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Article Summary Line: Integrating existing public health surveillance and molecular analyses 24 

with Global Hepatitis Outbreak Surveillance Technology allows for the identification and 25 

characterization of growing HCV transmission clusters among key populations in Wisconsin. 26 
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ABSTRACT 34 

Ending the hepatitis C virus (HCV) epidemic requires stopping transmission among 35 

networks of people who inject drugs (PWID). Identification of transmission networks through 36 

the application of genomic epidemiology may inform community response models that can 37 

quickly interrupt transmission. We retrospectively identified HCV RNA-positive specimens 38 

corresponding to 459 individuals tested in public health settings, including correctional facilities 39 

and syringe service programs, in Wisconsin from 2016-2017. Next-generation sequencing of 40 

HCV was conducted and analyzed for phylogenetic linkage using the CDC’s Global Hepatitis 41 

Outbreak Surveillance Technology platform.  Transmission network analysis showed that 126 42 

individuals were linked across 42 clusters (range: 2-11 individuals per cluster). Phylogenetic 43 

clustering was higher in rural communities and associated with female gender and younger age 44 

among rural residents. These data highlight that the increasing rurality of opioid injection use 45 

and HCV transmission among young PWID could be better supported by the expansion of 46 

molecular-based surveillance strategies to reduce transmission.  47 

 48 
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Hepatitis C virus, injection drug use, global hepatitis outbreak surveillance technology, 50 
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 57 

 58 

INTRODUCTION 59 

Sharp increases in hepatitis C virus (HCV) infection have been observed in the United 60 

States, where an estimated 2.4 million persons are living with chronic infection (1).  In 2013, 61 

approximately 19,368 persons died from HCV-related complications, exceeding the number of 62 

deaths from all other nationally notifiable infectious diseases combined (2). A 2-fold increase in 63 

the prevalence of HCV has occurred between 2004 and 2014, a direct result of the opioid 64 

epidemic and associated increases in the sharing of contaminated injection drug use equipment 65 

(3). As the intersecting epidemics of opioid injection and infectious diseases are complex and 66 

dynamic, implementing community-specific comprehensive prevention services has remained 67 

challenging. Reliable strategies to identify individuals and communities most vulnerable are 68 

essential for the development of community response models able to deliver evidence-based 69 

prevention services in time to prevent worsening of these synergizing epidemics. 70 

Epidemiologists and public health experts are increasingly utilizing molecular-based 71 

surveillance techniques to identify and control emerging outbreaks (4–7). For example, the US 72 

Centers for Disease Control and Prevention (CDC) has recently scaled up the use of molecular 73 

HIV surveillance with pilot projects in 27 states towards an “Ending the HIV epidemic” initiative 74 

(8). Expanded use of molecular surveillance has the potential to significantly inform HCV 75 

treatment and prevention efforts. However, application of such programs for HCV surveillance 76 

has lagged despite the potential importance of such approaches in disrupting HCV transmission. 77 

Global Hepatitis Outbreak and Surveillance Technology (GHOST) is a public health tool 78 
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developed by CDC that uses next generation sequencing methods for molecular HCV 79 

surveillance and outbreak investigation (9). Analysis of next-generation sequencing data for 80 

viruses is complex and particularly challenging and requires significant expertise in 81 

bioinformatics and phylogenetics. GHOST integrates a suite of computational tools to accurately 82 

detect possible HCV transmission clusters from next generation sequencing data in a simple 83 

fashion regardless of the user’s level of expertise. The cloud-based system provides the user with 84 

detailed reports on the likelihood of linked transmission events within a cohort of HCV-infected 85 

individuals, thus providing an opportunity for the rapid identification of existing or growing 86 

HCV transmission clusters and an improved response by state and local public health 87 

departments.  88 

Wisconsin is a state in the U.S. with a population of 5.8 million residents. Between 2016 89 

and 2017, the rate of opioid overdose in Wisconsin increased 109%, representing the steepest 90 

increase observed in any U.S. state, and nearly 3 times the average national increase over that 91 

time period (10). Similar to what has been observed nationally, this sharp increase in opioid use 92 

is accompanied by substantial increases in the incidence of HCV. Between 2011 and 2015, 93 

approximately 3,000 new HCV diagnoses were reported annually. The rate of new PCR-94 

confirmed HCV diagnoses among people aged 15-29 more than doubled during that time period, 95 

from 40 to 87 cases per 100,000 population, as a result of recent injection drug use (11).   96 

