from home were asked to return to work. On the 1st June 
schools were re-opened, outdoor markets and showrooms opened and households were 
allowed to meet in socially distanced groups of six. On the 15th June non-essential 
businesses, including the retail sector, were opened. On the 4th  of July, pubs, cafes, and 
hotels are due to open. However in the week of the 29th June, a surge in cases was reported 
in Leicester, England, leading to the re-imposition of restrictive measures, and concern that 
other regions in England may experience similar increases in case numbers.4 As of now the 
government are proceeding with their proposed plan for the 4th July.  
 
Understanding and quantifying the potential impact of lockdown easing measures at this 
point is crucial to informing public health strategy within England. Here, we model these 
impacts across a range of plausible scenarios. We use an epidemiological model of COVID-
19 spread with Bayesian inference to infer parameters of the epidemic within England using 
daily death data from the Office of National Statistics (ONS). We estimate the time varying 
R and daily cases, and then use these to forecast cases and deaths in several plausible 
scenarios in which R increases as a result of easing lockdown, particularly focusing on 
scenarios in which R remains ≤1, and contrasting these with elimination strategies that aim 
to suppress R as much as possible.   
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Methods 
 
Data for model development:  
In order to model the impact of easing lockdown, we need to know the current levels of 
transmission, and growth parameters of the regional epidemic. Given the limited 
community testing and case detection in the UK, incident case numbers are likely to be 
substantially underestimated. We therefore based our model on the number of incident 
deaths by date of occurrence, which are likely to be more reliable.5 Incident deaths are a 
function of incident cases in the previous weeks and the reproduction rate of the epidemic, 
and both these parameters can be inferred from the death data.5 We included data till the 
12th of June for England, as released by the ONS on the 30th of June 2020 (25th week of 
published data).6 These data are based on deaths registered by the 27th of June. As 
reporting delays mean that more recent deaths are underestimated, we only considered 
deaths up to the 12th June. 
 
Primary outcomes: 
We assessed the excess cumulative predicted cases and deaths, over a 90-day period from 
the 1st June. We assumed different scenarios of changing R at the points of lockdown 
easing, in comparison with a baseline scenario in which R remained constant during this 
period.  
 
Estimation of incident cases: 
Incident cases, and time-varying R numbers were estimated using a Bayesian model, similar 
to that previously described by Flaxman et al,5 accounting for the delay between onset of 
infection and death. The number of infected individuals is modelled using a discrete 
renewal process, as has been described before.5 This is related to the commonly used 
Susceptible-Infected-Recovered (SIR) model, but is not expressed in differential form.  
 
We modelled cases from 30 days prior to the first day that 10 cumulative deaths were 
observed in England, similar to previous methods.5 The numbers of incident cases for the 
first 6 days of this period were set as parameters to be estimated by the model 
(Supplementary Table 1). Subsequent incident case numbers would then be a function of 
these initial cases, and estimated R values. We assumed a serial interval (SI) with a 
lognormal distribution with mean 4.7 and standard deviation (SD) of 2.9 days, as in Nishiura 
et al 7. The SI was discretised as follows: 
 

𝑔" = $ 𝑔(𝑡)𝑑𝑡
"

)*"+,
 

 
For s=1,2…N, where N is the total number of intervals (each interval being 1 day) estimated. 
We estimated the distribution for 201 days, to align with the 111 days of data up to the 29th 
May, plus 90 days of forecasting. Given a SI distribution, the number of infections 𝑐𝑡 on a 
given day t, is given by the following discrete convolution function: 
 

   𝑐) = 	𝑅) ∑ 𝑐1𝑔)+1)+,
1*2 , 
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The incident cases on a given day t, are therefore a function of R at point t and incident 
cases up to time t−1, weighted by the distribution of the serial interval.  
 
