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Abstract 24 

COVID-19 is characterised by dysregulated immune responses, metabolic dysfunction and 25 

adverse effects on the function of multiple organs. To understand how host responses 26 

contribute to COVID-19 pathophysiology, we used a multi-omics approach to identify 27 

molecular markers in peripheral blood and plasma samples that distinguish COVID-19 28 

patients experiencing a range of disease severities. A large number of expressed genes, 29 

proteins, metabolites and extracellular RNAs (exRNAs) were identified that exhibited strong 30 

associations with various clinical parameters. Multiple sets of tissue-specific proteins and 31 

exRNAs varied significantly in both mild and severe patients, indicative of multi-organ damage. 32 

The continuous activation of IFN-I signalling and neutrophils, as well as a high level of 33 

inflammatory cytokines, were observed in severe disease patients. In contrast, COVID-19 in 34 

mild patients was characterised by robust T cell responses. Finally, we show that some of 35 

expressed genes, proteins and exRNAs can be used as biomarkers to predict the clinical 36 

outcomes of SARS-CoV-2 infection. These data refine our understanding of the 37 

pathophysiology and clinical progress of COVID-19 and will help guide future studies in this 38 

area. 39 

 40 

Key worlds: SARS-CoV-2 / COVID-19 pathophysiology / multiple organ damage / 41 

immunopathogenesis / multi-omics 42 
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Introduction 44 

Coronaviruses (family Coronaviridae) are a diverse group of positive-sense single-stranded 45 

RNA viruses with enveloped virions (Cui et al., 2019; Masters and Perlman, 2013). 46 

Coronaviruses are well known due to the emergence of Severe Acute Respiratory Syndrome 47 

(SARS) in 2002–2003 and Middle East Respiratory Syndrome (MERS) in 2012, both of which 48 

caused thousands of cases in multiple countries (Bermingham et al., 2012; Cui et al., 2019; 49 

Ksiazek et al., 2003). Coronaviruses naturally infect a broad range of vertebrate hosts 50 

including mammals and birds (Cui et al., 2019). As coronavirus primarily target epithelial cells, 51 

they are generally associated with gastrointestinal and respiratory infections (Cui et al., 2019; 52 

Masters and Perlman, 2013). In addition, they cause hepatic and neurological diseases of 53 

varying severity (Masters and Perlman, 2013). 54 

The world is currently experiencing a disease pandemic (COVID-19) caused by a newly 55 

identified coronavirus called SARS-CoV-2 (Wu et al., 2020a). At the time of writing, there 56 

have been more than 6 million cases of SARS-CoV-2 and over 387,000 deaths globally 57 

(WHO, 2020). The disease leads to both mild and severe respiratory manifestations, with the 58 

latter prominent in the elderly and those with underlying medical conditions such as 59 

cardiovascular and chronic respiratory disease, diabetes, and cancer (Guan et al., 2020). In 60 

addition to respiratory syndrome, mild gastrointestinal and/or cardiovascular symptoms as 61 

well as neurological manifestations have been documented in hospitalized COVID-19 patients 62 

(Mao et al., 2020). Combined, these data point to multiple organ failures, and hence that 63 

COVID-19 pathogenesis is complex, especially in patients experiencing severe disease.  64 
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It is believed that SARS-COV-2 is able to use angiotensin-converting enzyme 2 (ACE 2) 65 

as a receptor for cell entry (Zheng et al., 2020; Zhou et al., 2020b). ACE2 is attached to the 66 

outer surface (cell membranes) of cells in the lungs, arteries, heart, kidney, and intestines 67 

(Hamming et al., 2004). Additionally, ACE2 is expressed in Leydig cells in the testes (Jiang et 68 

al., 2014) and neurological tissue (Baig et al., 2020). As such, it is possible that these organs 69 

might also be infected by SARS-CoV-2. The host immune response to SARS-CoV-2 may also 70 

impact pathogenicity, resulting in severe tissue damage and, occasionally, death. Indeed, 71 

several studies have reported lymphopenia, exhausted lymphocytes and cytokine storms in 72 

COVID-19 patients (Blanco-Melo et al., 2020; Cao, 2020). Numerous clinical studies have 73 

also observed the elevation of lactate dehydrogenase (LDH), IL-6, troponin I, inflammatory 74 

markers and D-dimer in COVID-19 patients (Wang et al., 2020b; Zhou et al., 2020a). However, 75 

despite the enormous burden of morbidity and mortality due to COVID-19, we know little 76 

about its pathophysiology, even though this establishes the basis for successful clinical 77 

practice, vaccine development and drug discovery. 78 

Using a multi-omics approach employing cutting-edge transcriptomic, proteomic and 79 

metabolomic technologies we identified significant molecular alterations in patients with 80 

COVID-19 compared to uninfected controls in this study. Our results refine the molecular view 81 

of COVID-19 pathophysiology associated with disease progression and clinical outcome. 82 

 83 

Results 84 

Patient cohort and clinical characters 85 
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We studied 66 clinically diagnosed and laboratory confirmed COVID-19 patients hospitalized 86 

at the Shanghai Public Health Clinical Center, Shanghai, China between January 31st and 87 

April 7th, 2020 (Fig. 1A, Tables S1 and S2). At the time of writing, 55 (49 mild and 6 severe) of 88 

the 66 patients have recovered and been discharged following treatment, while five patients 89 

(1 mild and 4 severe) remain in the hospital and are receiving ongoing treatment. 90 

Unfortunately, six patients (all severe) died. 91 

Molecular variation associated with COVID-19 pathophysiology 92 

Serial blood and throat swab samples were collected from all patients, as well as from 17 93 

healthy volunteers. To determine whether COVID-19 pathophysiology was associated with 94 

particular molecular changes, a total of 23,373 expressed genes, 9,439 proteins, 327 95 

metabolites and 769 exRNAs were examined using a multi-omics approach combining 96 

transcriptomics, proteomics, and metabolomics (Fig. 1B). Compared with healthy controls, 97 

mild and severe patients had significantly different expression patterns (higher or lower) in 98 

6.79% and 26.0% of expressed genes, 52.1% and 51.7% of proteins, 7.34% and 15.6% of 99 

metabolites and 39.9% and 20.5% of exRNAs, respectively (Fig. 1C, Tables S3-S6). 100 

Significant differences in the principal component 1 (PC1), PC2 and/or PC3 between healthy 101 

controls, mild and severe COVID-19 patients were observed (Figs. 2A and S1A). Remarkably, 102 

there were significant correlations between multi-omics data and classical blood and 103 

biochemical parameters (Fig. 2B), suggesting that the molecular changes identified directly 104 

impact the pathophysiology of COVID-19. 105 
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The correlation between molecular variation and COVID-19 pathophysiology was best 106 

reflected in the proteomic analysis (Fig. 2). Specifically, there was significant downregulation 107 

in the tricarboxylic acid cycle (TCA) and glycolytic pathways in both mild and severe patients 108 

compared to healthy controls (Figs. 2C and S1B). However, the hypoxia-inducible factors 109 

(HIF-1) signaling pathways and well-known host defense pathways (e.g., T cell receptor 110 

signaling pathway, ISG15 antiviral signaling pathway) were elevated in these patients (Figs. 111 

2C and S1B). Additionally, we identified 14 co-expression groups (“modules”) of proteins that 112 

were highly correlated to clinical parameters (Fig. 2D). Module 1, comprising 12 proteins, was 113 

strongly associated with activated partial thromboplastin time (APTT) (Fig. 2E), with their 114 

downregulated expression likely indicating higher APTT values. In contrast, levels of plasma 115 

IL-6 and IL-10 in patients were positively correlated with the expression of proteins in module 116 

15 (Fig. 2F). Notably, correlations between the proteins in these modules were also identified, 117 

suggesting that proteins may interact in defining clinical outcome (Figs. S2C and S2D). In 118 

addition to proteins, lipoprotein variation was also significantly correlated with immune 119 

changes including IgG, monocytes and procalcitonin (Fig. 2B). Combined, these data reveal a 120 

significant association between specific molecular variations and COVID-19 pathophysiology. 121 

Tissue damage caused by SARS-CoV-2 122 

Recent data suggests that SARS-CoV-2 infection is associated with multi-tissue injury and 123 

organ damage (Wu et al., 2020b; Zheng et al., 2020).Compared to healthy controls, intensive 124 

alteration of tissue-enhanced proteins were observed in all COVID-19 patients, suggestive of 125 

multiple organ dysfunction including the lung, liver, brain, testis and intestine (Figs. 3A and 3I). 126 
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Notably, the majority of proteins related to organ function were downregulated in COVID-19 127 

patients (Fig. 3B). As expected, lung-enhanced proteins varied significantly in the plasma of 128 

both mild and severe patients. Likely because lung-enhanced proteins are not rich in the 129 

human protein atlas, the lung-enhanced proteins in either mild or severe patients did not 130 

achieve the top rank. Nevertheless, lung abnormality was reflected in the activation of the 131 

