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Abstract

We modelling the dynamics of the COVID-19 epidemic taking into account the role
of the unreported cases. In a first section we extend the model recently introduced/
implemented by Liu, Magal, Seydi and Webb, by considering different transmission
rates for the infectious and unreported states, and we couple three new states related to
hospitalized and fatalities. In addition, we introduce an operator that incorporates the
effects of mitigation measures at the different rates considered in the system. Finally,
we implemented the extended model in the Chilean context by considering variable
the transmission rates and the fraction of unreported cases, the latter through an
argument that uses mortality rates. We conclude with several conclusions and lines of
future research.

1 Introduction

The mathematical models have played an important role in making decisions and controlling
the current coronavirus epidemic. However, one of the main problems that researchers have
had to face has been the lack of quality data. In particular, it is estimated that a high
number of cases have been unreported, especially those of patients with low symptoms. One
of the main causes of this is due to the strong demand for tests that requires a relatively
complete repertorization of those infected. Indeed, the countries in which effective strategies
have not been developed to increase the capacity to test the epidemic are out of control.

In general, the estimate of unreported infected has been extrapolated from the reported
infected data, assuming that these numbers increase or decrease proportionally. However, it
has been shown that the number of unreported cases has its own dynamics, whose role is
crucial in the evolution of the epidemic [15].

In this work we address the dynamic variation of the proportions between the numbers
of reported and unreported cases, incorporating them into the modelling itself.
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Various mathematical models has been proposed in the literature to deal with unreported
cases and their role in the progression of the epidemic. In the second section of this work, we
address one of them, with the acronym SIRU, recently proposed by Zhihua Liu, Pierre Magal,
Ousmane Seydi and Glen Webb [12, 13, 14]. Although the study of the qualitative theory
of the underlying differential equations of the SIRU model has not been completely closed,
several analogies with the classical SIR model have been concluded. However, in a previous
work we have found an important difference: in the SIRU model, the case curves do not
have a single peak, furthermore, a simple method has been proposed to detect parameters
that originate curves with at least two peaks.

The Liu, Magal, Seydi and Webb model has already been used to describe the evolution of
the epidemic in various countries (China, South Korea, the United Kingdom, Italy, France
and Spain), however, in this work we extend the SIRU model, by considering different
transmission rates for the infectious and unreported states, and we couple three new states
related to hospitalized and fatalities cases. In addition, to obtain realistic simulations, we
introduce an operator that incorporates the effects of mitigation measures at the different
rates considered in the system. In the last section of this work we implement this modelling
in the Chilean global scenario using the official COVID-19 data provided by the Chilean
government in [16]. Unlike the implementations made in [12, 13, 14], our implementation
is novel in that it uses a variable rate for disease transmission and a variable fraction of
unreported cases according to the epidemic progresses, which is more relevant according to
the local epidemiological reality.

The work concludes with a section dedicated to global conclusions and which describes
some future lines of research. The demonstrations of the formulas referring to the basic
reproductive number, the initial conditions associated with the states of infection and unre-
ported cases, and the transmission rates associated with these states, are presented in detail
in the appendices of the work.

2 An extension of the SIRU model

Following the approach in [15], the key assumption in this section is that unreported patients
have a greater dynamic role than those that are reported (since the former do not enter into
quarantine), and therefore they contribute more importantly to the epidemic. However, in
the traditional SIR model, both types of patients are part of the same compartment. In [12],
Liu, Magal, Seydi and Webb solve this problem by separating them into two compartments.
Denoting respectively by S, I, R and U the susceptible individuals, infected individuals who
do not yet have symptoms (and are at incubation stage), reported infected individuals, and
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unreported (either asymptomatic or low symptomatic) infected individuals, they consider
the following diagram flux:

Figure 1: Diagram flux

While Liu et al. in [12] assume that the parameters τ1 and τ2 related to the transmission
rates of infected and unreported, respectively, are the same, in this work we do not assume
this assumption.

The differential equations attached to the diagram above and that govern the dynamics
of the epidemic are the following:

S ′(t) = −S(t)[τ1I(t) + τ2U(t)]

I ′(t) = S(t)[τ1I(t) + τ2U(t)]− νI(t)

R′(t) = ν1I(t)− ηR(t)

U ′(t) = ν2I(t)− ηU(t),

(1)

where t ≥ t0 corresponds to time, with t0 being the starting date for the study (as in [12,
13, 14], in the implementation, we will consider the time t0 corresponding to the beginning
of the epidemic). Although this system of differential equations makes perfect sense when
prescribing any initial condition, in epidemiological modeling one is naturally lead to use
data of the following type:

S(t0) = S0 > 0, I(t0) = I0 > 0, R(t0) ≥ 0 and U(t0) = U0 ≥ 0.
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The system (1) is coupled with the following equations
H ′(t) = ψR(t)− δ1H(t)

F ′R(t) = δ1H(t)

F ′U(t) = δ2U(t),

(2)

where the state H denote the hospitalized cases, FR denote the cumulated fatalities cases
reported in the official numbers and FU denote the cumulated fatalities cases unreported in
the official numbers.