Estimation of time-varying reproduction number 
The baseline reproduction number (R0), and the subsequent time varying effective 
reproduction number (Rt) were estimated up to the 12th June. We allowed Rt to change on 
at least three points: (1) 16th March, when the UK first introduced social distancing 
measures; (2) 23rd March, when lockdown measures came into place with stay at home 
instructions and closures of schools and non-essential businesses; and (3) 13th May, the first 
easing of lockdown. We also considered models in which Rt  was allowed to change on the 
1st June. Given the limited death data i.e. only up to the 12th June, we were unlikely to be 
able to estimate changes in Rt after the 13th May with sufficient certainty. Observed deaths 
from the 1st June are likely to be a function of cases 2-3 weeks prior to this, and were unlikely 
to reflect changes in Rt from the 1st of June.  
 
Model selection 
We assessed and compared models that allowed Rt to change at the 4 points described 
above (Model 1), with more flexible models that allowed more frequent changes (Models 
2 and 3), as follows: 
 

1. Model 1: 16th March, 23rd March, 13th May and 1st June 
2. Model 2: Every week from the beginning of the modelling period, including on the 

16th March, 23rd March, 13th May and the 1st June 
3. Model 3: 16th March, 23rd March, and 13th May, and every week between the 23rd 

March and 13th May i.e. during lockdown. 
 
For each model, we used the R package loo to calculate expected log pointwise predictive 
density (ELPD) using Leave-one-out cross-validation (LOO) individually for each left out 
data point based on the model fit to the other data points. We then calculated between-
model differences in ELPDs, to assess whether particular models predicted data better than 
others, as discussed previously.8 As the assumptions in estimation of ELPD may be violated 
given these are time-series data, and therefore correlated, we also compared the root mean 
squared errors (RMSE) across models to assess fit. The final model used was arrived upon 
based on these comparisons. 
 
In addition, we also compared Model 1 (four change points) with models where each of the 
change points were left out in turn, as done by Dehnig et al,9 to assess if these dates do 
correspond to change points in Rt. 
 
Estimation of deaths: 
Incident deaths from COVID-19 are a function of the infection fatality rate (IFR), the 
proportion of infections that result in death, and incident cases that have occurred over the 
past 2-3 weeks. For observed daily deaths (D𝑡) for days t ∈ 1, … , n, the expectation of 
observed daily deaths (dt) is given by: 
 

𝑑𝑡 = E(𝐷𝑡) 
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As described in Flaxman et al., we model the number of observed daily deaths 𝐷𝑡 as 
following a negative binomial distribution with mean 𝑑𝑡 and variance 𝑑) +	

789

:
 , where ψ 

follows a half normal distribution: 
 

𝐷)~	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙	(𝑑), 	𝑑) +
789

:
	)		,           where  ψ ∼ 𝑁orma𝑙+ (0,5).  

 
Similar to estimation of incident cases, deaths at time point t (dt) were modelled as a 
function of incident cases up to time t−1, weighted by the distribution of time of infection 
to time of death (𝜋). The 𝜋	distribution was modelled as the sum of the distribution of 
infection onset to symptom onset (the incubation period), and the distribution of symptom 
onset to death. As has been previously done,5 both of these were modelled as gamma 
distributions with means of 5.1 days (coefficient of variation 0.86) and 18.8 days (coefficient 
of variation 0.45), respectively as follows:  
 

𝜋	~	𝐼𝐹𝑅 ∗ (𝐺𝑎𝑚𝑚𝑎(5.1, 0.86) + 𝐺𝑎𝑚𝑚𝑎(18.8, 0.45)) 
 
IFR was assumed to be 1.1%, based on the most recent estimates from the University of 
Cambridge MRC Nowcasting and Forecasting model.10  
 
To discretise this distribution, we estimated the probability of death within each discrete 
time interval (1 day), conditional on surviving previous intervals. First we calculate the 
hazard (ht) the instantaneous probability of failure (i.e. dying) within a time interval, as 
follows: 