HIF-1 signaling pathway and reactive oxygen species metabolic processes in all patients (Fig. 132 

3D). Liver- and brain-enhanced proteins also varied significantly, followed by those from the 133 

testis, intestine and other organs, suggesting that these organs might also be seriously 134 

affected (Fig. 3A). Severe brain dysfunction was reflected in the significant decline of 135 

brain-enhanced proteins regulating neurotransmitter synthesis, neurotransmitter transport, 136 

and the numbers of neurotransmitter receptors, as well as a significant decrease in proteins 137 

including ENO1, MBP and NEFM that are known biomarkers to reflect brain dysfunction (Figs. 138 

3C and 3F). Liver-enhanced proteins, that regulate the transportation of sterol and cholesterol, 139 

were downregulated, while those involved in acute inflammatory response were elevated in 140 

both mild and severe patients (Fig. 3E). Testis-enhanced proteins involved in the cell cycle and 141 

cell proliferation were upregulated in all male patients, although proteins (e.g. YBX2) 142 

associated with reproduction were significantly downregulated. Heart specific proteins related 143 

to cardia muscle contraction and oxidative reduction were reduced in COVID-19 patients (Fig. 144 

3H). Finally, variation in tissue-enhanced proteins was also associated with COVID-19 severity. 145 

For example, brain-enhanced proteins enriched in tubulin accumulation were upregulated in 146 

mild disease patients, indicating multiple neuron cell apoptosis in these patients. However, 147 
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proteins significantly upregulated in severe patients were enriched in liver steatosis AOP and 148 

in multi-drug resistance factors (Figs. S2A and S2B). 149 

Organ dysfunction was also reflected in the relative proportion of different cell 150 

populations. We identified 16 cell types whose abundance changed significantly following 151 

virus infection (Fig. 3F). For example, the set of proteins expressed by alveolar type 1/2 152 

epithelial cells (AT1 and AT2) were significantly downregulated in all patients (Fig. 3G). In 153 

addition, the majority of tissue-injury related exRNAs across all tissues showed differential 154 

expression, including lung (55 in 92 pre-identified, p<0.0001), kidney (14 in 22, p<0.0001), 155 

liver (17 in 22, p<0.0001), brain (8 in 16, p=0.0016) and heart (5 in 6, p<0.0001) (Fig. S2C). 156 

Furthermore, a large proportion of tissue-injury related exRNAs were expressed differently in 157 

mild and severe patients in most tissues analyzed (30/92 in lung, 10/22 in kidney, 8/22 in liver 158 

and 3/6 in heart), except brain (1/16) (data not shown). Together, our data indicate that 159 

COVID-19 causes adverse functions in multiple organs including lung damage. 160 

Immunopathological changes in COVID-19 patients 161 

Immune responses can cause severe damage to the cells or tissues that defend hosts against 162 

viral infection (Baseler et al., 2017; Cicchese et al., 2018; Newton et al., 2016). Analysis of 163 

whole blood transcriptomic data revealed that gene sets, including an antiviral IFN signature 164 

(M75 module), were enriched at the first sampling timepoint (Fig. 4A, Table S7). Notably, IFN 165 

signaling was continuously activated in severe patients during the entire period of 166 

hospitalization (Fig. 4A), while negative regulators of innate immune signaling (e.g. TRIM59, 167 

USP21 and NLRC3) were downregulated (Fig. S3A). Additionally, significant increases of IL-6, 168 
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IL-8 and IL-10 levels were detected in severe patients compared to mild patients (Figs. 2F 169 

and S3B). Combined, these data suggest that the continuous activation of IFN-I signaling and 170 

a high level of inflammatory cytokines likely impact COVID-19 immunopathology. 171 

Higher neutrophil counts were observed in severe patients but not in mild patients during 172 

hospitalization (Fig. S3C). Examination of the neutrophil transcriptomic signatures revealed 173 

that excessive neutrophil activation was associated with severe rather than mild disease. 174 

These markers involved those utilized in neutrophil chemotaxis, activation and migration (Fig. 175 

S3D). Notably, genes encoding molecules associated with neutrophil extracellular traps 176 

(NETs) were significantly upregulated in severe disease patients (Fig. 4B). As excess NETs 177 

formation can lead to tissue damage (Kruger et al., 2015), our data imply that the excessive 178 

activation of neutrophils may contribute to COVID-19 pathogenesis. 179 

As in the case of influenza viruses that can be cleared by strong T cell responses (van de 180 

Sandt et al., 2014; Wang et al., 2015), SARS-CoV-2 immunity in mild patients was 181 

characterized by a robust T cell response, reflected in T cell signaling activation (M7.3 module, 182 

M35.1 module) and T cell differentiation (M19 module) on admission, followed by subsequent 183 

rapid reduction (Fig. 4A). However, severe patients lost ~59.1% of their total T cell population, 184 

62.3% of their CD4 T cells and 52.8% of their CD8 T cells. Importantly, the CD4 T cell 185 

population gradually recovered in the severe-survivors compared to the severe-fatality group 186 

(Fig. S3E). Additionally, T cells in the survivors were primed by dendritic cells and expressed 187 

high levels of IFNG and GZMB (Fig. 4C). T cell dysfunction was observed in the severe group, 188 

which could in part be due to an inhibitory status based on the expression levels of multiple 189 
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exhaustion markers (Fig. S3F). Strikingly, the severe disease group had a greater abundance 190 

of ARG1 (Fig. S3G). Finally, the mild group had higher TCR diversity than the severe group 191 

(Fig. S3H). In sum, our data suggest that the T cell response is indispensable to successful 192 

host defense against SARS-CoV-2. 193 

Finally, we investigated the immune signatures associated with poor COVID-19 194 

prognosis. Notably, KEGG functional analysis revealed that gene sets of the “IL-17 signaling 195 

pathway” were significantly enriched in the severe-fatality group. Further analysis of the 196 

signature components revealed that p38 MAPK activation was dominant in fatal cases, while 197 

higher levels of IL13 and IFNG were present in survivors (Fig. 4D). These gene signatures 198 

might contribute to greater neutrophil influx (CXCL2 and CXCL6) and inflammation (S100A8), 199 

and could be detrimental in the severe disease group (Fig. 4E). 200 

Comprehensive changes in lipoprotein metabolism in COVID-19 patients 201 

To reveal metabolic changes in COVID-19 patients, we quantified 348 metabolite parameters 202 

in small metabolites, lipoprotein subclasses and their compositional components. The PCA 203 

scores plot revealed an obvious metabolomic trajectory from mild to severe COVID-19, and 204 

gradually away from healthy controls (Fig. 5A). Such group-clustering patterns were 205 

independently confirmed by PCA scores plots from all NMR-detectable metabolite signals, all 206 

MS-detectable signals for lipids, and hydrophilic molecules in plasma samples (Figs. 207 

S4A-S4D). Our data therefore indicate that a concentration of changes in plasma metabolites 208 

are associated with COVID-19 severity. 209 
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Further statistical analyses highlighted the major changes in the levels of lipoprotein 210 

sub-classes and their compositional components including LDL1 (L1TG), LDL4, VLDL5, 211 

HDL1 and HDL4 (Figs. 5C and S4E). Compared with healthy controls, the level of 212 

triglycerides (TG) in LDL1 and free cholesterol (FC) in all VLDL5 lipids were significantly 213 

elevated in both mild and severe patients, while there were significant decreases in LDL4 and 214 

LDL5, cholesterol in LDL, cholesterol esters in VLDL5, Apo-A2 in both HDL and nascent HDL, 215 

FC in HDL1 together with total cholesterol and phospholipids (PL). Interestingly, HDL4 and its 216 

components had significant lower levels in severe patients. Compared with mild patients, 217 

L1TG and PL in HDL1 was increased in severe patients, while cholesterol in HDL1 and HDL2, 218 

HDL4 and its components decreased (Fig. S4F). Fortunately, most of these lipoproteins 219 

recovered following patients discharge (Figs. 5B, 5C and S4D). 220 

The levels of some key proteins involved in lipoprotein metabolism, including the 221 

soluble low-density lipoprotein receptor (sLDLR), lecithin-cholesterol acyltransferase (LCAT) 222 

and the cholesteryl-ester transfer protein (CETP), were significantly reduced in mild and 223 

severe COVID-19 patients than those in healthy controls (Figs. 5D and 5E). Additionally, 224 

enzymes such as ACO2, IDH, OGDH, DLD, SDH and MDH in the TCA cycle were lower in 225 

