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Abstract 
The molecular landscape in non-muscle-invasive bladder cancer (NMIBC) is characterized 

by large biological heterogeneity with variable clinical outcomes. Here, we performed a large 

integrative multi-omics analysis of patients diagnosed with NMIBC (n=834). Transcriptomic 

analysis identified four classes (1, 2a, 2b and 3) reflecting tumor biology and disease 

aggressiveness. Both transcriptome-based subtyping and the level of chromosomal 

instability provided independent prognostic value beyond established prognostic 

clinicopathological parameters. High chromosomal instability, p53-pathway disruption and 

APOBEC-related mutations were significantly associated with transcriptomic class 2a and 

poor outcome. RNA-derived immune cell infiltration was associated with chromosomally 

unstable tumors and enriched in class 2b. Spatial proteomics analysis confirmed the higher 

infiltration of class 2b tumors and demonstrated an association between higher immune cell 

infiltration and lower recurrence rates. Finally, a single-sample classification tool was built 

and the independent prognostic value of the transcriptomic classes was documented in 1306 

validation samples. The classifier provides a framework for novel biomarker discovery and 

for optimizing treatment and surveillance in next-generation clinical trials.   
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Introduction 
Urothelial non-muscle-invasive bladder cancer (NMIBC) represents the most common type 

of bladder cancer. Patients with NMIBC experience a high likelihood of disease recurrence 

(50-70%) and progression to muscle-invasive bladder cancer (MIBC; up to 20%, depending 

on stage and grade) 1. Consequently, although 5-year survival rates are favorable (>90%), 

most patients must undergo lifelong cystoscopic surveillance and multiple therapeutic 

interventions, making bladder cancer the most expensive cancer to treat 2. Clinically, high-

risk NMIBC is treated with adjuvant intravesical instillations of Bacillus Calmette–Guérin 

(BCG) after surgery to eradicate residual disease and hence reduce the frequency of 

recurrence and progression 1.   

Despite similar clinical and histopathological characteristics, tumors show large differences 

in disease aggressiveness and response to therapy, emphasizing the urgent need for further 

delineation of clinically useful biomarker tests to facilitate and improve patient surveillance 

and treatment 3. Earlier studies of NMIBC biology addressed gene expression for 

classification of aggressiveness, resulting in the identification of two major molecular 

subtypes 4–6. Thereafter, five subtypes of bladder cancer were identified when the whole 

spectrum of disease stages was considered; in particular, three subtypes (Urothelial-like, 

Genomically Unstable, and a group of infiltrated cases) were associated with NMIBC 7. In a 

more recent study of 460 NMIBC patients, we reported three gene expression-based classes 

(class 1-3; UROMOL2016 classification system) with different clinical outcomes and 

molecular characteristics 8. Large differences in biological processes, such as cell cycle, 

epithelial-mesenchymal transition (EMT) and differentiation, were observed. Furthermore, 

mutations in well-known cancer driver genes, i.e TP53 and ERBB2, were primarily found in 

high-risk class 2 tumors, together with enrichment for APOBEC-related mutational 

processes.          

Analysis of genomic alterations in NMIBC has revealed complex genomic patterns 

underlying bladder carcinogenesis. Activating mutations in FGFR3 and PIK3CA and 

chromosome 9 deletions have been identified as early disease drivers 9–11. Recently, van 

Kessel et al. showed that NMIBC at high risk for progression could be further subdivided into 

good, moderate and poor progression risk groups based on mutations in FGFR3 and 

methylation of GATA2 12. Hurst et al. assessed 160 tumors for genome-wide copy number 

alterations (CNAs) using array-based comparative genomic hybridization (CGH). The study 

included 49 high-grade T1 tumors which separated into three major genomic subgroups, one 

of which contained the majority of tumors showing disease progression 13. In a more recent 

study, the same group analyzed CNAs in 140 Ta tumors and identified two major genomic 
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subtypes (GS1 and GS2). GS1 tumors showed no or very few CNAs, while tumors in GS2 

showed more alterations and a high frequency of chromosome 9 deletions 14. Exome 

sequencing of 28 Ta tumors revealed that GS2 tumors had a higher mutational load with 

enrichment for APOBEC-related mutations compared to GS1 tumors. Furthermore, 

comparing 79 of the samples to transcriptional subtypes showed that the tumors were 

primarily classified as the Urothelial-like A subtype (Lund Taxonomy). Application of the 

UROMOL2016 classification system showed that GS2 tumors with higher genomic instability 

were enriched for the class 2 subtype 14. However, additional refinement of these genomic 

studies is required to determine optimal predictors of disease aggressiveness and outcome.               