In this study, we integrate existing public heath surveillance and molecular analyses with 97 

GHOST to identify putative HCV transmission clusters among persons likely infected through 98 

injection drug use during a period of expanded HCV transmission (12) and investigate the 99 

network characteristics among this high-risk group.  100 
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 101 

MATERIALS AND METHODS 102 

Study Setting 103 

All HCV-positive reports in Wisconsin are routinely reported to the Wisconsin Electronic 104 

Disease Surveillance System (WEDSS), a secure, web-based health information system used for 105 

the reporting, investigation, and surveillance of communicable diseases in Wisconsin. Blood 106 

samples collected for HCV RNA confirmatory testing at sites supported by the Wisconsin 107 

Division of Public Health (DPH) are processed at the Wisconsin State Laboratory of Hygiene 108 

and stored for up to 5 years. Approximately 15% of all HCV cases reported to WEDSS represent 109 

individuals who underwent fee-exempt HCV RNA confirmatory testing through the State 110 

Laboratory; these instances typically reflect testing done in public health settings such as syringe 111 

service programs and correctional facilities, and not traditional health care settings. This results 112 

in a cohort that is enriched for younger people with a history of injection drug use.  113 

Study Population 114 

Individuals confirmed to have an HCV RNA-positive sample analyzed at the State 115 

Laboratory and reported to WEDSS for the first time during 2016-17 were identified using two 116 

methods. First, we identified 241 individuals residing in rural catchment areas. Counties included 117 

in the rural catchment area were selected based on participation in an ongoing federally funded 118 

research program, and were classified as rural because they were served by one of the statewide 119 

syringe service program’s six rural offices. Secondly, we identified an additional cohort of 218 120 

individuals outside of the targeted rural area who were considered likely to represent recent or 121 
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acute infections because they had either (1) presented as acute HCV when reported to WEDSS or 122 

(2) were age 15-39 at diagnosis and had a HCV viral load >1,000,000 IU/L. This second cohort, 123 

which included counties served by one of the syringe service program’s four urban offices as 124 

well as correctional populations, was included to improve network completeness and compare 125 

the extent of clustering between rural and non-rural populations.  126 

Specimen Processing 127 

Per standard protocol, serum remaining after HCV antibody and RNA PCR testing is 128 

completed is stored at the State Laboratory at -80°C. Specimens corresponding to the HCV 129 

RNA-positive individuals identified in WEDSS were retrieved from the freezer and overnight 130 

shipped on dry ice to the Ragon Institute of MGH, MIT and Harvard for viral sequencing.  131 

Nucleic acid extraction and PCR amplification 132 

RNA was isolated from 140 μl of plasma using the QIAamp Viral RNA Mini Kit 133 

(Qiagen, Hilden, Germany). A one step RT-PCR reaction was performed on all samples to 134 

amplify a segment at the E1/E2 junction of the HCV genome which contains the hypervariable 135 

region 1 (HVR1) (13). This region was chosen for its high variability and its ability to reliably 136 

detect transmission events in outbreak settings (14). The first round RT-PCR consisted of an 137 

Illumina adapter specific portion, a sample specific barcode segment, and an HCV HVR specific 138 

primer segment, F1- GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-139 

NNNNNNNNNN-GGA-TAT-GAT-GAT-GAA-CTG-GT and  R1-ACA-CTC-TTT-CCC-TAC-140 

ACG-ACG-CTC-TTC-CGA-TCT-NNNNNNNNNN-ATG-TGC-CAG-CTG-CCG-TTG-GTG-141 

T at a final concentration of 4 pM amplified using Superscript III RT/Platinum Taq DNA 142 
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Polymerase High Fidelity with the following conditions: cDNA synthesis for 30 minutes at 143 

55°C, followed by heat denaturation at 95°C for 2 minutes, the  PCR amplification conditions 144 

were 40 cycles of denaturation (94°C for 10 seconds), annealing (55°C for 10 seconds) and 145 

extension (68°C for 10 seconds) with a final extension at 68°C for 5 minutes. Amplified products 146 

were run on a 1% agarose gel and either PCR purified with the Qiaquck PCR purification kit 147 