ℎ) = 	
∫ 𝜋(𝑡)𝑑𝑡"V2.W
)*"+2.W
1 − 𝜋"+2.W

 

 
As the denominator excludes individuals who have died, this ensures that ht is calculated 
only among those surviving. The probability of survival within each interval is: 
 

𝑠) = 1 − ℎ) 
 
The cumulative survival probability of surviving up to the interval t−1 is therefore: 
 

𝑆[\)+, = 		]𝑠1

)+,

1*,

 

 
, where T is the time of death of an individual. In other words the cumulative probability of 
survival up to interval t is simply the product of survival within each interval up to t-1, where 
the probability of survival within each interval (st) is 1−ht, where ht is the probability of dying 
within that interval. 
 
Given this, we now estimate the probability of death within interval t, conditional on 
surviving up to t−1 as: 

𝜔) = 𝑃(𝑇 = 𝑡 |	𝑇 > 𝑡 − 1) = 	 𝑆[\)+, ∗ ℎ) 
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Here 𝜔 represents the discretised distribution of infection onset to death, with the 
probability of death within interval t conditional on surviving previous intervals. Deaths can 
therefore be calculated as a function of incident cases of infection within previous intervals, 
as follows: 

𝑑) = 	c𝑐1𝜔)+1

)+,

1*2

 

 
Here, the number of deaths within interval t (on a given day) is a sum of the number of daily 
cases up to the previous day, with previous cases weighted by the discretised probability 
distribution of time from onset of infection to death. 
 
Estimated parameters and model priors:  
We estimated the set of model parameters θ={c1-6, R0, Rt, ϕ, 𝝉} using Bayesian inference with 
Markov-chain Monte-Carlo (MCMC) (Supplementary Table 1). We estimated the number 
of cases in the first six days of the modelled period, as subsequent cases are simply a 
function of cases on these days, the SI, and Rt . As described above, R0 was constrained up 
to the 16th March and then again after the 13th of May. For the period prior to 16th March, 
we assigned a normal prior for R0 with mean 2.5 and SD 0.5. For the period that Rt was 
allowed to vary i.e. every week from the 16th of March till the 13th of May, we assigned a 
normal prior with a mean 0.8 and SD 0.25. These priors are based on estimates of time 
changing Rt from the University of Cambridge MRC biostatistics nowcasting and forecasting 
models10 and SAGE estimates of R,11 and consistent with Flaxman et al.5 For the number of 
cases on day 1, we assigned a prior exponential distribution: 

𝑦~	𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 h
1
𝜏
j 

 
where                                                     𝜏~𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(0.03) 
 
Model estimation: 
Parameters were estimated using the Stan package in R with Markov chain Monte Carlo 
(MCMC) algorithms used to approximate a posterior distribution of parameters by 
randomly sampling the parameter space. We used 4 chains with 1000 warm up samples 
(which were discarded), and 3000 subsequent samples in each chain (12,000 samples in 
total) to approximate a posterior distribution using the Gibbs Sampling algorithm. From 
these we obtained the best-fit values and the 95% credible intervals for all parameters. We 
used these parameters to estimate the number of incident cases and deaths in England. 
We examined the fit of the model predicted deaths to the observed daily deaths from the 
ONS, and also the consistency of the model parameters with known values in the literature, 
estimated from global data. We assessed the distribution of R-hat values for all parameters, 
to assess convergence between chains. 
 