The parameters used in the model are described in the Table below. In particular, note
that ν = ν1+ν2. In addition, all the parameters that are considered τ1, τ2, ν, ν1, ν2, η, ψ, δ1, δ2
are positive.

Symbol Interpretation

t0 Initial time.

S0 Number of individuals susceptible to the disease at time t0.

I0 Number of infected individuals (in incubation period) without
symptoms at time t0.

R0 Number of reported infected individuals at time t0.

U0 Number of unreported infected individuals at time t0.

τ1 Transmission rate of the disease.

τ2 Transmission rate of the unreported infected.

1/ν Average time during which the infectious asymptomatic individu-
als remain in incubation.

f Fraction of asymptomatic infected individuals that become re-
ported infected.

ν1 = fν Rate at which asymptomatic infected cases become reported.

ν2 = (1−f)ν Rate at which asymptomatic infected become unreported infected
individuals (asymptomatic or mildly symptomatic).

1/η Average time during which an infected individual presents symp-
toms.

Table 1: Parameters and initial conditions of the model (1).

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.21.20136606doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.21.20136606
http://creativecommons.org/licenses/by-nc-nd/4.0/


The new parameters included in our model extended are described in the following Table:

Symbol Interpretation

1/ψ Average time during which an infected individual with symptoms
is hospitalized

1/δ1 Average time during which an infected individual hospitalized dies

1/δ2 Average time during which an infected individual unreported dies

Table 2: Parameters of the extension of the model given by (2).

Note that in the first of the equations of (1), namely

S ′(t) = −S(t) [τ1I(t) + τ2U(t)],

the role of I and U in the spread of the infection are differents. This is justified, for instance,
by that U includes individuals with low symptomaticity who can practice self-care.

3 Numerical results based on official numbers

3.1 General implementation of the SIRU model

The cumulative number of infectious cases reported at a time t, denoted by CR(t), is given
by

CR(t) := ν1

∫ t

t0

I(s)ds.

This is data that is openly available. Likewise, the cumulative number of unreported cases
at a time t is

CU(t) := ν2

∫ t

t0

I(s)ds.

Following the scheme used by Liu, Magal, Seydi and Webb, we will assume that, at an
early stage of the disease, CD(t) has an (almost) exponential form:

CD(t) = χ1 exp(χ2t)− χ3. (3)
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For simplicity, we will assume that χ3 = 1. The values of χ1 and χ2 will then be adjusted to
the accumulated data of cases reported in the early phase of the epidemic3 using a classical
least squares method (after passing to logarithmic coordinates). According to the above
(see [12] for details), for numerical simulations, the initial time for the beginning of the
exponential growth phase is fitted at

t0 := − 1

χ2

· log (χ1) .

Again, for simplicity, we will identify the initial value S0 to that of the total population
of Chile (since there is no prior immunity against the virus). Once the values of ν, and f
are set, the conditions at the beginning of the disease are naturally fitted as

ν1 = fv ν2 = (1− f)v.

Following the approach described in the appendix, we obtain

I0 =
χ1χ2e

χ2t0

ν1
=
χ2χ3

ν1
, (4)

τ1 =
χ2 + η

2S0

, τ2 =

(
η + χ2

ν2

)(
χ2 + η

2S0

)
, (5)

and
U0 =

ν2
η + χ2

I0. (6)

In the same form, by using the methods described in the supplementary material, the basic
reproductive number for model (1) is given by

R0 =
1

2

τ1S0

ν
+

√(
τ1S0

ν

)2

+
τ2S0

η
· ν2
ν

 . (7)

Remark 3.1. According to the equation (5), the parameters τ1 and τ2 are proportional, for
this reason in the following to obtain estimations on the transmission rates we just consider
the parameter τ1.

3Specifically, to adjust χ1, χ2 we consider the next 28 days since the detection of the first case in Chile
(Talca).
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3.2 On the fraction of unreported cases

To implement the SIRU system we still need to establish a good value for the parameter f
(the fraction of symptomatic cases that are reported). Once this is fitted, we will have the
values of

ν1 = fν y ν2 = (1− f)ν,

and we will just need to fit the value of τ .