COVID-19 patients compared to healthy controls, while the enzymes central to fatty acid 226 

synthesis (Acetyl coenzyme A carboxylase [ACAC] and Fatty acid synthetase [FASN]) were 227 

elevated. Finally, significant concurrent elevations in plasma lactate and LDH were 228 

observable in patients compared to healthy controls (Figs. 5E, S4G and S4H). In sum, these 229 
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data reveal the dysregulation in lipoprotein metabolism, glycolysis and TCA cycle during 230 

SARS-CoV-2 infection. 231 

Viral load is associated with disease prognosis of severe COVID-19 patients 232 

The severity and clinical outcome of COVID-19 were also associated with viral load. Overall, 233 

SARS-CoV-2 RNA loads on admission were significantly higher in the throat swabs of the five 234 

fatal cases compared to those who survived (mean, 1.26×105 vs 3.98×103 copies/mL, 235 

respectively; p = 0.04) (Fig. 6A). Although viral load declined during the period of 236 

hospitalization in both survival and fatal cases, it remained elevated in fatal cases compared 237 

to survivors. 238 

Estimation of the correlation coefficient between viral load and protein expression 239 

revealed that proteins participating in antiviral processes, including the TCR and BCR 240 

signaling pathway, were positively associated with viral load changes in severe-survivors. 241 

Additionally, proteins participating in viral life cycle processes, including viral messenger RNA 242 

synthesis and innate immune responses, were only positively associated with viral load 243 

changes in the severe-fatal group (Fig. 6E). Notably, proteins (e.g., FASN, ACSS2, CPT1A, 244 

HADHB) involved in pathways including mitochondrial function, lipid metabolic process, 245 

steroid hormone process and TCA cycle were continuously upregulated in the severe-survivor 246 

compared to the severe-fatal group (Figs. 6B and 6C). However, this upregulation was only 247 

observed during the early stage following admission in the severe-fatal group. Surprisingly, 248 

proteins related to viral life cycle, viral RNA synthesis, oxidative stress (e.g., EIF, EIFB, 249 

RPL19, SLCA24), were downregulated in the several-survivor cases following admission, but 250 
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maintained high levels in the severe-fatal patients (Figs. 6B and 6D). Hence, SARS-CoV-2 251 

may exploit host resources over the duration of its infection. 252 

Biomarkers predictive of clinical outcomes of COVID-19 patients 253 

As many molecules associated with COVID-19 pathophysiology were identified, we 254 

investigated whether particular molecular changes could be used as biomarkers to predict 255 

clinical outcomes. Using an unsupervised PCA, the exRNA, mRNA, proteomics and the 256 

corresponding clinical covariate data sets across all time-points, or a subset from the first 257 

time-point, clustered into three clinical phenotypes: (i) samples from healthy controls; (ii) 258 

samples from COVID-19 patients with a good prognosis; and (iii) samples from COVID-19 259 

patients with a poor prognosis (Methods; Fig. 7A). Given this, prognostic classification models 260 

were constructed. Predictive models based on all four types of data worked well, especially 261 

those utilizing the clinical covariates and the proteomic data (Fig. S5), suggesting that all four 262 

types of data collected at admission contain key prognostic information. 263 

In addition, we identified robust predictive models and prognostic biomarkers from 264 

each of the four types of data using a previously described approach (Shi et al., 2010) (Figs. 265 

7B and 7C). One or two features (expressed genes, proteins, exRNAs, and biochemical 266 

parameters) in each data set were able to clearly separate patients into two groups 267 

characterized by different prognoses (Figs. 7D-7I). Poor prognosis was associated with 268 

increased levels of D-dimer (p=0.004) and fibrinogen degradation products (FDP; p=0.02), 269 

and with a decrease in F13A1 expression (p<0.002; Figs. 7H and 7I), suggesting that blood 270 

clotting status may be one of the key factors to monitor in COVID-19 progression. For the 271 
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mRNA-based model, poor prognosis was associated with lower levels of CD3E and higher 272 

levels of OLAH, and hence highly concordant with immune responses in COVID-19 patients 273 

(Fig. 7E). Additionally, exRNA-based predictors included members of the let-7 family (Figs.7D 274 

and 7E). Finally, the protein-based models highlighted features enriched in extracellular 275 

exosomes, lipoprotein metabolic processes, innate immune responses, and blood 276 

coagulation (Figs. 7G and 7H). 277 

 278 

Discussion 279 

The COVID-19 pandemic has had a profound impact on a global scale (WHO, 2020). Despite 280 

the enormous burden or morbidity and mortality due to COVID-19, we know little about its 281 

pathophysiology, even though this establishes the basis for successful clinical practice, 282 

vaccine development and drug discovery. Current clinical practice may be unable to provide a 283 

precision supportive therapy when a novel disease like COVID-19 emerges, in part explaining 284 

the high case fatality rates often observed at the beginning of outbreaks (Alonso et al., 2019). 285 

We used a multi-omics approach to identify numerous expressed genes, proteins, 286 

metabolites and exRNAs from COVID-19 patients with a range of disease severities, and that 287 

were significantly correlated with key clinical features as well as to classic blood and 288 

biochemical parameters (Fig. 2). These data therefore provide a comprehensive molecular 289 

view of the pathophysiology of COVID-19. Finally, based on our multi-omics data (Fig. S6), 290 

mild and severe COVID-19 cases may need different therapeutic strategies. 291 
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       COVID-19 severity and clinical outcome was significantly associated with multi-organ 292 

damage. Due to the widespread presence of ACE2 in humans (Chai et al., 2020; Chen et al., 293 

2020b; Fan et al., 2020; Hamming et al., 2004; Zou et al., 2020), SARS-CoV-2 is able to infect 294 

many organs (Wadman et al., 2020). In addition to pneumonia (Wu et al., 2020a; Zhou et al., 295 

2020b), several clinical studies have reported mild gastrointestinal, cardiovascular symptoms 296 

and neurological manifestations in hospitalized COVID-19 patients (Baig, 2020; Chen et al., 297 

2020a; Guan et al., 2020; Mao et al., 2020; Xiang et al., 2020; Xu et al., 2020). 298 

Histopathologic investigation has also described damage in other organs in addition to the 299 

lung (Barton et al., 2020; Cai et al., 2020; Wadman et al., 2020; Wang et al., 2020c). The 300 

molecular data generated here support the occurrence of damage in multiple organs including 301 

lung, liver, brain, heart in COVID-19 patients, and also identify damage in other organs 302 

including the testis (Fig. 3). In the case of brain and testis damage, a key issue is how 303 

SARS-CoV-2 is able to cross the blood-brain or the blood-testis barriers? One possibility 304 

might be that heparin was prescribed for coaggregation problems commonly observed in 305 

some COVID-19, even though it increases permeability (Gautam et al., 2001; Lin et al., 2020; 306 

Oschatz et al., 2011). More importantly, the alteration (up- or down-regulated) of 307 

tissue-enhanced proteins and tissue-damage related exRNAs are significantly correlated with 308 

clinical severity and outcome. 309 

SARS-CoV-2 infection results in acute lung injury (ALI) in patients, with ground-glass 310 

opacity in most computed tomography (CT) reports from our facility and in other hospitals 311 

(Chen et al., 2020a; Zhou et al., 2020b; Zhu et al., 2020). Autopsy disclosed histologic 312 
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changes in lungs included edema, fibrinous/proteinaceous exudates, hyperplastic 313 

pneumocytes, patchy inflammation, multinucleated giant cells and diffuse alveolar damage 314 

(Barton et al., 2020; Tian et al., 2020). The data generated here revealed that the number of 315 

AT1 and AT2 cells reduced significantly in severe patients, suggesting destruction of the 316 

alveolar epithelium (Fig. 3F), which in turn will lead to the accumulation alveolar fluid and 317 

hence cause hypoxia (Vadász and Sznajder, 2017). In addition, we also noted that HIF1a 318 

signaling was modified which may further worsen ALI (Dada et al., 2003). Thus, our molecular 319 

data suggest that removal of excess alveolar fluid and the restoration of alveolar structure will 320 

be of major clinical importance. 321 

Our data also identified immune pathophysiology a factor that greatly impacted 322 

COVID-19 clinical outcome. The innate immune response against viruses is mounted 323 

immediately after a host acquires a viral infection, whereas there is a delay before the onset of 324 

adaptive immunity (Murphy and Weaver, 2016). Unlike SARS-CoV and influenza virus, 325 

SARS-CoV-2 may be present in patients for longer time periods, especially those with severe 326 

syndrome (Du et al., 2020; Wang et al., 2020a). Several studies have reported that severe 327 

COVID-19 patients experienced lymphopenia, impaired adaptive immunity, uncontrolled 328 

inflammatory innate responses, and cytokine storms (Guan et al., 2020; Huang et al., 2020; 329 