Sensitivity analyses: 
We carried out sensitivity analyses using broader, and uninformative priors for R0 and Rt, to 
examine the sensitivity of Rt estimates to prior specification. We also examined the impact 
of the SI by comparing the baseline model (SI of mean 4.7 and SD 2.9 days), with a longer 
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SI modelled as a gamma distribution with mean 6.5 and coefficient of variation of 0.72, as 
estimated by Chan et al.12  
 

Forecasting cases and deaths: 
All forecasts were carried out up to 90 days (29th August 2020) after the 1st of June. We 
considered a set of scenarios in which Rt increased from baseline on the 1st of June and 
then remained constant, as well as those in which further increases in Rt occur on the 15th 
June and the 4th July (Figures 3a, 4a and 5a). We considered an increase in Rt of up to 0.25 
in increments of 0.05, this being a plausible degree of change in response to easing 
lockdown, based on the empirical data from other countries,3,13 as well as the modelling by 
UK SAGE.14 Finally, for comparison with a strategy of elimination, namely suppressing Rt to 
the lowest level possible before easing lockdown measures, as has been done South Korea, 
New Zealand and Australia, we also modelled scenarios with Rt values of 0.6 and 0.7.  
 
For each of these scenarios, we predicted the number of incident cases, and incident 
deaths, using the functions from the inference model above. Briefly cases are a function of  
Rt, incident cases on previous days and the SI discretised distribution: 
 

𝑐) = 	𝑅) ∑ 𝑐1𝑔)+1)+,
1*2 , 

 
Deaths are a function of incident cases over previous weeks, and the distribution of onset 
of infection to death times: 

𝑑) = 	c𝑐1𝜔)+1

)+,

1*2

 

 
All scenarios were compared to a baseline scenario of no change in Rt from the 13th of May 
onwards.  
 
Results 
 
Model selection and model inferences 
Model 3, which allowed weekly changes in Rt during lockdown, produced the best fit to the 
data (Supplementary Table 2), with estimation of fewer parameters compared with Model 
2. This was therefore used as the primary model and unless otherwise stated, all inferences 
described subsequently are from this model.  
 
We infer R0 of 3.65 (95% credible intervals (CI) 3.36-3.96), consistent with previous 
estimates within the UK.5 The Rt is estimated to have declined substantially following 
initiation of social distancing, and lockdown measures, reaching a low of 0.66 (95% CI 0.34-
1.04) during the week 30th March-5th April 2020. The most recent Rt from the 13th of May is 
estimated as 0.752 (95% CI 0.50-1.00) (Figure 1). The alternative models allowing change 
of Rt on the 1st of June inferred a very similar Rt for the 1st -12th June suggesting that there 
was insufficient data to accurately infer any changes to Rt following the easing of lockdown 
on 1st June. On examining the impact of constraining Rt on model fit at any of the 4 change 
points, this appears greatest for the 16th March (when social distancing measures were put 
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into place) (Supplementary Table 3) with only modest impacts on model fit of constraining 
Rt on 23rd March and 13th May, and no impact on constraining Rt on the 1st June.  
 
The model showed a good fit to the observed distribution of deaths up to the 12th June 
(Figure 2). Rhat estimates were < 1.05 for all estimated parameters (Supplementary 
Figure 1). Leave one out cross-validation also supported a good model fit, with the shape 
parameter k<0.5 for all values (Supplementary Figure 2). The median number of incident 
cases inferred on the 1st June was 4,317/day (95% CI 2,062-8,155), which is broadly 
consistent with the estimates from the ONS survey for England based on a random sample 
of the population within the same time period.  
 
Forecasts of lockdown easing scenarios 
In the baseline forecasting scenario where Rt  remains constant (Rtest=0.75)  through the 90-
day forecasting period (1st June to 29th August 2020), the model predicts 48,501 (46,170-
50,989) cumulative deaths in England (Supplementary Table 4). By comparison, the ONS 
reported 46,539 cumulative deaths up to 12th June in England (registered up to 27th June).  
 
In the scenarios where Rt increases on the 1st of June and then remains constant, for 
increases from the median 0.75 to 0.80, 0.85, 0.90, 0.95 and 1, the model predicts median 
excess deaths of 257 (95% CI 108-492), 632 (95% CI 265-1,208), 1,173 (95% 493-2,240), 
1,971(95% 828-3,764) and 3,174 (95% CI 1,334-6,060) respectively. Increases of Rt to 1.05 
and 1.1, with resultant exponential growth, lead to excess median deaths of 5017 (95% CI 
2,109-9,578), and 7,878 (3,313-15,037) respectively (Figure 3 and Supplementary Table 
4).  
 