The tumor microenvironment has also been linked to prognosis in NMIBC. A high infiltration 

of cytotoxic T lymphocytes (CTLs) is associated with better prognosis in many cancer types, 

including MIBC 15,16. In contrast, high infiltration of tumor infiltrating-lymphocytes (TILs) has 

been associated with progression in NMIBC 17,18. Furthermore, the presence of tumor-

associated macrophages and mature tumor-infiltrating dendritic cells has been related to 

progression of NMIBC 19. The impact of regulatory T cells (Tregs) is conflicting, since high 

infiltration of Tregs has been associated with both a favorable 20 and unfavorable prognosis 

of bladder cancer 21,22. The impact of immune cell infiltration on disease outcome and 

association with molecular subtypes and genomic alterations in NMIBC needs to be further 

studied.  

Overall, our understanding of the molecular landscape of NMIBC is still incomplete, and 

integrative multi-omics layered analysis is needed to obtain further knowledge of biological 

processes contributing to disease aggressiveness, recurrence and progression. This should 

ultimately lead to biomarker-based optimized surveillance and therapy modalities for patients 

with NMIBC. Here, we report the largest integrative multi-omics analysis of NMIBC tumors 

from a total of 834 patients included in the UROMOL project. With this analysis, we delineate 

genomic and transcriptomic predictors of outcome in NMIBC, and present an online tool for 

classification of independent samples (http://cit.ligue-
cancer.net:3838/apps/BLCAclassify/). 

Results 
Clinical, pathological and molecular information 
Patients were enrolled in the UROMOL project, a European multicenter prospective study of 

NMIBC. The initial reports from the UROMOL project included only transcriptomic analysis 
6,8. We have now performed an integrated multi-omics analysis and have expanded the work 

to a larger NMIBC patient series with updated follow-up that is essential to acquire insight 
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into the implications for patient management. In total, 862 tumors (611 Ta, 240 T1, 11 

carcinoma in situ (CIS)) were analyzed in this study. Median follow-up for patients without 

progression was 49 months and 10.3% progressed to MIBC. A detailed summary of clinical 

and histopathological information and the analyses performed is provided in Table S1.    
 

Delineation of transcriptomic classes in NMIBC 
We analyzed bulk RNA-Seq data from 535 patients (395 Ta, 137 T1, 3 CIS; an expansion of 

the 460 NMIBC patient cohort previously analyzed 8). Using unsupervised consensus 

clustering of gene-based expression values restricted to the 4000 genes with highest 

variation across the dataset 23, we identified four transcriptomic classes which partially 

overlapped with the previous UROMOL2016 classes 1-3: high-risk class 2 was further 

subdivided into two subclasses, named class 2a and 2b for continuity (Fig 1A). Classes 

showed significantly different progression-free survival (PFS, p=6.6 x 10-5; Fig 1B): patients 

with class 2a tumors had the worst outcome, followed by patients with class 2b tumors. 

Patients with class 1 tumors had the best recurrence-free survival (RFS, p=0.025; Fig 1C). 

Multivariable Cox regression analysis revealed that high-risk class 2a and 2b were 

independently associated with worse PFS and RFS when adjusted for the clinical EORTC 

(European Organisation for Research and Treatment of Cancer, 24) risk score (Table S2).  

 

Transcriptomic classes were significantly associated with various clinicopathological 

parameters (Fig 1D and Table S3). Class 2a was enriched for T1 tumors, high-grade 

tumors, and tumors from patients with CIS and high EORTC risk scores (Table S3). Tumors 

in class 2a also showed a significant overlap with those expressing our previously reported 

progression signature (80%; p=5.5 x 10-21; 4,6). Similarly, class 2a and 2b tumors strongly 

overlapped with those having a positive CIS signature (77% and 87% respectively; p=4.3 x 

10-32; 5). Classification using the Lund system 25 revealed that 91% of tumors were classified 

as UroA and 4% as genomically unstable (GU), the latter mostly found in class 2a (Fig 1D). 