Qin et al., 2020; Shi et al., 2020; Wang et al., 2020b). While it is believed that T cells play an 330 

important role in fighting the infection in the case of Ebola virus, influenza virus and 331 

SARS-CoV (Channappanavar et al., 2014; Ruibal et al., 2016; Sridhar et al., 2013; van de 332 
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Sandt et al., 2014; Zhao et al., 2010), a role for T cells in SARS-CoV-2 infection not yet has 333 

been determined, likely reflecting “lymphopenia” (Wang et al., 2020d; Zhou et al., 2020c). 334 

Our longitudinal analyses provided evidence that patients with mild or severe symptoms 335 

who succeeded in T cell mobilization promptly controlled SARS-CoV-2 infection and 336 

symptoms (Figs. 2C, 4A and 4C). In contrast, those (especially severe-fatal) patients that 337 

failed to mount a sound T cell response maintained a continuous pro-inflammatory response 338 

and suffered from cytokine storms as well as excess NETs (Figs. 4A and 4B), both of which 339 

are known to cause systematic tissue damages (Akiyama et al., 2019; Bohmwald et al., 2019). 340 

In sum, our data indicate that T cells play a key role in controlling SARS-CoV-2 infection. 341 

It is believed that p38 signaling, collagenase (MMP9), neutrophil chemo-attractants 342 

(CXCL2 and CXCL6) and S100A8 are autoinflammation-like signatures (Cheng et al., 2019; 343 

Chung, 2011; Halayko and Ghavami, 2009; Mattos et al., 2002). Remarkably, these 344 

molecules were significantly upregulated in severe-fatal in comparison to mild and 345 

severe-survival patients (Fig. 4D), the former of which also exhibited a persistent elevation of 346 

type I interferon responses (Fig. 4A). Together, the data generated here indicate that 347 

autoinflammation may amplify disease in very severe cases of COVID-19. 348 

Patients will receive better and precision therapy if we are able to identify molecular 349 

biomarkers associated with prognosis at the beginning of disease presentation. For example, 350 

a 21-gene expression assay, which can predict clinical outcome, is used in the case of breast 351 

cancer (Sparano et al., 2018). To date, however, almost no biomarkers have been used to 352 

accurately predict prognosis in the case of emerging infectious diseases (Wynants et al., 353 
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2020). In this study, some of molecules identified at the beginning phase of COVID-19 were 354 

significantly correlated to both classical blood and biochemical parameters, and more 355 

importantly to disease severity. Based on our previous work (Shi et al., 2010; Su et al., 2014a; 356 

Zhang et al., 2015), we established classification models based on each of four data types: 357 

exRNAs, mRNA, proteins, and biochemical parameters. Notably, COVID-19 clinical outcomes 358 

could be accurately predicted using just one or two biomarkers in each data type. In addition, 359 

these biomarkers may have biological functions directly relevant to COVID-19 360 

pathophysiology. For example, biomarkers let-7 family from exRNAs, OLAH and CD3E from 361 

mRNAs, and C4A and C4B from proteomes concordantly revealed the importance of T-cell 362 

activation and the suppression inflammatory responses. However, because of the relatively 363 

small patient sample size utilized here, it is clear that more work is needed to confirm the 364 

reliability and practicality these biomarkers. 365 

 In sum, we have identified a large number of molecules associated with COVID-19 366 

pathophysiology, some of which may also be effective predictive biomarkers of clinical 367 

outcome at the onset of disease. In addition, these data suggest that both distinct immune 368 

responses and multi-organ damage have a major impact on COVID-19 severity and disease 369 

prognosis. 370 

 371 

Materials and Methods 372 

Study design and patient cohort 373 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.19.20134379doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.19.20134379


19 
 

According to arrangements made by the Chinese Government, all adult patients in Shanghai 374 

diagnosed with COVID-19 were admitted to the Shanghai Public Health Clinical Center. We 375 

enrolled 66 COVID-19 patients who were treated at the Shanghai Public Health Clinical 376 

Center between January 31st and April 7th, 2020. Based on clinical signs and the need for 377 

oxygen, these patients were divided into two groups: (i) mild (50/66, 75.8%) – with clinical 378 

signs of pneumonia but without oxygen support, and (ii) severe (16/66, 24.2%) – with oxygen 379 

support using non-invasive ventilation, tracheal tube, tracheotomy assist ventilation or 380 

extracorporeal membrane oxygenation (ECMO) (Fig. 1A and Table S1). All human samples 381 

included in the present study were obtained after approval of the research by the Shanghai 382 

Public Health Clinical Center Ethics Committee (YJ-2020-S018-02), together with the written 383 

informed consent from each patient. 384 

Sample collection and processing 385 

A total of 277 blood samples, comprising 1-2 mL each, were collected by professional 386 

healthcare workers over a 5-week period, with one to five sampling time points from each 387 

patient. In addition, 17 blood samples were collected from 17 uninfected volunteers and 388 

utilized as healthy controls. Samples were transported to the research laboratory within two 389 

hours of collection. For RNA extraction, 200 μL of whole blood was mixed with 1 mL QRIzol 390 

reagent (Qiagen), followed by 15 min incubation at room temperature and subsequent 391 

freezing at -80°C before total RNA extraction. The remaining whole blood samples (800-1800 392 

μL) were processed immediately to separate plasma and subsequently stored at -80°C until 393 

use. 394 
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All clinical data were recorded by the clinicians. COVID-19 loads were determined by 395 

quantitative real-time RT-PCR using the Takara One Step PrimeScript RT–PCR kit (Takara 396 

RR064A) as previously described (Wu et al., 2020a). Quantitative viral load tests were 397 

performed using the BioDigital General dPCR kit (Jiangsu Saint Genomics, Cat no. 398 

CSJ-3-0018). 399 

RNA and exRNA extraction and library construction 400 

Total RNA from whole blood samples was extracted using the RNeasy Plus Universal Mini Kit 401 

(Qiagen) following the manufacturer’s instructions. The quantity and quality of RNA solution 402 

were assessed using a Qubit Flex fluorometer (Invitrogen) and an Agilent Bioanalyzer (Agilent 403 

Technologies) before library construction and sequencing. RNA library construction was 404 

performed as described using the VAHTS Universal V6 RNA-seq Library Prep Kit for Illumina 405 

(Vazyme, China). Ribosomal, globin and RN7S RNAs were depleted using specially designed 406 

probes (Vazyme, China). 407 

Plasma samples were divided into aliquots and used for extracellular RNA (exRNA) 408 

extraction and library construction, protein extraction and metabolomic analyses. For exRNA 409 

library preparation, total RNA including exRNA was extracted using the miRNeasy 410 

Serum/Plasma Advanced Kit (Qiagen). The exRNA library was prepared using the NEXTflex 411 

Small RNA-seq Kit v3 (PerkinElmer). RNA quantity and quality were determined as 412 

mentioned above. After final library quantification using a Qubit Flex fluorometer (Invitrogen) 413 

and quality control using the Bioptic Qsep100 to confirm the expected size distributions, all 414 
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libraries (RNA and exRNA) were pair-end (150-bp reads) sequenced on the Illumina 415 

NovaSeq6000 platform (Illumina). 416 

RNA-seq data analysis 417 

Data processing and filtering criteria 418 

Preliminary processing of raw reads was performed using FASTP v0.19.6 to remove adapter 419 

sequences and obtain trimmed reads (Chen et al., 2018). The sequence 420 

AGATCGGAAGAGCACACGTCTGAACTCCAGTCA was used as the R1 adapter sequence 421 

while AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT was used as the R2 adapter 422 

sequence. HISAT2 v2.1 (Pertea et al., 2016) was used for read alignment to the human 423 

genome, build 38. Samtools v1.3.1 was used to generate intermediate result files for quality 424 

assessment of the aligned reads by BamQC v2.0.0 (https://github.com/s-andrews/BamQC) 425 

and insert size distribution analysis. The assembly of aligned reads and assessment of 426 

expression levels were processed through StringTie v1.3.4. Gene counts were determined 427 

with preDE.py (http://ccb.jhu.edu/software/stringtie/) based on results derived from Ballgown 428 

(https://github.com/alyssafrazee/ballgown). Ensembl transcript annotation (version: 429 

Homo_sapiens.GRCh38.93.gtf) with 58,395 genes was used. 430 

A QC analysis and library filtering were performed before downstream biological 431 

analysis. Libraries that passed the following criteria were retained: (i) more than five million 432 

reads; (ii) more than 90% of reads aligned to the human reference genome; (iii) over 10,000 433 

genes were expressed (a gene with FPKM>0.5 was identified as an expressed gene). In 434 

addition, to monitor data quality across batches, libraries of some heathy control samples 435 
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were constructed and sequenced 2-3 times. The average expression profile of the multiple 436 

libraries from each heathy control sample were calculated for follow-up analyses.  437 