In scenarios where Rt increases on the 1st June, 15th June and 4th July, we find that compared 
to the baseline scenario, modest increases of Rt to 0.80, 0.85, 0.90, on these dates 
respectively would lead to 508 (95% CI 213-972) excess deaths. If Rt increases to 0.90, 0.95 
and 1 at these time points, then excess estimated deaths increase to 1,848 (95% CI 776-
3,534). In these scenarios Rt  remains £1 (Figures 3-5 and Supplementary Table 4). 
Increases of Rt above 1 at any point of results in rapid increases in cases, and deaths, 
predicting a second wave of the epidemic within England (Figure 4-5 and Supplementary 
Table 4).  
 
Even in a conservative scenario where Rt increases from 0.75 to 0.80 on the 1st of June and 
then remains constant thereafter, the model predicts an excess of 26,447 (95% CI 11,105-
50,549) cumulative cases over 90 days. On the other hand, the scenario with the largest 
changes in Rt, but still remaining £1, predicts an excess of up to 421,310 (95% CI 177,012-
804,811) (Figures 6-8 and Supplementary Table 4).  
 
Forecasts from an elimination scenario 
Compared to the baseline scenario of Rt staying at 0.75, we find that maintaining Rt at 0.60 
and 0.70 would result in 44,302(95% CI 84684-18600) and 19,968 (95% CI 38168-8384) 
fewer cumulative cases, and 462 (95% CI 194-884) and 204 (95% CI 389-86) fewer deaths 
over the modelled 90-day period, respectively (Figure 3, Figure 6, Supplementary Table 
4).  
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Robustness of model in sensitivity analyses 
Using uninformative (no prior specified) priors for Rt did not materially alter the median 
estimates of Rt, although uncertainty around estimates was predictably increased 
(Supplementary Figure 3). This suggests our estimates are robust to the priors specified. 
 
Using a longer SI leads to an increase in the estimated R0, although subsequent estimates 
following easing of lockdown remain broadly similar (Supplementary Figure 4). This 
model is comparable to the primary model with regard to fit to observed deaths 
(Supplementary Figure 5) and in predicted excess deaths and cases in scenarios where Rt 

increases (Supplementary Table 5).   
 
Discussion 
 
In this paper we describe a Bayesian model for inferring incident cases and reproduction 
numbers from daily death data, and for forecasting the impact of future changes in R. Our 
findings provide important quantification of the likely impact of relaxing lockdown 
measures in England, and to our knowledge, this is the first study to comprehensively 
assess this through several plausible scenarios. We show that even in scenarios in which R 
remains £1 (in line with the UK government’s stated aim), small increases in Rt from lifting 
lockdown measures, can lead to a substantial excess of deaths with 3,174 (95% CI 1,334-
6,060) in the most severe scenario modelled.  
 
Our model inferences are robust to modelling assumptions of serial interval distribution, 
and specified priors. Our estimated Rt of 0.75 following 13th May is consistent with estimates 
from the SAGE group advising government.11 We have assessed increases in Rt that are 
entirely plausible, given the data from other European countries that have started easing 
lockdown.3 Our  model predicts a substantial excess of cases and deaths in scenarios where 
R remains £1. Rises in Rt   above 1 would lead to exponential increases in cases, and 
subsequently deaths. In contrast, we show that pursuing an elimination strategy where Rt 
would be suppressed to 0.6 or 0.7 could prevent a median estimated 462 and 204 deaths, 
and 44,302, and 19,968 cases, respectively. 
 