When classified according to the six consensus classes of MIBC 26, 93% of tumors classified 

as Luminal Papillary (LumP). Consequently, the new classification provided here captures 

the molecular granularity of NMIBC to an extent that previous strategies were unable to.  

 

Analysis of the biological processes associated with NMIBC classes revealed important 

information discriminating classical histological features from molecular classification and 

outcome. Confirming our previous findings, class 1 and 3 tumors were associated with early 

cell cycle genes (p=1.1 x 10-15 and p=0.003, respectively; Fig 1E). By contrast, class 2a 

tumors were most strongly associated with late cell cycle genes (p=1.3 x 10-33), DNA 

replication (p=1.1 x 10-20), uroplakins (p=9.1 x 10-7) and genes involved in cell differentiation 
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(p=2.9 x 10-5), thus indicating that differentiation and proliferation do not show an inverse 

association. Additionally, class 2b tumors were predominantly associated with expression of 

cancer stem cell (CSC) markers (p=9.7 x 10-25) and genes involved in EMT (p=7.3 x 10-24), 

but a lesser association with cell proliferation (Fig 1E and Fig S1A). 

 

To explore transcriptomic differences between NMIBC classes further, we analyzed 

transcriptional regulatory networks (i.e. regulons) for a predefined list of 23 transcription 

factors previously investigated for MIBC 27 and candidate regulators associated with 

chromatin remodeling in cancer 28. This analysis provided strong confirmation of the 

biological relevance of a four-subtype classification, as regulon activities were highly 

associated with transcriptomic classes (Fig 1F-G). Similar regulon activity patterns were 

shared by class 1 and 3 tumors, but class 3 tumors differed by having high AR and GATA3 

regulon activity. Class 2a tumors were distinctly associated with high FOXM1, ESR2, ERBB2 

and ERBB3 regulon activity, while class 2b tumors showed high activity of the ESR1, 

FGFR1, RARB, STAT3 and PGR regulons. Activity profiles of regulons associated with 

chromatin remodeling highlighted additional potential regulatory differences between class 1 

and 3 tumors, indicating that epigenetic-driven transcriptional networks (e.g. KMT2E, 

KAT2A, KAT5, HDAC10) might be important differentiators of these classes (Fig 1G and Fig 
S1B). The potential epigenetic differences between the classes were further supported by an 

EPIC BeadChip methylation analysis of 29 Ta high-grade tumors, which demonstrated an 

overall large difference in promoter methylation between samples from different classes (Fig 
S1C). Furthermore, when comparing class 1 and 3 tumors it was revealed that gene 

promoters were less methylated in class 3 (Fig S1D). In total, 12,035 promoter sites were 

differentially methylated between class 1 and 3 tumors and of these, 97.9 % were more 

methylated in class 1 compared to class 3.    

 

We estimated the presence of immune cells by deconvolution of RNA-Seq data 29. Class 2b 

tumors had a significantly higher total immune infiltration score compared to all other classes 

(p=1.3 x 10-43), indicating a high level of immune cell infiltration (Fig 1H). Class 3 tumors had 

a significantly lower immune infiltration score compared to both class 1 and 2a (p=1.8 x 10-

7). Since class 2b tumors showed a favorable PFS compared to class 2a tumors (p=0.024, 

Fig S1E), we investigated the prognostic impact of immune infiltration irrespective of NMIBC 

class. The transcriptome-based measure of immune infiltration was, however, not associated 

with PFS or RFS per se (Fig S1F-G). We also characterized the four classes using gene 

signatures of potential relevance for different treatment strategies (Fig 1E and 1H). Class 2b 

tumors showed significantly higher expression of immune checkpoint markers and other 

immune-related signatures compared to all other classes, suggesting that such tumors might 
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be more responsive to immunotherapies 30,31. However, no difference in BCG failure-free 

survival was observed between patients with high-grade class 2a or 2b tumors treated with a 

minimum of six BCG cycles (n=54, Fig S1H).  
  