Immunoassay 438 

Immune repertoires were extracted with MiXCR, a software tool that extracts T-cell receptor 439 

(TCR) and immunoglobulin (IG) repertoires from RNA-seq data (Bolotin et al., 2017; Bolotin et 440 

al., 2015). The number of clonotypes was then calculated using VDJtools, using the output 441 

from MiXCR (Shugay et al., 2015). 442 

Differentially expressed genes (DEGs) 443 

To identify DEGs, a Student’s t-test was applied to the expression matrix. Genes with p-values 444 

less than 0.05 as well as a fold change >2 or <1/2 were labeled as up-regulated and 445 

down-regulated genes, respectively (Su et al., 2014b). This straightforward approach of 446 

combining a fold change cut-off with a non-stringent p-value threshold has been 447 

demonstrated to yield reproducible and robust lists of DEGs for both microarray and RNA-seq 448 

based gene-expression analyses (Shi et al., 2006; Su et al., 2014b). 449 

Functional and cell type enrichment analyses 450 

Functional analyses were conducted based on genes differentially expressed between 451 

several subgroups of COVID-19 patients compared with healthy control samples. GSEA 452 

(Gene Set Enrichment Analyses) was performed to identify significantly enriched functional 453 

classes of gene sets correlated with blood transcription modules (BTM) described by Li et al. 454 

(2014), KEGG pathways, and Gene Ontology (GO) terms. A default FDR (false discovery rate) 455 
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value of q�<�0.25 was considered statistically significant. The Normalized Enrichment Score 456 

(NES) of significant immune modules from BTMs was used to denote enrichment levels. 457 

The fraction of the cell subsets was calculated using the enrichment-score based 458 

algorithm xCell from the RNA-seq data (Aran et al., 2017). Briefly, the expression profile 459 

(FPKM) of all 230 samples was employed as raw signatures. The R package immunedeconv 460 

was applied to obtain enrichment scores of 35 immune cell types, estimating immune cell 461 

fractions including T cell, monocyte and neutrophil by summation of the scores in each 462 

sample (Sturm et al., 2019). 463 

exRNA-seq data analysis 464 

Alignment, quantification and quality control 465 

Libraries were sequenced in two batches, with an average sequencing depth of 15.7M raw 466 

reads per library. All FASTQ files were delivered to the ExceRpt small RNA sequencing data 467 

analysis pipeline (docker v4.6.3) (Rozowsky et al., 2019). Default parameters were used with 468 

exception of: (i) the sequence TGGAATTCTCGGGTGCCAAGG was given as the 3’adapter 469 

sequence, ignoring the adapter sequences guessed by the pipeline; (ii) the random barcode 470 

length was set to 4; (iii) the priority of the reference libraries during read assignment was set 471 

to miRNA > piRNA > tRNA > GENCODE > circRNA (Godoy et al., 2018). Pre-compiled 472 

genome and transcriptome indices of human genome, build 38 were used. The raw read 473 

count matrix was then normalized using count per million (CPM). 474 

A QC analysis was performed prior to biological analysis by removing (i) libraries with 475 
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low sequencing depths (<1M raw reads); (ii) libraries with mapping ratio lower than 50%, and 476 

(iii) libraries with low transcript-genome ratios. To minimize the impact of noise due to low 477 

expression levels, only 769 miRNAs with at least 1 count per million in no less than 10% of the 478 

total number of samples were included in the final analysis. 479 

Differentially expressed exRNAs 480 

To identify differentially expressed exRNAs, Student’s t-tests were applied to the normalized 481 

expression matrix. exRNAs with p-values less than 0.05, as well as fold change > 2 or < 1/2, 482 

were labeled as up-regulated and down-regulated exRNAs, respectively, in a similar manner 483 

to the RNA-seq data. 484 

Tissue-damage related miRNAs 485 

exRNAs reported to be associated with tissue damage were collected from publications (Atif 486 

and Hicks, 2019; Godwin et al., 2010; Wang et al., 2010; Wang et al., 2009; Zhou et al., 487 

2016)(Table S8). Fisher’s exact test was used to determine whether the proportions of 488 

differentially expressed (DE) exRNAs in tissue-damage related exRNAs were significantly 489 

higher than the proportions of DE exRNAs in the entire data set of 769 miRNAs. 490 

Proteome analysis 491 

Plasma Protein extraction and trypsin digestion 492 

Plasma samples used for protein extraction were first removed the tip 14 highest abundance 493 

plasma proteins using an immunodepleting kit (Thermo Fisher) according to the 494 

manufacturer’s instructions, and then inactivated at 85°C for 10 mins. The depleted plasma 495 
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was digested by trypsin at an enzyme to protein mass ratio of 1:25 overnight at 37°C, and the 496 

peptides were then extracted and dried (SpeedVac, Eppendorf). 497 

LC-MS/MS Acquisition of Plasma Samples 498 

Samples were measured using LC-MS instrumentation consisting of an EASY- nLC 1200 499 

ultra-high-pressure system (Thermo Fisher Scientific) coupled via a nano-electrospray ion 500 

source (Thermo Fisher Scientific) to a Fusion Lumos Orbitrap (Thermo Fisher Scientific). The 501 

peptides were dissolved with 12 μl loading buffer (0.1% formic acid in water), and 5 μl was 502 

loaded onto a 100 μm I.D. × 2.5 cm, C18 trap column at a maximum pressure 280 bar with 14 503 

μl solvent A (0.1% formic acid in water). Peptides were separated on 150 μm I.D. × 15 cm 504 

column (C18, 1.9μm, 120 A�, Dr. Maisch GmbH) with a linear 15–30% Mobile Phase B (ACN 505 

and 0.1% formic acid) at 600 nl/min for 75 mins. The MS analysis was performed in a 506 

data-independent manner. The DIA method consisted of MS1 scan from 300-1400 m/z at 60k 507 

resolution (AGC target 4e5 or 50 ms). Then 30 DIA segments were acquired at 15k resolution 508 

with an AGC target 5e4 or 22 ms for maximal injection time. The setting “inject ions for all 509 

available parallelizable time” was enabled. HCD fragmentation was set to normalized collision 510 

energy of 30%. The spectra were recorded in profile mode. The default charge state for the 511 

MS2 was set to 3. 512 

Peptide identification and protein quantification 513 

All data were processed using Firmiana (Feng et al., 2017).The DDA data were search 514 

against UniProt human protein database (updated on 2019.12.17, 20406 entries) using 515 

FragPipe (v12.1) with MSFragger (2.2) (Kong et al., 2017). The mass tolerances were 20 ppm 516 
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for precursor and 50 mmu for product ions. Up to two missed cleavages were allowed. The 517 

search engine set cysteine carbamidomethylation as a fixed modification and N-acetylation 518 

and oxidation of methionine as variable modifications. Precursor ion score charges were 519 

limited to +2, +3, and +4. The data were also searched against a decoy database so that 520 

protein identifications were accepted at a false discovery rate (FDR) of 1%. The results of 521 

DDA data were combined into spectra libraries using SpectraST software. A total of 327 522 

libraries were used as reference spectra libraries. 523 

DIA data was analyzed using DIANN (v1.7.0) (Demichev et al., 2020). The default 524 

settings were used for DIA-NN (Precursor FDR: 5%, Log lev: 1, Mass accuracy: 20 ppm, MS1 525 

accuracy: 10 ppm, Scan window: 30, Implicit protein group: genes, Quantification strategy: 526 

robust LC (high accuracy). Quantification of identified peptides was calculated as the average 527 

of chromatographic fragment ion peak areas across all reference spectra libraries. Label-free 528 

protein quantifications were calculated using a label-free, intensity-based absolute 529 

quantification (iBAQ) approach (Zhang et al., 2012). We calculated the peak area values as 530 

parts of corresponding proteins. The fraction of total (FOT) was used to represent the 531 

normalized abundance of a particular protein across samples. FOT was defined as a protein’s 532 

iBAQ divided by the total iBAQ of all identified proteins within a sample. The FOT values were 533 

multiplied by 105 for the ease of presentation and missing values were imputed with 10-5. 534 

Metabolome analysis 535 

NMR spectroscopy 536 
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The plasma samples used for NMR analysis were first treated with 56oC for 30 min. Our 537 

subsequent quantitative measurements of samples from healthy controls showed that such 538 

treatments caused no differences to the quantification results.  539 

NMR analysis was conducted on a 600 MHz NMR spectrometer (Bruker Biospin) as 540 

reported previously (Jimenez et al., 2018) with some minor modifications. In brief, 320μL of 541 

each plasma sample was mixed with 320μL of a phosphate buffer (0.085 M containing 10% 542 