(Qiagen) or gel extracted and purified using the PureLink quick gel extraction kit (Invitrogen). A 148 

second round limited cycle PCR (94°C for 2 minutes, (94oC for 15 sec; 55oC for 30 sec; 68oC for 149 

30 sec) x 8 cycles, 68oC for 5 minutes) is performed to add barcode specific indexes and 150 

sequencing specific adapters and primers to each sample to allow for multiplexing as well as 151 

internal controls for cross-contamination. Negative controls were introduced at each stage of the 152 

procedure and all PCR procedures were performed under PCR clean room conditions using 153 

established protocols. Indexed samples are 0.7X SPRI purified two times to remove excess 154 

primer dimer and short fragments that can interfere with the sequencing process. 155 

Illumina deep sequencing and analysis 156 

Resulting PCR amplicons were quantified using the Picogreen kit (Invitrogen, Carlsbad, 157 

CA) on a Fluorometer ST (Promega, Madison, WI) with the integrity of the fragment evaluated 158 

using a Bioanalyzer 2100 (Agilent, Santa Clara, CA). Samples were pooled and sequenced on an 159 

Illumina MiSeq platform using a 2 x 250 bp V2 Nano reagent kit. In general, a sequence library 160 

consisted of between 8-16 specimens including one negative control for every 7 serum 161 

specimens. Paired end reads were subject to stringent cleaning and quality control criteria as 162 

outlined previously (15–17). Duplicate reads were removed using fastuniq v1.1 (18) and quality 163 
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trimmed using trimmomatic v0.36 (19). Viral contigs were generated using Vicuna v1.1 (20) and 164 

a de novo consensus assembly generated using V-FAT v1.1.   165 

Phylogenetic reconstruction 166 

Consensus sequences were aligned using MEGA v6.0 (21) and IQ-TREE v1.6 (22) was 167 

used to construct a maximum likelihood phylogenetic tree with 1,000 ultrafast bootstrap 168 

replicates (23).  169 

HCV transmission network analysis 170 

Illumina paired end reads were uploaded to GHOST where they were subjected to 171 

automatic quality control that rejects data depending on the magnitude of the quality problem 172 

and warns and guides users in resolving the issue. Further methodological details on the quality 173 

filtering can be found elsewhere (9,24). Transmission links that represent the genetic similarity 174 

among viral populations from infected individuals were examined by the transmission analysis 175 

module of GHOST. In each case the intra-host populations were compared between infected 176 

individuals and the genetic distance, defined as the Hamming distance, between their closest 177 

haplotypes was calculated. If the genetic distance was smaller than an empirically defined 178 

genetic distance threshold of 3.77% then individuals are considered to be genetically related and 179 

form a transmission cluster (14). To further analyze the genetic relationships in each cluster and 180 

to visualize the nature of intra-host variation, k-step networks of intra-host HCV HVR1 variants 181 

were built as previously described (9).   182 

Data Collection 183 
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Variables routinely reported to WEDSS for individuals who test HCV-positive include 184 

age, gender, race/ethnicity, HCV-positive antibody and RNA test date(s), and testing site(s). 185 

Additionally, individuals tested by a community-based multisite syringe service program, 186 

operated by 10 offices across the state and a mobile van, provide risk information through the 187 

syringe service program’s standard HCV testing procedures. Reporting of risk information is not 188 

mandatory. When possible, local health department staff gather risk information from the health 189 

care provider or directly from the patient and enter the risk information into WEDSS. HCV cases 190 

originally reported from state correctional facilities are not interviewed by local public health 191 

and typically do not have risk information available. For individuals with risk information 192 

available, we assessed whether they ever engaged in injection drug use, shared drug injection 193 

equipment, are a male who has sex with other males (MSM) or were ever incarcerated. Persons 194 

were considered to be incarcerated if they had any HCV test result reported to WEDSS that was 195 

conducted at a state correctional facility or if the person reported ever being incarcerated on risk 196 

information forms. Because availability of risk information depends on the type of facility where 197 

the individual was tested, we present demographic characteristics and risk behaviors by type of 198 

testing facility: community-based organization, corrections, local health department, or other 199 

public venues.  200 

Data were collected under a waiver of informed consent. This study was approved by the 201 

University of Wisconsin’s Health Sciences Institutional Review Board and the Massachusetts 202 

General Hospital Institutional Review Board. Data Use Agreements and a Materials Transfer 203 