Chromosomal instability is associated with high-risk NMIBC 
To investigate the genomic heterogeneity of NMIBC further, a total of 473 tumor-leukocyte 

pairs were analyzed using Illumina SNP arrays. Genomic losses/gains and allelic imbalance 

were derived from raw segmented total copy-number and B allele frequency (BAF) values 

(for details see Methods). Analysis of the genomic landscape in tumors stratified by EORTC 

risk score showed similar patterns of abnormalities, but genomic alterations (except for 

chromosome 9 losses) were more frequently found in EORTC high-risk tumors (Fig S2A). 

Tumors were therefore stratified to three genomic classes (GC1-3) of equal size with 

increasing CNA burden to illustrate low, intermediate and high chromosomal instability (Fig 
2A and Fig S2B). The distribution of clinicopathological parameters and molecular variables 

between the genomic classes is shown in Fig 2A. Specifically, we observed partial or 

complete loss of chromosome 9 in 53% (251/473; CDKN2A loci) of tumors, and amplification 

of 8q22.1 in 22% of tumors (103/473; GDF6 and SDC2 loci). Genes in the affected 8q22.1 

loci may be involved in the dysregulation of extracellular matrix synthesis and transforming 

growth factor (TGF)-β pathway 32. Other frequently altered genomic areas included gains of 

1q (16%), 8q (14%; including MYC), 5p (11%; including TERT), 20q (11%) and 20p (9.3%), 

and losses on 8p (16%), 11p (14%), 17p (13%; including TP53) and 18q (8.2%). Genomic 

classes were significantly associated with PFS and RFS (p=1.5 x 10-7 and p=1.5 x 10-5, 

respectively; Fig 2B-C). Importantly, restricting the survival analysis to tumors with high 

EORTC risk score (>6), genomic classes were still significantly associated with PFS (Fig 
2D). Genomic classes were significantly associated with stage, grade, concomitant CIS and 

EORTC risk score (Fig 2A and Table S4); however, multivariable Cox regression analysis 

documented that genomic classes were an independent prognostic variable for progression 

when adjusted for tumor stage and grade (HR=3.5 (95%CI: 1.57-7.56); p=0.002) and 

EORTC risk score (HR=2.8 (95%CI: 1.28-5.99); p=0.01) (Table S2). Furthermore, genomic 

classes were also independently associated with recurrence when adjusted for EORTC risk 

score (HR=1.5 (95%CI: 1.13-2.04); p=0.005).  

 

Integration of genomic alterations and transcriptomic classes 
Integrative analysis of genomic and transcriptomic data from 303 tumors showed that 

transcriptomic classes were significantly associated with genomic classes (p=0.0005; Fig 
3A). Class 2a included the highest fraction of tumors in GC3 (68%; 39/57). To document this 
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association further, we found a strong correlation between genomic classes and progression 

risk score (n=449, p=3.24 x 10-41), and tumors with a higher progression score were 

predominantly class 2a and 2b (p=1.8 x 10-32; Fig 3B). When analyzing class 2a and 2b 

tumors only, genomic classes were still significantly associated with PFS; all progression 

events were associated with GC3 tumors (Fig 3C). Likewise, when analyzing genomically 

high-risk (GC3) tumors only, transcriptomic class 2a and 2b were still associated with PFS 

(p=0.036, Fig S3A). 

 

Single-nucleotide variants (SNVs) with moderate or high functional impact were called based 

on RNA-Seq data. Class 2a tumors showed a significantly higher number of SNVs compared 

to all other classes (p=7.7 x 10-8; Fig 3D). Selected frequently mutated genes in bladder 

cancer are listed in Fig 3E, and a complete list of the most frequently mutated genes and 

genes with significantly different mutation patterns across classes can be found in Fig S3B. 