Before continuing, it is worth pointing out that in [12, 13, 14] there is no major discussion
on the criterion used to establish the value of f in the different scenarios. Actually, a value
issued by the medical counterpart is assumed as valid. (For example, f = 0.8 is considered
for China.) In our modeling, we will use the work of Baeza-Yates [5] and that of Castillo and
Pastén [8], who use the case fatality rate of the disease (with the correct correction according
to its duration; see [3, 10]) to give estimates for the right number of infected individuals.4

Since Baeza-Yates’ argument is simpler and is not included in an academic publication, we
borrow it below in a language closer to that of the SIRU model. As we will see, it yields a
method to adjusting the value of f that can be used in almost all contexts.

As we propose in [15], the value of f according to the local reality of the pandemic can
be recast by

f =
L

LR
with LR =

M(n)

R(n− d)
, (8)

where d is the average time from diagnosis of infection to death, M(n) the number of deaths
in day n, and L is the case fatality rate.

In the Chilean context, deaths in the period studied occurred within 9.4 days after the
disease was reported. Adjusting d = 9 for data between 15 April to 14 May and d = 11
for data between 15 May to 8 June the computation of LR is made feasible from the data
available in [16].

Regarding the natural case fatality ratio L of the disease, it is deduced from international
studies that, after adjusting it to the age distribution of the Chilean population, it should
vary between 0.2% and 1%, with a very high tendency to be around 0.6%. In summary,
this gives a parameter f varying between 0.1 and 0.5, with a high tendency to be close to
1
3.4
∼ 0.3. In fact, the different values obtained by using the equation (8) are shown in the

following figure

4They estimate this number between 60% and 70% higher than the one reported for the period studied.
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Figure 2: Values of f obtained by using the formula described in equation (8) considering
L = 0.006.

3.3 Variation in the rates

Given the heterogeneity of the safeguard measures taken by the Chilean government, instead
of directly applying the SIRU model, it became more pertinent to us to consider variable
(in time) the different rates involucrate in the modeling process. To this end, we observe
how the percentage of the Chilean population subjected to confinement has been changing,
which is illustrated below:
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Figure 3: Variation of the percentages of the population in quarantine in Chile corresponding
to the first 85 days from March 13, 2020.

We hence propose the following function that catches the effects of the mitigation mea-
sures taken by the government of the study area

Definition 3.2. The quarantine function related to the model (1) and the rate i ∈ {τ1, ψ, δ1},
denoted by Cuari(t) , is define by the following step function

Cuari(t) =


αi0 if t ∈ I1 = [N i

0, N
i
1],

αi1(t) = αi0β
i
1 exp(−µi1(t−N1)) if t ∈ I2 = (N i

1, N
i
2],

...
...

αir(t) = αir−1(t)β
i
r exp(−µir−1(t−Nr−1)) if t ∈ I ir = (N i

r−1, N
i
r],

(9)

where the I ij’s correspond to successive time intervals and the parameters µij’s are chosen
in such a way that the reported cumulated cases in the numerical simulation align with the
data of the reported cumulative number of infections at time t.

3.4 Model parameters estimation and implementations

The parameter τ1 (and hence τ2) referent to the rate of transmission is estimated in the
first step of the epidemy by using equation (5), however, according to Definition 3.2, the
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different parameters used to include the efects of the safeguard measures through the function
Cuarτ1(t) on the rate of hospitalized ψ are shown in the following Table:

j βτ1j µτ1j Iτ1j N τ1
j

0 − − [3 March, 22 march] 2 March

1 1 6.3·10−4 [23 March, 1 April] 22 March

2 1 9.1·10−5 [2 April, 11 April] 1 April

3 1 7.4·10−5 [12 April, 21 April] 11 April

4 1 6.1·10−5 [22 April, 1 May] 21 April

5 1 5.4·10−5 [2 May, 11 May] 1 May

6 1 5·10−5 [12 Mayl, 21 May] 11 May

7 1 4·10−5 [22 may, 1 June] 21 May

8 1 1.7·10−4 [2 June, 9 June] 1 June

Table 3: Parameters used in Cuarτ (t) to include the efects of the safeguard measures on the
rate of transmission τ1.