Agreement were established between the University of Wisconsin, DPH, the State Laboratory, 204 

and the Ragon Institute of MGH, MIT and Harvard. 205 
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Statistical Analyses 206 

Chi-square, Fisher’s exact, t-test, and analysis of variance (ANOVA) were conducted 207 

using StataSE version 16 (Statacorp, College Station, TX) to compare clustering by 208 

demographics and risk behaviors. Because sampling techniques differed in rural and non-rural 209 

catchment areas and the characteristics assessed were strongly determined by which catchment 210 

area they were in, we compared individuals who clustered to those who did not cluster stratified 211 

by catchment area. We also compared characteristics between rural catchment area-only clusters, 212 

non-rural catchment area-only clusters, and clusters that contained individuals from both groups. 213 

Statistical significance was determined using α=.05. 214 

 215 

RESULTS 216 

Study Sample 217 

Between 2016 and 2017, 459 individuals tested HCV RNA-positive in public health 218 

settings in Wisconsin for the first time. Of these, 424 (92.4%) had sufficient (approximately 219 

200ul or more) residual serum specimens stored in the State Laboratory freezer. All 424 220 

specimens were shipped for viral sequencing. Of these, 379 of 424 specimens (89.4%) were 221 

successfully amplified, sequenced, and passed GHOST quality control metrics. Among the 222 

specimens that failed, 23 (5.4%) failed PCR and 22 (5.2%) failed GHOST quality control 223 

metrics. After quality control the median number of error-corrected reads per individual was 224 

16,740 (IQR: 13,302 – 18,262) while the median number of haplotypes was 3,322 (IQR: 2,479 – 225 

4,345).  226 
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Patient Demographic Characteristics and Risk Behaviors 227 

Among the 379 individuals whose specimens were successfully analyzed by GHOST, 228 

125 (33.0%) first tested positive at a community-based organization, 154 (40.6%) in a 229 

correctional facility, 40 (10.6%) at a local health department, and 60 (15.8%) in a different 230 

public health setting (Table 1). The study population was primarily non-Hispanic white (85.0%), 231 

aged 18-39 years (90.8%), and male (75.5%). Self-report of injection drug use was documented 232 

among 177 (46.7%) individuals, and of these, 145 (81.9%) self-reported ever sharing injection 233 

equipment. MSM was reported for 8 (2.1%) individuals. The majority of the study population 234 

has experienced incarceration (88.1%). 235 

Among the 379 individuals, 171 (45.1%) resided in the rural catchment area, of which 67 236 

(39.2%) clustered, and 208 (54.9%) resided outside of the rural catchmant area or in correctional 237 

facilities, of which 59 (28.4%) clustered. Among the 171 individuals in the rural catchment area, 238 

females were significantly more likely to cluster than males (49% vs 33%) (P=0.04), and 239 

individuals who clustered were significantly younger (mean age: 28.7) than individuals who did 240 

not cluster (mean age: 34.1) (P=0.0001). There were no statisically significant differences 241 

between those who clustered and those who did not cluster in non-rural catchment areas.  242 

Phylogenetic analysis 243 

HCV strains were genetically characterized using HVR1 consensus sequences derived 244 

from all 379 individuals. Phylogenetic analysis demonstrated a predominance of genotype 1a 245 

(n=255, 67.3%) and 3a (n=88, 23.2%) infections, followed by 2b (n=22, 5.8%), 1b (n=9, 2.4%), 246 

2a (n=4, 1.1%) and 4a (n=1, 0.3%) (Figure 1). Within each of the major subtypes, sequences 247 
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were composed of multiple lineages with the largest HVR1 cluster involving over half (54%) of 248 

all subtype 1a sequences generated. These observations suggest multiple independent HCV 249 

introductions into this population in the past.  250 

HCV Transmission Linkages 251 

GHOST detected 42 clusters comprising 126 individuals for an overall clustering rate of 252 

33% (Figure 2). The size of clusters ranged from 2 to 11 individuals. The transmission networks 253 

were composed of mostly dyads (n=23, 54.8%), followed by groups of 3 (n=9, 21.4%), 4 (n=3, 254 

9%) and 5 (n=6, 14.3%). The largest cluster involved 11 individuals, all infected with genotype 255 

3a, with two individuals first reported to WEDSS in 2016 and nine from 2017. Five of the 11 256 

first tested HCV-positive by the same local health department, and three first tested HCV-257 

positive at the same syringe service clinic. Evidence of past injection drug use was available for 258 