D2O) with composition described previously (Jiang et al., 2012), and 600μL mixture was 543 

transferred into a 5mm NMR tube for NMR analysis. 152 parameters of the plasma were then 544 

quantified using a server-based software package (Bruker Biospin), including 112 parameters 545 

for lipoproteins (including main fractions, subclasses and compositional components therein), 546 

two acute-phase glycoproteins together with 41 small metabolites (such as amino acids, 547 

ketone bodies, glucose, carboxylic acids, ethanol). We also quantified six ratio-parameters for 548 

saturated, unsaturated, monounsaturated and polyunsaturated fatty acids from the 549 

diffusion-edited spectra (Xu et al., 2012). We further calculated 187 more ratio-parameters 550 

(such as the cholesterol-to-triglyceride ratio, percentage of triglycerides and cholesterol in 551 

total lipids) from the quantitative data for lipoproteins. A total of 348 quantitative parameters 552 

obtained were collectively employed to define the metabolomic phenotypes of each of the 553 

human plasma samples. 554 

Development of prognostic models 555 

Model development 556 
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Four data sets representing the (i) clinical tests, (ii) exRNA-seq, (iii) mRNA-seq, and (iv) 557 

proteomics quantification analysis were used to develop prognostic models for the prediction 558 

of patient outcomes (i.e. good or poor). Patients with a “good” outcome included those with 559 

mild or severe syndrome but who were discharged after treatment; while patients with “poor” 560 

outcomes included those who died or remained in ICU for more than two months.  561 

Prognostic models were developed and validated using a two-layer validation strategy 562 

(Fig. S5A) to prevent information leaking from the training set to the validation set13. Briefly, 563 

patients were first divided into training and validation sets with equal size based on outcome 564 

and admission date. The training set was then used to select variables and train prognostic 565 

models using multiple machine learning algorithms, including nearest mean classification 566 

(NMC), k-nearest neighbors (KNN), support vector machine (SVM), and random forest (RF) 567 

through an internal-layer of 50 runs of five-fold cross-validation process to resist overfitting. 568 

Next, a final model was built using the whole training set with the best performing machine 569 

learning algorithm as defined above. The final model was further validated using the 570 

validation set as an external-layer evaluation. Model performance was assessed in terms of 571 

the Matthews correlation coefficient (MCC), AUC, accuracy, sensitivity, specificity, positive 572 

predictive value (PPV) and negative predictive value (NPV). 573 

Prognostic biomarkers were identified based on the frequency of variables selected by 574 

machine learning algorithms. Because the sample size was relatively small compared to the 575 

large number of variables, it was difficult to identify stable biomarkers as indicated by the low 576 

frequencies of the variables used in the prognostic models13 (Figs. S5A and S5B). To detect 577 
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more robust prognostic biomarkers, 50 runs of five-fold cross-validation process were 578 

therefore applied to the whole data set. The variables used by the best performing machine 579 

learning algorithm were identified as prognostic biomarkers for each data set. 580 

Learning curve model comparison 581 

Learning curve model comparison (LCMC) was performed using Predictive Modeling Review 582 

as available in JMP Genomics 10 583 

(https://www.jmp.com/en_us/software/genomics-data-analysis-software.html). LCMC reveals 584 

the effects of sample size on the accuracy and variability of the predictive models using 10 585 

runs of 4-fold cross-validation. 586 

We performed LCMC with prognosis (good or poor) as target variables, and the clinical 587 

variables, exRNA, mRNA, or proteomics measurements as predictors. Fig. S5C shows each 588 

individual (RMSE) and (AUC) learning curve and the average for each of the eight partition 589 

tree models for clinical endpoints, as well as exRNA using K-fold cross validation. The LCMC 590 

suggested that with up to 15 samples, eight partition tree models reached AUC as 1 for 591 

clinical variables. However, more than 23 and 30 samples were needed for one and three 592 

models, respectively, to reach AUC of 1 for exRNA-seq data. The variability of RMSE and 593 

AUC for the proteomic and mRNA-seq data (not shown) were between that observed for 594 

clinical variables and the exRNA data. 595 

Statistical Analyses 596 

Univariate statistical analysis was performed using student’s t-test, Mann-Whitney U tests or 597 

ANOVA tests to compare continuous variables. Chi-square tests and Fisher’s exact tests 598 
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were used for the comparison of categorical variables. p-values were adjusted using 599 

Bonferroni correction or the Benjamini and Hochbery False Discovery Rate (FDR) in multiple 600 

comparisons, with p < 0.05 considered to be statistically significant. Principal components 601 

analysis (PCA) was conducted with univariance scaling, with the scores plot showing a 602 

distribution of metabolomic phenotypes for healthy participants and patients with moderate or 603 

severe COVID-19 (and upon discharge). Correlations were tested using Pearson correlation 604 

coefficients. Locally Weighted Linear Regression (Loess) was used for visualizing the time 605 

series data. All analyses were performed using appropriate R packages (version 3.5.1). 606 
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Figure Legends 897 

Fig. 1 Study design and patient cohort. 898 

(A) Schematic summary of the study design and patient cohort. Total sample numbers before 899 

quality control are shown for each omics data set.  900 

(B) The number of expressed genes and detected proteins, metabolites, exRNAs and clinical 901 

parameters in high quality patient samples.  902 

(C) Summary of differentially expressed genes, proteins, metabolites and exRNAs between 903 

uninfected controls and COVID-19 patients (mild and severe) in the multi-omics data. 904 

 905 

Fig. 2 Molecular characteristics of COVID-19 patients.  906 

(A) Scores of principal components 1(PC1) of each sample from the transcriptome, proteome, 907 

metabolome, and exRNA-seq principal component analyses.  908 

(B) Circos plots showing the significant correlations between clinical parameters and the 909 

multi-omics data.  910 

(C) The cluster heatmap represents expression patterns in the 1,656, 1,547 and 2,362 911 

proteins that showed significant upregulation (fold change>2) in the control, mild and severe 912 

patient groups. The top categories enriched for clusters are shown. Values for each protein in 913 

all analyzed regions (columns) are color-coded based on expression level, low (blue) and 914 

high (red) z-scored FOT.  915 

(D) The WGCNA of COVID-19 samples shows modules that are highly correlated with clinical 916 

features (left heatmap). Enrichment analysis for different modules is presented in the right 917 
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heatmap (p value <0.05).  918 

(E) Boxplot indicates the APTT time between mild and severe COVID-19 patients. The 919 

heatmap indicates the module 1 enriched protein expression patterns among mild and severe 920 

patients.  921 

(F) Boxplot indicates the IL-6 and IL-10 levels among mild and severe COVID-19 patients. 922 

The heatmap indicates the module 2 enriched protein expression patterns among mild and 923 

severe patients. Differences between groups were estimated using ANOVA. For all boxplots, 924 

the horizontal box lines in the boxplots represent the first quartile, the median, and the third 925 

quartile. Whiskers denote the range of points within the first quartile − 1.5× the interquartile 926 

range and the third quartile + 1.5× the interquartile range. 927 

 928 

Fig. 3 Patterns of tissue damage associated with COVID-19.  929 

(A) The distribution of tissue-enhanced proteins across the major tissues affected by 930 

COVID-19. Proteins whose expression altered in COVID-19 patients are colored red. 931 

(B) Heatmap indicating expression patterns of known tissue specific biomarkers among 932 

control, mild and severe patient groups.  933 

(C) Systematic summary of brain-enhanced expressed proteins and signaling cascades 934 

significantly altered in COVID-19 patients (neurotransmitters transport, synthesis). Values for 935 

each protein at all analyzed samples (columns) are color-coded based on the expression 936 

level, low (green) and high (red) z-scored FOT. 937 

(D) Network summarizing lung-enhanced expressed proteins and signaling cascades 938 
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significantly altered in COVID-19 patients (HIF-1α signaling pathway).  939 

(E) Network summarizing liver-enhanced expressed proteins and signaling cascades 940 

significantly altered in COVID-19 patients (Lipid metabolism). 941 

(F) Boxplot indicating the expression level of known brain dysfunctional biomarkers in control, 942 

mild and severe patients. 943 

(G) Heatmap showing normalized x-cell scores of specific cell types across control, mild and 944 

severe COVID-19 patients. *p < 0.05 (t test). 945 

(H) Heatmap showing the expression of cell type specific signatures among control, mild and 946 

severe COVID-19 patients. 947 

(I) Systematic summary of the GO pathways enriched by tissue-enhanced proteins that 948 

exhibited altered expression among control, mild, and severe patient groups. The heatmap of 949 

each panel indicates expression patterns of tissues-enhanced proteins among control, mild, 950 

and severe patient groups. The fold changes in tissue-enhanced proteins between 951 

mild/severe patient samples and control samples are shown on the right of heatmap. 952 