Unlike other European countries, the UK began to ease lockdown when community 
transmission was still high with an estimated incidence of infection of >8000 cases and >300 
deaths being observed per day in England.  In Denmark and Germany some of the 
increases in R since easing lockdown, have likely been mitigated by the low levels of 
transmission at the point of easing lockdown. Another important factor may be the use of 
aggressive case detection and contact tracing approaches, which the UK seems unlikely to 
have fully operational till later this year, and the existing system is at risk of being 
overwhelmed by major increases in incident cases.  Given the lack of comprehensive 
testing, the UK’s current estimates of Rt rely on incident deaths (as used by the MRC 
Nowcasting and Forecasting model)10, which means that changes in Rt reflect changes in 
community transmission from a median of 2-3 weeks ago.11 With lockdown being eased in 
2-weekly steps, this means that by the time we detected the impact of one step, the next 
one would already have been instituted so mitigating these impacts would be extremely 
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challenging. The UK SAGE has also expressed concerns that increases in R up to 1.2 may 
continue undetected for longer periods of time.14 These concerns have been borne out by 
the recent surge in cases observed in Leicester,4 where the increase in case numbers were 
only detected two weeks after the event. Our findings strongly suggest that despite small 
increases in R, we would likely see substantial increases in cases and deaths, which may be 
detected too late to mitigate impact of the lockdown easing measures that led to these. 
This is particularly important when we consider the impact on health services, which have 
managed to deal with the pandemic by suspending much of routine healthcare, which is 
likely to substantially increase indirect causes of deaths from cancer, and cardiovascular 
disease. This also has important implications for population health, as we observe multi-
system long-term sequelae among those infected with COVID-19.  
 
We acknowledge some important limitations of our model. The first is that it is based on a 
back calculation of cases based on incident deaths, which are likely to underestimated due 
to reporting delays and underreporting. Second, our model is reliant on inferring cases, 
and reproduction numbers, which depend on the assumed distributions of the serial 
interval, and the time of onset to death distributions. While we have based our assumptions 
on the literature, misspecification of these would influence our estimates. While we have 
evaluated this, greater deviations from true estimates would make our forecasting less 
reliable. Third, similar to Flaxman et al, our model uses the IFR as a multiplier for the 
distribution of time from infection to death, in the absence of reliable population level case 
fatality rates (CFR). While this would not affect the estimation of deaths, if the CFR were 
higher (due to large proportions of cases being asymptomatic), then the predicted case 
numbers would be overestimated by our model. We note, however that the estimate of IFR 
we used (1.1%) is consistent with the CFR estimated in previously from Beijing.15 We have 
also, for simplicity, assumed that IFR remains constant throughout the pandemic and the 
forecasting period, and this may not reflect complex heterogeneity in IFR over time.   Finally, 
we do not consider the impact of mitigatory measures in our current modelling. However 
mitigatory measures are likely to be implemented with significant delays from when 
community transmission increases, namely when changes in R are detected. If such 
measures, like re-introducing lockdown, or school closures, were re-implemented, they 
may reduce the impact of the modelled scenarios.  
 
In summary, we show that increases in Rt as a result of easing lockdown would have a 
substantial impact on incident transmission and deaths for even modest increases that still 
maintain Rt £ 1. We argue for a more cautious approach with a focus on elimination, by 
reducing Rt and incident cases to low levels prior to easing lockdown measures and then 
too with careful monitoring. 
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Figure 1: Estimated time-varying reproduction number (Rt) for England  
The figure shows the Rt estimated by Model 3 (blue) with 95% credible intervals (grey) with a 

serial interval of mean 4.7 and SD 2.9 days. From 3.65 (CI 3.36-3.96), Rt drops on the 16th 

March and 23rd March (indicated by vertical dashed lines) when social distancing and 

lockdown were instituted, reaching a low of 0.66 (95% CI 0.34-1.04) in the week of the 30th 