We compared RNA-derived SNVs (95 non-hotspot positions in the 18 genes shown in Fig 
3E) with whole-exome sequencing of tumors from 38 patients, and validated 87% of the 

SNVs (73 somatic and 11 germline mutations) in the DNA (Fig 3F). Analysis of hotspot 

mutations in FGFR3 (64%), PIK3CA (26%), RAS (7%), and hTERT (79%) based on tumor 

DNA is shown in Fig S3B. Furthermore, copy number alterations (from SNP microarray 

analysis) in disease driver genes are highlighted for comparison, and indicate overall loss of 

CDKN2A, significant gain of PPARG and E2F3 in class 2a and loss of RB1 in class 2a (Fig 
3E). An overview of genomic alterations significantly associated with transcriptomic classes 

is shown in Fig 3G. Notably, p53 pathway alterations, observed in 42% of tumors (127/303; 

Fig 3H), were significantly associated with a high CNA burden (p=5.9 x 10-20; Fig 3I) and 

class 2a tumors (p=2.8 x 10-7). Gene expression levels of key molecules in the p53 pathway 

(MDM2, E2F3, TP53, ATM and RB1) were significantly correlated to the observed genomic 

changes (Fig S3C-G). Mutations in DNA damage repair (DDR) genes were significantly 

associated with RNA-derived mutational load (p=2.1 x 10-13; Fig 3J). This remained 

significant when TP53 mutations were excluded from the analysis (p=4.4 x 10-11). In addition, 

we found a significantly higher mutational load and immune cell infiltration, estimated from 

RNA-Seq data, in GC3 tumors (Fig 3K-L), suggesting that these tumors present a high level 

of neoantigens.  

 

Furthermore, we inferred seven trinucleotide single-base mutational signatures (Fig S3H), 

and four signatures showed high correlation to signatures previously identified in bladder 

cancer 27,33,34: SBS1 (age-related), SBS2 and SBS13 (related to excessive APOBEC activity) 

and SBS5 (related to ERCC2 mutations; 35) (Fig 3E). Class 2a tumors showed significantly 

more mutations in the context of the APOBEC-related signatures (Fig 3M). Concordantly, 
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high contribution of the APOBEC-related signatures was associated with worse PFS (Fig 
S3I), indicating that APOBEC activity may drive disease evolution and tumor aggressiveness 
8.  

 

Finally, we applied a deconvolution method (WISP; weighted in silico pathology) to assess 

intra-tumor heterogeneity and class stability from bulk transcriptomic profiles (Blum et al., 

2019). WISP calculates pure population centroid profiles from the RNA-Seq data and 

estimates class weights for each sample based on the centroids (for details see Methods). 

We found that samples exhibited heterogeneity in all classes, with class 2a having the 

highest degree of heterogeneity and class 3 the lowest (Fig S4A). Associations of WISP 

class weights to molecular and clinical features were consistent with the previous description 

of the classes (Fig S4B-D). Class 1 weights were associated with lower tumor stage, tumor 

size and EORTC risk score. Class 2a weights were associated with TP53 (p=4.51 x 10-9) 

and TSC1 (p=1.37 x 10-5) mutations, as well as to higher tumor grade, tumor stage and 

EORTC risk score. Class 2b weights were significantly correlated to infiltration by all tested 

immune- and stromal populations (p<10-10). In addition, class 3 weights were associated with 

FGFR3 and PIK3CA mutations, as well as lower tumor stage and grade. WISP class weights 

also outlined differences between class 1 and 3 signals: high class 1 weights were 

associated to RAS mutations and infiltration by myeloid dendritic cells, while high class 3 

weights were strongly associated to FGFR3 mutations (p=7.34 x 10-15) and lower immune 

and stromal population scores than the other classes. 

 

Spatial proteomics analysis of tumor and immune cell contexture 
To resolve the immune features described above at the spatial level, multiplex 

immunofluorescence (mIF) and immunohistochemical (IHC) analyses were performed on 

167 tumors, where additional tissue was available, targeting immune cells (T-helper cells, 

CTLs, Tregs, B-cells, M1- and M2 macrophages; see Fig S5A for details), carcinoma cells 

(pan-cytokeratin, CK5/6 and GATA3) and immune recognition/escape mechanisms (PD-L1 

and MHC class I). Automated image analysis algorithms were developed to study the spatial 

organization of immune cells and immune evasion mechanisms (Fig 4A and Fig S5A). RNA-

Seq data was available for 150 of the tumors and the RNA-derived immune score correlated 

significantly with the level of immune infiltration (p=3.3 x 10-9; Fig 4B). The different subsets 

of lymphocytes were predominantly present simultaneously in the stroma and the tumor 

parenchyma. Consequently, only a few tumors belonged to the immune excluded phenotype 
36, and we therefore focused on the degree of infiltrating immune cells located in the tumor 

parenchyma, henceforth termed immune infiltration. Notably, tumors with a high immune 

infiltration showed a high expression of MHC class I (p=6.18 x 10-12). Only a few tumors 
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expressed PD-L1 in the tumor parenchyma, and the majority of these tumors were highly 

inflamed (p=1.64 x 10-5; Fig 4B). 