 953 

Fig. 4 Differences in immune responses among COVID-19 patients.  954 

(A) Transcriptional profiles reflect the dynamic immune response in COVID-19. GSEA (FDR 955 

< 0.25; 1,000 permutations) was used to identify positive (red), negative (blue) or no (white) 956 

enrichment of BTMs (gene sets). The graph shows the normalized enrichment score (NES) of 957 

each selected BTM in the different time points (T1, T2 and T3) for patients with mild or severe 958 

COVID-19 illness, in comparison to healthy controls. 959 
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(B) Expression levels of NETs’ markers for individual transcripts in severe versus mild 960 

comparisons. Data are represented as means ± SEM, *p < 0.05; ***p < 0.001 (t test).  961 

(C) Heatmap of IFNG, GZMB and PRF1 gene expression in COVID-19 patients.  962 

(D) Heatmap of genes enriched in IL-17 signaling pathway between healthy control and 963 

COVID-19 patients.  964 

(E) T cell and innate immune response elucidate immunopathology of COVID-19. 965 

 966 

Fig. 5 COVID-19-associated metabolomic changes in blood plasma.  967 

(A) Plasma metabolomic changes revealed a trajectory in COVID-19 severity, from healthy 968 

control, mild, to severe. 969 

(B) Changes in the concentration of plasma metabolites are associated with COVID-19 970 

severity. The discharge group consist of all patients (mild and severe) that were recovered 971 

and discharged.  972 

(C) COVID-19 severity is associated with significant changes in lipoprotein subclasses 973 

including high-density lipoprotein subclass-1 (HDL1), HDL4, low-density lipoprotein 974 

subclasses (LDL1, LDL4, LDL5), very low-density lipoprotein subclass-5 (VLDL5) and their 975 

compositional components (ApoA1, triglycerides, cholesterol). 976 

(D) Plasma levels of key enzymes and proteins directly involving lipoprotein metabolism are 977 

indicators for COVID-19 severity. *p < 0.05; **p < 0.01; ***p < 0.001 (t test). sLDLR: soluble 978 

low density lipoprotein receptor; LCAT: lecithin-cholesterol acyltransferase; CEPT: 979 

cholesteryl-ester transfer protein. 980 
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(E) COVID-19 caused dysregulation in lipoprotein metabolism, glycolysis and TCA cycle. The 981 

three boxes from left to right are control, mild and severe, in which gray means normal, blue 982 

means decrease, red means increase. H1: HDL1; H3: HDL3; H4: HDL4; L1: LDL1, L3: LDL3; 983 

L4: LDL4; L5: LDL5; V1: VLDL1; V4: VLDL4; V5: VLDL5; TG: triglycerides; FC: free 984 

cholesterol; CE: cholesteryl esters; CH: total cholesterol (i.e., FC + CE); PL: total 985 

phospholipids; H4A1, H4A2: ApoA1 and ApoA2 in HDL4; H-A1, H-A2: ApoA1, ApoA2 (in both 986 

HDL and nascent HDL); L1TG: TG in LDL1; L1%: LDL1 percentage in all LDL; TG%, FC%, 987 

CE%: percentages of TG, FC and CE, respectively, in total lipids of given lipoprotein 988 

subclasses; L-TG/L-CH: TG-to-CH ratio in LDL; H4CH/H4TG: CH-to-TG ratio in HDL4; 989 

V1CH/V1TG: CH-to-TG ratio in VLDL1. CS: Citrate synthase; IDH: Isocitrate dehydrogenase; 990 

ACO2: Aconitase; OGDH: α-ketoglutarate dehydrogenase; DLD: Dihydrolipoyl 991 

dehydrogenase; SDH: Succinic dehydrogenase; MDH: Malate dehydrogenase; PDH: 992 

Pyruvate dehydrogenase; PDK: Pyruvate dehydrogenase kinase; ACLY: ATP citrate lyase; 993 

ACAC: Acetyl coenzyme A carboxylase; FASN: Fatty acid synthetase; LDH: Lactate 994 

dehydrogenase. 995 

 996 

Fig. 6 Comparative analysis of severe-survival patients and severe-fatal patients 997 

(A) Bar plot comparison of viral loads between severe-survival patients and severe-fatal 998 

patients. The cluster heatmap represents expression patterns of 1,541 proteins that exhibited 999 

temporal changes across time points in severe-survival patients. Line graph represents the 1000 

temporal changes in viral load in time (days) after hospital admission of the patients. 1001 
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(B) Enriched annotations for corresponding clusters showed in Fig. 6A. 1002 

(C-D) Systematic summary of proteins and signaling cascades significantly altered in 1003 

severe-survival patients (lipid metabolism; c) and severe-fatal (viral life cycle; d). Values for 1004 

each protein in all samples analyzed (columns) are color-coded based on the expression level, 1005 

low (blue) and high (red) z-scored FOT.  1006 

(E) For each of the four panels, the heatmaps on the left indicated the Pearson correlation of 1007 

proteins with viral load in severe survivors and severe fatalities, the heatmap on the right 1008 

indicated the significant pathways enriched by proteins positively or negatively correlated with 1009 

viral load in severe survivors and severe fatalities. 1010 

 1011 

Fig. 7 Biomarkers predictive of clinical outcomes of COVID-19 patients.  1012 

(A) Principal component analysis of exRNA, transcriptome, proteome, and clinical covariate 1013 

data from samples collected at the first timepoint. The first two components were used to 1014 

describe the distribution of samples based on expressed genes, proteins and clinical data, 1015 

respectively, whereas the first and third components were used for samples based on the 1016 

exRNA data. 1017 

(B) Performance of prognostic models based on exRNA, transcriptome, proteome, and the 1018 

corresponding clinical covariate data sets. Model performance of the five-fold cross-validation 1019 

was assessed using the Matthews correlation coefficient (MCC), AUC, accuracy, sensitivity, 1020 

specificity, positive predictive value (PPV) and negative predictive value (NPV). 1021 

(C) The most frequently selected features of exRNA-, transcriptome-, proteome-, and 1022 
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clinical-based models. Features were simultaneously identified from each of the four data sets 1023 

and for each of the four machine learning algorithms based on the frequency of variables 1024 

used by AI models during 50 runs of the five-fold cross-validation.  1025 

(D) Correlation heatmap among the most frequently selected features (frequency > 0.78) 1026 

used in the exRNA-based model. Members in the let-7 family selected for the exRNA-based 1027 

predictors (hsa-miR-98-5p, hsa-let-7a-5p, hsa-let-7d-5p, hsa-let-7f-5p) were highly correlated 1028 

with each other.  1029 

(E-I) Biomarkers identified from exRNA (E), transcriptome (F), proteome (H) and clinical data 1030 

(I) based models exhibited a clear separation between those patients with either good or poor 1031 

prognosis. (G) Functional enrichment of 110 protein features selected from random forest 1032 

modeling. 1033 
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 1 

Fig. 1 Study design and patient cohort. 2 

(A) Schematic summary of the study design and patient cohort. Total sample numbers 3 

before quality control are shown for each omics data set.  4 

(B) The number of expressed genes and detected proteins, metabolites, exRNAs and 5 

clinical parameters in high quality patient samples.  6 
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 2 

(C) Summary of differentially expressed genes, proteins, metabolites and exRNAs between 7 

uninfected controls and COVID-19 patients (mild and severe) in the multi-omics data. 8 

9 
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 10 

Fig. 2 Molecular characteristics of COVID-19 patients.  11 
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 4 

(A) Scores of principal components 1(PC1) of each sample from the transcriptome, 12 

proteome, metabolome, and exRNA-seq principal component analyses.  13 

(B) Circos plots showing the significant correlations between clinical parameters and the 14 

multi-omics data.  15 

(C) The cluster heatmap represents expression patterns in the 1,656, 1,547 and 2,362 16 

proteins that showed significant upregulation (fold change>2) in the control, mild and severe 17 

patient groups. The top categories enriched for clusters are shown. Values for each protein 18 

in all analyzed regions (columns) are color-coded based on expression level, low (blue) and 19 

high (red) z-scored FOT.  20 

(D) The WGCNA of COVID-19 samples shows modules that are highly correlated with 21 

clinical features (left heatmap). Enrichment analysis for different modules is presented in the 22 

right heatmap (p value <0.05).  23 

(E) Boxplot indicates the APTT time between mild and severe COVID-19 patients. The 24 

heatmap indicates the module 1 enriched protein expression patterns among mild and 25 

severe patients.  26 

(F) Boxplot indicates the IL-6 and IL-10 levels among mild and severe COVID-19 patients. 27 