7 individuals, 8 were male, and all 11 were non-Hispanic white with a history of incarceration. 259 

Among the 42 clusters identified, 12 were comprised only of individuals not residing in the rural 260 

catchment area (n=27), 12 were comprised only of individuals residing in the rural catchment 261 

area (n=34), and 18 contained individuals from both groups (n=65). Rural catchment area-only 262 

clusters were more likely to have a higher percentage of females. No other significant differences 263 

between rural, non-rural, and mixed clusters were found.  264 

Intra-host genetic variation within transmission clusters 265 

GHOST analysis of the intra-host HVR1 variants in 379 individuals revealed five 266 

individuals (1.3%) were infected with multiple HCV strains (Table 2). In all cases, genotype 1a 267 

was the major strain, with two individuals harboring minor variants of genotype 3a and 268 
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genotypes 2a, 2b and 6f also found. To further understand the nature of HCV transmission across 269 

clusters, we examined the population structure of HVR1 variants to address whether the same 270 

viral variant was shared among HCV infected individuals as previously described (14). While it 271 

is not possible to illustrate the k-step networks for each sample, we highlight here representative 272 

examples of clusters. One cluster comprises three individuals (subjects 372, 338 and 362) with 273 

both subjects 338 and 362 harboring little intra-host genetic variation and sharing 19 viral 274 

variants (modified Hamming distance = 0) (Figure 3a). The third individual, subject 372, is 275 

infected with many diverse variants with a single subpopulation that is genetically similar to 276 

those variants found in subjects 338 (Figure 3b) and 362 (Figure 3c). Another representative 277 

cluster comprises a simple dyad of subjects 84 and 86 which share a variant (modified Hamming 278 

distance = 0.37) that only has a minor difference between each other (Figure 4a). In contrast, the 279 

cluster of subject 281 and 367 shares a more distantly related variant (modified Hamming 280 

distance = 3.18) (Figure 4b). Taken together, this reveals a complex picture of variable and 281 

extensive interconnectedness between variants with only a minority of individuals (n=14) 282 

sharing the same viral variant within a transmission cluster.  283 

 284 

DISCUSSION 285 

This study is the first to link state-wide public health surveillance to HCV transmission 286 

clusters identified by GHOST. Among 459 individuals who tested HCV-positive in public health 287 

settings in Wisconsin from 2016 to 2017, 424 had sufficient plasma remaining after standard 288 

antibody and RNA testing procedures with 379 (89.4%) successfully analyzed by GHOST. Of 289 

these, 126 (33%) were detected among 42 HCV transmission clusters. The majority of clusters 290 
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were formed of dyads, with larger clusters linking multiple sequences less abundant in the 291 

populations tested. This rate of clustering is comparable to that found in Vancouver and 292 

Baltimore, which found 31% and 46% of PWIDs cluster, respectively (25,26).  However, an 293 

important distinction between these studies and ours is the geographical region sampled. 294 

Whereas these prior studies only included PWIDs from their respective metropolitan areas, this 295 

study included both urban and rural populations. We found a higher clustering rate in the rural 296 

catchment area, and rural individuals that clustered were of younger age, a finding that aligns 297 

with the current literature describing the particular burden of HCV on young persons in rural 298 

communities (27,28). Moreover, these data highlight that the increasing rurality of opioid 299 

injection and HCV transmission among young PWIDs could be better supported by the 300 

expansion of molecular-based surveillance strategies to reduce transmission. The availability of 301 

transmission networks would allow for the underlying contact network structure to be targeted 302 

such that individuals that have a high centraility within a network have a much greater 303 

contribution to infection than peripheral nodes. This type of network-based disruption strategy 304 

has been demonstrated to produce the greatest reduction in incidence compared to randomly 305 

targeted prevention strategies (29).  306 

The CDC estimates that approximately half of all HCV-infected persons are unaware of 307 

their infection status (30). Using molecular epidemiological methods to investigate the 308 

transmission of infectious diseases has many advantages over traditional contact tracing 309 

methods, in which data collection is often time-intensive and results may be subject to recall and 310 

social desirability biases. Contact tracing among people who engage in illegal activity is 311 

especially challenging as individuals are often reluctant to disclose injecting behaviors or name 312 

injecting partners because of stigma or fear of criminal repercussions (31). GHOST overcomes 313 
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these limitations by automatically interpreting biological data in a timely manner (within hours). 314 