The parameter ψ referent to the rate of hospitalized is estimated as

ψ =
1

Nψ

, (10)

where Nψ is the hospitalized rate and pψ is the case hospitalized rate (namely the fraction of
hospitalized per reported infectious individuals). In the simulation we chose Nψ = 3 days,
however, according to Definition 3.2, the different parameters used to include the efects of the
safeguard measures through the function Cuarψ(t) on the rate of hospitalized ψ are shown
in the following Table:
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j βψj µψj Iψj Nψ
j

1 3 5.5·10−2 [15 April, 21 April] −
2 3 2.4·10−2 [22 April, 1 May] 21 April

3 3 · 0.49 1·10−3 [2 May, 11 May] 1 May

4 3 · 0.49 -3·10−3 [12 Mayl, 21 May] 11 May

5 1.5 2.1·10−2 [22 may, 1 June] 21 May

6 1.206 2.5·10−2 [2 June, 9 June] 1 June

Table 4: Parameters used in Cuarψ(t) to include the efects of the safeguard measures on the
rate of hospitalized ψ.

In the case of the fatalities parameters δ1 and δ2, these are estimated as

δ1 =
1

Nδ1

, δ2 = δ1 · pU (11)

where Nδ1 is the fatalities rate, and pU is a parameter of uncertainty related to the increase
of fatalities in the official civil register of the goverment of Chile not caused a priori by
COVID-19 (for details see [17]). In the simulation we chose pU = 1/10 and Nδ1 = d−3 days,
where d is the average time from diagnosis of infection to death. Specifically, we consider
d = 9 for data between 15 April to 14 May and d = 11 for data between 15 May to 8 June.

j βδ1j µδ1j Iδ1j N δ1
j

1 24 -6.7·10−2 [15 April, 21 April] −
2 42 -1.4·10−2 [22 April, 1 May] 21 April

3 47.7 2.6·10−2 [2 May, 11 May] 1 May

4 36 -1.2·10−2 [12 Mayl, 21 May] 11 May

5 50.8 -2·10−2 [22 may, 1 June] 21 May

6 49.8 -9.6·10−2 [2 June, 9 June] 1 June

Table 5: Parameters used in Cuarδ1(t) to include the efects of the safeguard measures on the
rate of transmission δ1.

Using the data of the cumulated reported cases, hospitalized and fatalities available in
[16], we can finally proceed to the simulations, which are shown below. They illustrate
numerical estimates for the curves of CR(t), CU(t), H(t), FR(t) and FU(t).
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Figure 4: Plots of the numerical approximations of the functions CR(t), CU(t) and H(t)
obtained from the numerical solutions of the model (1) coupled with (2) applied to the
Chilean context based on the data of reported cumulated cases and hospitalized up to 8
June 2020 [16]. The plots (A) and (B) were obtained by considering f variable in time,
using the parameters η = 1/7 and ν = 1/7.
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Figure 5: Plots of the numerical approximations of the functions FR(t) and FU(t) obtained
from the numerical solutions of the model (1) coupled with (2) applied to the Chilean context
based on the data of reported cumulated cases up to 8 June 2020 [16]. The plots (C) and (D)
were obtained by considering f variable in time, using the parameters η = 1/7 and ν = 1/7.
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4 Discussion and future work

The epidemic outbreak of the new coronavirus COVID-19 was first detected in Wuhan,
China, in late 2019. In Chile, the first case was reported on March 3, 2020, in Talca. Since
then, modeling the epidemic in the country has faced the problem of the low availability of
disaggregated data [4].

The first part of the work naturally led us to model the dynamics of the epidemic incor-
porating a compartment for unreported cases so that we could deal with their active role in
the evolution. To do this, we consider the SIRU model recently introduced/implemented by
Liu, Magal, Seydi and Webb in [12, 13, 14], and we extend it considering different transmis-
sion rates for the infected and unreported states and coupling three new states, referents to
hospitalized and fatalities.

In the second part of the work, we implemented the extension of the SIRU model to
the case of Chile. The simulations carried out considering an extension of the model of
Liu et al. are based on the data of cases reported in the official numbers from March 3
to June 8, 2020. Our extension of the system that includes estimates on the number of
hospitalized and dead has been considered in a shorter time interval, this is mainly due to
the fact that the data regarding the number of hospitalized people began to be published by
the Chilean government in [16] from April 15. Regarding the method used to carry out our
implementations, we consider variable transmissions rates for infected and unreported cases,
which is more appropriate according to the local reality. Our rate is coupled to the official
statistics provided by the government in [16], information that also allowed us to make the
parametric ajustement. An important ingredient to launch the simulations was the value
of the fraction f which now is considered variable and is obtained following the approach
introduced by Navas and Vergara-Hermosilla in the preliminary work [15]. In the model
extended the estimate of fatalities are divided in two disjoint groups: reported fatalities and
unreported fatalities. The main reason for consider this assumption is the fact that in the
last month the Chilean health system was collapsed, and in several cases the deads are not
incluided in the officials numbers on COVID-19, increasing without apparent explanation the
number of deceased in the official civil registries of the government of Chile. On the other
hand, we incorporate the operator Cuari(t) which is such includes the effects of the different
mitigation measures taken for the Chilean government on the transmission, hospitalization,
and death rates, providing a more realistic simulation of the epidemic.