The level of infiltrating immune cells identified at the proteomic level was significantly 

associated with transcriptomic classes and class 2b tumors showed the highest immune 

infiltration (p=8 x 10-5; Fig 4C), supporting the observations delineated from the 

transcriptomic deconvolution analysis. These differences among transcriptomic classes were 

particularly evident for T helper cells and CTLs (p=2.5 x 10-5 and 0.0082, respectively; Fig 
S5B). These data confirm that the transcriptomic-based estimation of inflammation in class 

2b tumors truly represents high immune cell infiltration.  

Despite the overall aggressive characteristics of the inflamed class 2b tumors, a high 

immune infiltration was significantly associated with a lower recurrence rate (p=0.021; Fig 
4D), particularly for T helper cells and CTLs (p=0.019 and 0.012, respectively; Fig S5C). 

There were too few progression events to document this effect on PFS. Furthermore, a 

possible protective immune response is shown in patients with tumors of similar genomic 

background (few genomic alterations); in this group, patients with high immune infiltration 

had a longer RFS compared to patients with low immune cell infiltration (p=0.011; Fig 4E). 

Finally, we stained for basal cytokeratin expression (CK5/6) and luminal characteristics 

(GATA3) and aligned these with a pan-cytokeratin staining of the carcinoma cells to estimate 

the proportion of carcinoma cells positive for CK5/6, GATA3 or both (Fig S5D). All tumors 

stained positive for GATA3 and 23% expressed CK5/6 (>50% positive cells). All CK5/6 

positive tumors were concurrently GATA3 positive and thereby not basal/squamous by 

definition 37. Similar coexpression of basal- and luminal-like markers has been observed 

previously in the Urothelial-like B tumors 38. The fraction of CK5/6 positive cells was strongly 

associated with transcriptomic classes, with class 3 having the strongest enrichment for 

CK5/6 expression (p=4.5 x 10-8; Fig 4F).       

Integrative prediction models, classifier construction and independent 
validation 
An overview of the univariate Cox regression analyses of selected clinical features and 

molecular variables is shown in Fig 5A. In addition, we performed receiver operating 

characteristic (ROC) analysis for predicting progression using logistic regression models 

(n=301, Fig 5B). Combining EORTC risk score with genomic classes increased the 

predictive accuracy from 0.77 to 0.82, and combining EORTC risk score and transcriptomic 

classes increased the predictive accuracy to 0.85. Including all three variables in the model 

slightly increased the predictive accuracy to 0.87 (BH-adjusted p=0.036, Likelihood ratio test; 
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full model vs. EORTC model). A logistic regression model of continuous variables (EORTC, 

genome altered and 12-gene progression score) showed no increased predictive value when 

including both molecular variables in the model (Fig S6A).     

 

To facilitate the use of the four transcriptomic classes in future research and clinical settings, 

we constructed a single-sample classifier for NMIBC. The classifier was built similarly to the 

recently published tool for the consensus subtypes of MIBC. A class label is assigned to the 

transcriptomic profile of a tumor based on correlation to the class-specific mean expression 

profiles (26; for details see Methods). We applied the classifier to 15 independent cohorts, 

including five unpublished datasets, with a total of 1306 patients whose tumors were 

analyzed with a wide range of platforms (Fig 6A). Notably, RNA-Seq platforms were better 

suited to call class 3 tumors compared to microarray analyses. Overall, we found highly 

significant correlations between class and tumor stage, tumor grade and mutations in 

FGFR3 and TP53 (Fig 6B), and classes showed significantly different PFS (p=0.0002; Fig 
6C) where patients with class 2a tumors had the worst outcome. Notably, multivariable Cox 

regression analysis revealed that class 2a (HR=2.9 (95%CI: 1.55-5.39); p=0.0009) and class 

2b (HR=2.2 (95%CI: 1.03-4.46); p=0.041) were independently associated with worse PFS 

compared to class 1 when adjusted for tumor stage (Table S6). To validate the classifier 

further, we compared differences of regulon activity and biological pathway enrichment 

between classes in the discovery cohort to findings in the independent cohorts. The regulon 

and pathway analysis documented a high concordance between datasets (Fig 6D-E and Fig 
S6B), supporting the robustness of the classes.  