Near real-time monitoring systems already exists for HIV-1 and the application of an automated 315 

phylogenetic system has been used to detect and rapidly respond to an outbreak of transmitted 316 

drug resistance in Vancouver (32). Thus, a greater investment in viral surveillance would allow 317 

for enhanced outbreak control responses and analytical frameworks such as those implemented 318 

in GHOST and could be readily applied to assist in understanding HCV transmission dynamics 319 

in the U.S. As modeling studies have demonostrated that elimination of HCV can be achieved 320 

through scaling up and targeting treatment (33,34), a concept know as ‘treatment-as-prevention’ 321 

often used in HIV research (35,36), conducting routine molecular surveillance may also advance 322 

HCV prevention efforts by facilitating the ability of health departments to efficiently allocate 323 

limited resources to target and treat members in large clusters. Furthermore, it could be used to 324 

aid in discriminating recent versus long-established introduction of infections in high-risk 325 

communities.  326 

This study has several limitations. First, HCV testing and surveillance challenges make it 327 

difficult to identify a complete cohort of HCV-infected PWIDs. Individuals not included in this 328 

analysis include those who have never been tested, those tested outside of Wisconsin, and people 329 

who were tested in other settings (e.g. primary care) that use commercial or hospital-based 330 

laboratories for HCV confirmatory testing. Accordingly, the population studied is not fully 331 

representative of the Wisconsin general population. However, our results do provide a credible 332 

picture of the HCV epidemic across public health settings throughout rural and urban Wisconsin. 333 

Second, the association we found between clustering and younger age among rural residents 334 

could be due to sampling a larger number of younger persons. Further research is needed 335 

examining the role that older HCV-infected individuals play in transmission networks. Third, 336 
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risk information data are missing for a large proportion of the sample because few agencies 337 

routinely collect and report it. Although this limited the types of analyses we could conduct, it 338 

also demonstrates where data collection from different types of public health agencies can be 339 

improved to better understand the characteristics of HCV transmission clusters on a state level. 340 

Lastly, phylogenetic clustering alone cannot directly assert whether transmission occurred 341 

directly or indirectly via unsampled individuals and can be subjected to biases (37).  342 

In conclusion, we provided a snapshot of the HCV epidemic in rural and urban 343 

Wisconsin between 2016-2017. Additional research to understand the dynamics of HCV 344 

transmission is urgently needed particularly in rural communities affected by the opioid crisis. 345 

Incorporating GHOST into routine laboratory surveillance practices may enhance the ability of 346 

public health departments to detect individuals contributing most to HCV transmission in their 347 

communities and prompt more efficient interventions.  348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 
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TABLES 357 

Table 1: Demographic and risk factor information, by type of testing facility  358 

   Type of facility where the individual first tested HCV-positive 

Overall 

 

Community-based organization Corrections Local health 

department 

Other 

N (%) N (%) N (%) N (%) N (%) 

Total 379 100.0 125 33.0 154 40.6 40 10.6 60 15.8 

Year first reported to 

WEDSS*  

2016 222 58.6 72 57.6 87 56.5 24 60.0 39 65.0 

2017 155 40.9 53 42.4 67 43.5 16 40.0 21 35.0 

Age  

18-29 190 50.1 61 48.8 77 50.0 20 50.0 32 53.3 

30-39 154 40.6 41 32.8 75 48.7 17 42.5 21 35.0 

>40 35 9.2 23 18.4 2 1.3 3 7.5 7 11.7 

Race/Ethnicity  

NH* White 318 85.03 106 84.8 127 84.7 36 90.0 49 83.1 

Hispanic or Latino  18 4.8 6 4.8 7 4.6 2 5.0 3 5.0 

American Indian or 

Alaska Native  

21 5.5 7 5.6 9 5.8 1 2.5 4 6.7 

Asian  2 0.5 0 0.0 1 0.7 0 0.0 1 1.7 

NH* Black or African 

American 

12 3.2 5 4.0 5 3.3 1 2.5 1 1.7 

Other/ Multiple/ 

Unknown  

8 2.1 1 0.8 5 3.2 0 0.0 2 3.3 

Gender  

Female 93 24.5 46 36.8 14 9.1 14 35.0 19 31.7 
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Male  286 75.5 79 63.2 140 90.9 26 65.0 41 68.3 