March. The last estimated Rt  is 0.75 (95% CI 0.50-1.00) following the 13th May. 
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Figure 2: Model fit to observed death data 
Daily deaths predicted by Model 3 (blue) with 95% credible intervals (grey) show a good fit 

to the observed deaths from the ONS (red) 
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Figure 3. Predicted deaths with Rt increasing on 1st June  
(A) The model compared scenarios in which Rt increases to 0.80 (light green), 0.85 (green), 0.90 (dark blue), 0.95 (red), 1 (purple) and 1.05 
(brown) and then remains constant for the 90-day forecasting period. The comparator baseline scenario is of Rt remaining at 0.75 (black) and 
two elimination strategies of Rt reducing to 0.7 (yellow) and 0.6 (light blue) were also considered. Vertical dashed lines represent time-points 
of easing lockdown. (B), (C) the incident and cumulative deaths increase in all scenarios in which Rt increases and reduces in the two 
elimination scenarios. 
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 Figure 4. Predicted deaths in scenarios of Rt increase on 1st and 15th June compared with baseline scenario 
(A) The model compared scenarios in which Rt increases to 0.80 (light green), 0.85 (green), 0.90 (blue), 0.95 (red), 1 (purple) and 1.05(brown) 
and then further by 0.05 on the 15th June and then remaining constant for the 90-day forecasting period. The comparator baseline scenario is 
of Rt remaining at 0.75 (black). Vertical dashed lines represent time-points of easing lockdown. (B), (C) The incident and cumulative deaths 
increase in all scenarios in which Rt increases. 
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Figure 5. Predicted deaths in scenarios of Rt increase on 1st June, 15th June and 4th July compared with baseline scenario 
(A) The model compared scenarios in which Rt increases to 0.80 (light green), 0.85 (green), 0.90 (blue), 0.95 (red), 1 (purple) and 1.05(brown) 
and then further by 0.05 on the 15th June and then again by 0.05 on the 3rd July before remaining constant for the 90-day forecasting period. 
The comparator baseline scenario is of Rt remaining at 0.752 (black). Vertical dashed lines represent time-points of easing lockdown. (B), (C) 
The incident and cumulative deaths increase in all scenarios in which Rt increases. 
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Figure 6. Predicted cases in scenarios of Rt increase on 1st June compared with baseline and elimination scenarios 
(A) The model compared scenarios in which Rt increases to 0.80 (light green), 0.85 (green), 0.90 (dark blue), 0.95 (red), 1 (purple) and 
1.05(brown) and then remains constant for the 90-day forecasting period. The comparator baseline scenario is of Rt remaining at 0.752 (black) 
and two elimination strategies of Rt reducing to 0.7 (yellow) and 0.6(light blue) were also considered. Vertical dashed lines represent time-
points of easing lockdown. (B), (C) the incident and cumulative cases increase in all scenarios in which Rt increases and reduces in the two 
elimination scenarios. 
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Figure 7. Predicted cases in scenarios of Rt increase on 1st June  and 15th June compared with the baseline scenario 
(A) The model compared scenarios in which Rt increases to 0.80 (light green), 0.85 (green), 0.90 (blue), 0.95 (red), 1 (purple) and 1.05(brown) 
and then further by 0.05 on the 15th June and then remaining constant for the 90-day forecasting period. The comparator baseline scenario is 
of Rt remaining at 0.752 (black). Vertical dashed lines represent time-points of easing lockdown. (B), (C) The incident and cases increase in all 
scenarios in which Rt increases. 
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Figure 8. Predicted cases in scenarios of Rt increase on 1st June  and 15th June and 4th July compared with the baseline scenario 
(A) The model compared scenarios in which Rt increases to 0.80 (light green), 0.85 (green), 0.90 (blue), 0.95 (red), 1 (purple) and 1.05(brown) 
and then further by 0.05 on the 15th June and then again by 0.05 on the 3rd July before remaining constant for the 90-day forecasting period. 
The comparator baseline scenario is of Rt remaining at 0.752 (black). Vertical dashed lines represent time-points of easing lockdown. (B), (C) 
The incident and cumulative cases increase in all scenarios in which Rt increases. 
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