The heatmap indicates the module 2 enriched protein expression patterns among mild and 28 

severe patients. Differences between groups were estimated using ANOVA. For all boxplots, 29 

the horizontal box lines in the boxplots represent the first quartile, the median, and the third 30 

quartile. Whiskers denote the range of points within the first quartile − 1.5× the interquartile 31 

range and the third quartile + 1.5× the interquartile range. 32 

33 
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 34 

Fig. 3 Patterns of tissue damage associated with COVID-19.  35 
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 6 

(A) The distribution of tissue-enhanced proteins across the major tissues affected by 36 

COVID-19. Proteins whose expression altered in COVID-19 patients are colored red. 37 

(B) Heatmap indicating expression patterns of known tissue specific biomarkers among 38 

control, mild and severe patient groups.  39 

(C) Systematic summary of brain-enhanced expressed proteins and signaling cascades 40 

significantly altered in COVID-19 patients (neurotransmitters transport, synthesis). Values for 41 

each protein at all analyzed samples (columns) are color-coded based on the expression 42 

level, low (green) and high (red) z-scored FOT. 43 

(D) Network summarizing lung-enhanced expressed proteins and signaling cascades 44 

significantly altered in COVID-19 patients (HIF-1α signaling pathway).  45 

(E) Network summarizing liver-enhanced expressed proteins and signaling cascades 46 

significantly altered in COVID-19 patients (Lipid metabolism). 47 

(F) Boxplot indicating the expression level of known brain dysfunctional biomarkers in 48 

control, mild and severe patients. 49 

(G) Heatmap showing normalized x-cell scores of specific cell types across control, mild and 50 

severe COVID-19 patients. *p < 0.05 (t test). 51 

(H) Heatmap showing the expression of cell type specific signatures among control, mild 52 

and severe COVID-19 patients. 53 

(I) Systematic summary of the GO pathways enriched by tissue-enhanced proteins that 54 

exhibited altered expression among control, mild, and severe patient groups. The heatmap of 55 

each panel indicates expression patterns of tissues-enhanced proteins among control, mild, 56 
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and severe patient groups. The fold changes in tissue-enhanced proteins between 57 

mild/severe patient samples and control samples are shown on the right of heatmap. 58 

59 
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 60 

Fig. 4 Differences in immune responses among COVID-19 patients.  61 

(A) Transcriptional profiles reflect the dynamic immune response in COVID-19. GSEA (FDR 62 

< 0.25; 1,000 permutations) was used to identify positive (red), negative (blue) or no (white) 63 

enrichment of BTMs (gene sets). The graph shows the normalized enrichment score (NES) 64 

of each selected BTM in the different time points (T1, T2 and T3) for patients with mild or 65 

severe COVID-19 illness, in comparison to healthy controls. 66 

(B) Expression levels of NETs’ markers for individual transcripts in severe versus mild 67 

comparisons. Data are represented as means ± SEM, *p < 0.05; ***p < 0.001 (t test).  68 
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(C) Heatmap of IFNG, GZMB and PRF1 gene expression in COVID-19 patients.  69 

(D) Heatmap of genes enriched in IL-17 signaling pathway between healthy control and 70 

COVID-19 patients.  71 

(E) T cell and innate immune response elucidate immunopathology of COVID-19. 72 

73 
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  74 

 75 

Fig. 5 COVID-19-associated metabolomic changes in blood plasma.  76 

(A) Plasma metabolomic changes revealed a trajectory in COVID-19 severity, from healthy 77 

control, mild, to severe. 78 

(B) Changes in the concentration of plasma metabolites are associated with COVID-19 79 

severity. The discharge group consist of all patients (mild and severe) that were recovered 80 

and discharged.  81 

(C) COVID-19 severity is associated with significant changes in lipoprotein subclasses 82 
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including high-density lipoprotein subclass-1 (HDL1), HDL4, low-density lipoprotein 83 

subclasses (LDL1, LDL4, LDL5), very low-density lipoprotein subclass-5 (VLDL5) and their 84 

compositional components (ApoA1, triglycerides, cholesterol). 85 

(D) Plasma levels of key enzymes and proteins directly involving lipoprotein metabolism are 86 

indicators for COVID-19 severity. *p < 0.05; **p < 0.01; ***p < 0.001 (t test). sLDLR: soluble 87 

low density lipoprotein receptor; LCAT: lecithin-cholesterol acyltransferase; CEPT: 88 

cholesteryl-ester transfer protein. 89 

(E) COVID-19 caused dysregulation in lipoprotein metabolism, glycolysis and TCA cycle. 90 

The three boxes from left to right are control, mild and severe, in which gray means normal, 91 

blue means decrease, red means increase. H1: HDL1; H3: HDL3; H4: HDL4; L1: LDL1, L3: 92 

LDL3; L4: LDL4; L5: LDL5; V1: VLDL1; V4: VLDL4; V5: VLDL5; TG: triglycerides; FC: free 93 

cholesterol; CE: cholesteryl esters; CH: total cholesterol (i.e., FC + CE); PL: total 94 

phospholipids; H4A1, H4A2: ApoA1 and ApoA2 in HDL4; H-A1, H-A2: ApoA1, ApoA2 (in 95 

both HDL and nascent HDL); L1TG: TG in LDL1; L1%: LDL1 percentage in all LDL; TG%, 96 

FC%, CE%: percentages of TG, FC and CE, respectively, in total lipids of given lipoprotein 97 

subclasses; L-TG/L-CH: TG-to-CH ratio in LDL; H4CH/H4TG: CH-to-TG ratio in HDL4; 98 

V1CH/V1TG: CH-to-TG ratio in VLDL1. CS: Citrate synthase; IDH: Isocitrate dehydrogenase; 99 

ACO2: Aconitase; OGDH: α-ketoglutarate dehydrogenase; DLD: Dihydrolipoyl 100 

dehydrogenase; SDH: Succinic dehydrogenase; MDH: Malate dehydrogenase; PDH: 101 

Pyruvate dehydrogenase; PDK: Pyruvate dehydrogenase kinase; ACLY: ATP citrate lyase; 102 

ACAC: Acetyl coenzyme A carboxylase; FASN: Fatty acid synthetase; LDH: Lactate 103 
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dehydrogenase. 104 

105 
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 106 

Fig. 6 Comparative analysis of severe-survival patients and severe-fatal patients 107 
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(A) Bar plot comparison of viral loads between severe-survival patients and severe-fatal 108 

patients. The cluster heatmap represents expression patterns of 1,541 proteins that exhibited 109 

temporal changes across time points in severe-survival patients. Line graph represents the 110 

temporal changes in viral load in time (days) after hospital admission of the patients. 111 

(B) Enriched annotations for corresponding clusters showed in Fig. 6A. 112 

(C-D) Systematic summary of proteins and signaling cascades significantly altered in severe-113 

survival patients (lipid metabolism; c) and severe-fatal (viral life cycle; d). Values for each 114 

protein in all samples analyzed (columns) are color-coded based on the expression level, low 115 

(blue) and high (red) z-scored FOT.  116 

(E) For each of the four panels, the heatmaps on the left indicated the Pearson correlation of 117 

proteins with viral load in severe survivors and severe fatalities, the heatmap on the right 118 

indicated the significant pathways enriched by proteins positively or negatively correlated 119 

with viral load in severe survivors and severe fatalities. 120 

121 
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 122 

Fig. 7 Biomarkers predictive of clinical outcomes of COVID-19 patients.  123 

(A) Principal component analysis of exRNA, transcriptome, proteome, and clinical covariate 124 

data from samples collected at the first timepoint. The first two components were used to 125 

describe the distribution of samples based on expressed genes, proteins and clinical data, 126 
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respectively, whereas the first and third components were used for samples based on the 127 

exRNA data. 128 

(B) Performance of prognostic models based on exRNA, transcriptome, proteome, and the 129 

corresponding clinical covariate data sets. Model performance of the five-fold cross-130 

validation was assessed using the Matthews correlation coefficient (MCC), AUC, accuracy, 131 

sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). 132 

(C) The most frequently selected features of exRNA-, transcriptome-, proteome-, and 133 

clinical-based models. Features were simultaneously identified from each of the four data 134 

sets and for each of the four machine learning algorithms based on the frequency of 135 

variables used by AI models during 50 runs of the five-fold cross-validation.  136 

(D) Correlation heatmap among the most frequently selected features (frequency > 0.78) 137 

used in the exRNA-based model. Members in the let-7 family selected for the exRNA-based 138 

predictors (hsa-miR-98-5p, hsa-let-7a-5p, hsa-let-7d-5p, hsa-let-7f-5p) were highly correlated 139 

with each other.  140 

(E-I) Biomarkers identified from exRNA (E), transcriptome (F), proteome (H) and clinical data 141 

(I) based models exhibited a clear separation between those patients with either good or 142 

poor prognosis. (G) Functional enrichment of 110 protein features selected from random 143 

forest modeling. 144 
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