Ever inject drugs  

Yes 177 467 100 80.0 16 10.4 34 85.0 27 45.0 

No or unknown 202 53.3 25 20.0 138 89.6 6 15.0 33 55.0 

Ever share works  

Yes 145 38.3 89 71.2 10 6.5 30 75.0 16 26.7 

No, unknown, or not 

applicable 
234 61.7 36 28.8 144 93.5 10 25.0 44 73.3 

MSM*  

Yes 8 2.1 5 4.0 0 0.0 2 5.0 1 1.7 

No or unknown 371 97.9 120 96.0 154 100.0 38 95.0 59 98.3 

Ever incarcerated  

Yes 334 88.1 95 76.0 154 100.0 35 87.5 50 83.3 

No or unknown 45 11.9 30 24.0 0 0.0 5 12.5 10 16.7 

*WEDSS: Wisconsin Electronic Disease Surveillance System; NH: Non-Hispanic; MSM: Men 359 

who have sex with men. 360 

 361 

Table 2. Characteristics of samples infected with mixed HCV genotypes 362 

Subject ID number Major genotype (%) Minor genotype (%) Risk factor* 

116 1a (96.75%) 2a (3.25%) Unknown 

63 1a (99.38%) 3a (0.62%) Ever injected drugs, ever 

shared works 

318 1a (96.18%) 3a (3.82%) Unknown 

338 1a (99.72%) 6f (0.28%) Ever injected drugs 

306 1a (98.57%) 2b (0.59%) Ever injected drugs, ever 

shared works 

*When this evidence is available the individual can be classified as MSM, ever injected drugs, or 363 

ever shared works. 364 
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FIGURE LEGENDS 365 

 366 

Figure 1. Maximum likelihood phylogenetic tree of HCV HVR1 consensus sequences. 379 367 

consensus sequences from Wisconsin are depicted with genotypes labelled.  368 

 369 

Figure 2. HCV transmission network of clusters identified by GHOST. Each node represents 370 

a HCV-infected individual for which HCV sequence data was generated. A transmission link is 371 

denoted as a line connecting individuals where the minimal hamming distance between 372 

sequences is smaller than the previously validated genetic threshold of 3.77%. Lines connecting 373 

clusters are colored according to genotype with a blue, red and green line corresponding to 374 

genotypes 1a, 3a and 2b cluster respectively. 375 

 376 

Figure 3. Intra-host genetic heterogeneity within transmission clusters. K-step network 377 

contains all possible minimum spanning trees and allows the efficient visualization of genetic 378 

relatedness among all intra-host HVR1 variants for (a) Subjects 338 and 362 (b) Subjects 338 379 

and 372 and (c) Subjects 362 and 372. Each node represents an HCV sequence and the color of 380 

the node corresponds to the sample of origin: red if the variant was found in both samples, green 381 

if it was only found in the first sample and blue if it was only found in the second sample. The 382 

node size is based on frequency of the HVR1 variant and edge length is proportional to the 383 

modified Hamming distance (does not count positions with insertions or deletions as 384 

differences).   385 

 386 
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Figure 4. Intra-host genetic variation of representative transmission clusters highlighting 387 

the genetic relatedness of distinct variants. K-step network contains all possible minimum 388 

spanning trees and allows the efficient visualization of genetic relatedness among all intra-host 389 

HVR1 variants for (a) Subjects 84 and 86 (b) Subjecta 281 and 367. Each node represents an 390 

HCV sequence and the color of the node corresponds to the sample of origin: green if it was only 391 

found in the first sample and blue if it was only found in the second sample. The node size is 392 

based on frequency of the HVR1 variant and edge length is proportional to the modified 393 

Hamming distance (does not count positions with insertions or deletions as differences).   394 

 395 

  396 
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Min Frequency = 10, Max Frequency = 4888
subject 338 25
subject 372 122

Min Frequency = 10, Max Frequency = 4888
shared 19

subject 338 7
subject 362 115

Min Frequency = 10, Max Frequency = 11504
subject 362 156
subject 372 122

(a) (b) (c)
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Min Frequency = 10, Max Frequency = 12874
subject 84 79
subject 86 132

Min Frequency = 10, Max Frequency = 4430
subject 281 46
subject 367 109

(a) (b)
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