Although the estimates above were obtained a posteriori, their complementarity puts us in
a good position to use them for modeling the future evolution of the epidemic. We strongly
believe that the basis for pursuing the implementation of the SIRU model are fullfilled,
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and it would be very useful to advance in a more compartmentalized and georeferenced
implementation of it.

Appendix 1: materials and methods

By using equation (3), we obtain

CR′(t) = v1I(t)⇔ χ1χ2 exp (χ2t) = v1I(t), (12)

and hence, by evaluating the last equation at t = t0, we deduce that

I0 =
χ1χ2e

χ2t0

ν1
=
χ2χ3

ν1
. (13)

Moreover, by consider equation (3), we obtain

eχ2t

eχ2t0
=

I(t)

I(t0)
. (14)

and then, we conclude that
I(t) = I0e

χ2(t−t0). (15)

In order to evaluate the parameters of the model, we replace S(t) by the total population
in the zone considered on the right-hand side of (1) (which is equivalent to neglecting the
variation of susceptibles due to the epidemic, which is consistent with the fact that t→ CR(t)
grows exponentially). Therefore, it remains to estimate the parameters τ1 and τ2 in the
following linearized system:{

I ′(t) = S0[τ1I(t) + τ2U(t)]− vI(t)
U ′(t) = v2I(t)− ηU(t)

(16)

By consider the first equation, we obtain

U(t) =
1

τ2S0

(I ′(t) + vI(t)− τ1S0I(t)) ,

and therefore, by using (15), we must have

I(t) = I0e
χ2(t−t0) and U(t) = U0e

χ2(t−t0), (17)
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hence, by reemplacing these expressions into (16), we obtain{
χ2I0 = S0 [τ1I0 + τ2U0]− vI0
χ2U0 = v2I0 − ηU0

(18)

By dividing the first equation of (18) by I0 we obtain

χ2 = S0

(
τ1 + τ2

U0

U0

)
− ν,

and then
U0

I0
=
χ2 + v − τ1S0

τ2S0

. (19)

By using the second equation of (18), we obtain

U0

I0
=

ν2
η + χ2

, (20)

and then, we conclude that

U0 =
ν2

η + χ2

I0. (21)

Now, by consider by linearizing the first equation of the model (1), we obtain

S0(τ1I(t) + τ2U(t)) = 0, (22)

and, by using (17) and (21) on (22), we deduce

τ1 −
ν2

η + χ2

τ2 = 0. (23)

Moreover, by using (19) and (20), we obtain

τ1 +
ν2

η + χ2

τ2 =
χ2 + ν

S0

. (24)

Then, by solve the equations (23) and (24) for τ1 and τ2, we deduce

τ1 =
χ2 + η

2S0

, τ2 =

(
η + χ2

ν2

)(
χ2 + η

2S0

)
. (25)
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4.1 Computation of basic reproductive number R0

In this section we consider classic results on the basic reproductive number (see for instance,
Chapter 7 on the book of Dieckmann, Heesterbeek and Britton [2]). The linearized equation
of the infectious part of the model is given by{

I ′(t) = S0[τ1I(t) + τ2U(t)]− vI(t)
U ′(t) = v2I(t)− ηU(t)

(26)

The corresponding matrix is

A =

[
τ1S0 − ν τ2S0

ν2 −η,

]
which can be rewritten as A = V − S, where

V =

[
τ1S0 τ2S0

ν2 0,

]
and S =

[
ν 0
0 η

]
,

and then, the next generation matrix is given by

V S−1 =

 τ1S0

ν

τ2S0

η
ν2
ν

0

 .
Then, by denoting by ρ(M) the spectral ratio of the matrix M , and by consider equation
7.18 of Chapter 7 in [2], the basic reproductive number is given by

R0 = ρ
(
V S−1

)
=

1

2

τ1S0

ν
+

√(
τ1S0

ν

)2

+
τ2S0

η
· ν2
ν

 . (27)
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