Discussion 
Here we expanded our analysis of NMIBC biology and associated clinical outcomes to 834 

patient samples from the UROMOL consortium’s multicenter study. Utilising integrative multi-

omics analysis, we demonstrated that disease aggressiveness in NMIBC patients was 

associated with genomic alterations, transcriptomic classes and immune cell infiltration. We 

described the development and validation of a single-sample transcriptomic classifier for 

NMIBC, and notably, identified patients with high chromosomal instability and poor outcome, 

denoted as class 2a. Importantly, we demonstrated that the genomic and transcriptomic 

subtypes showed strong independent prognostic value when compared to clinical risk 

factors. Integrative disease models of clinical risk factors and molecular features showed 

that the addition of transcriptomic class or genomic instability measures result in similar 

significant increases in AUCs, and the inclusion of both variables in disease models 

minimally improved the predictive accuracy (Fig 5B and S6A). Future classification schemes 
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that incorporate all predictive molecular features may be optimal, however, for clinical 

application, we suggest the use of a transcriptomic-based classifier, as the expression data 

in addition will reflect tumor biological processes and possible treatment options (Fig 5C). 

The classifier was successfully validated using data from 1306 yet unpublished- and 

previously published patient samples. 

Specifically, we showed that the extent of genomic alterations in NMIBC is an independent 

predictor of recurrence and progression. Tumors with high chromosomal instability should 

therefore optimally be managed as high-risk tumors regardless of histopathological findings. 

In addition, we demonstrated that the number of genomic alterations is significantly 

associated with high-risk transcriptomic classes, p53 pathway alterations and increased 

immune cell infiltration. Previous studies that applied array-based CGH analysis have shown 

that genomic alterations were correlated to histopathological parameters such as stage and 

grade 13,14,39, but independent prognostic value has not previously been described. We 

investigated a large clinically well-annotated patient series and applied SNP array 

technology to increase the granularity of genomic analysis and to gain information of allelic 

imbalance - a molecular feature not available through CGH analysis. It is noteworthy that, in 

the current study, we did not aim at identifying specific genomic loci associated with 

progression to MIBC, but instead we report that the overall CNA burden is directly 

associated with clinical outcome. This observation is in agreement with other findings linking 

chromosomal instability to intra-tumor heterogeneity, disease aggressiveness and poor 

patient outcome in various human tumor types 40,41. In bladder cancer, chromosomal 

instability has previously been linked to advanced muscle-invasive disease 42. Our 

observation is further strengthened by the identification of mutations in DDR genes and p53 

pathway alterations which were associated with genomic instability. This link has been 

observed previously in a smaller set of bladder tumors 42. The underlying mechanisms 

responsible for the genomic instability is, however, not fully understood, but may be caused 

by oncogene activation and replication stress, which triggers DDR checkpoints 43. Mutations 

in DDR genes and p53 pathway alterations are therefore likely to cause the genomic 

instability observed. We used RNA-Seq data for mutation calling, which is associated with 

some limitations as only mutations in expressed genes can be detected and no germline 

reference is used to eliminate germline variations. However, we applied very stringent filters 

to avoid false positives and validated the presence of 87% of the RNA-Seq-derived 

mutations. Furthermore, a recent study also documented that high-precision analysis of 

mutations based on RNA is achievable 44. 

At the transcriptomics level, we identified four main classes of NMIBC with the 

UROMOL2016 defined class 2 being separated into two new groups: class 2a and class 2b. 
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Class 2a, displaying a higher RNA-derived mutational load and elevated APOBEC-related 

mutational signature contribution, was characterized as a high-risk group with multiple 

progression events, whereas class 2b, displaying higher expression of stem cell and EMT 

markers and immune infiltration, was associated with a lower risk of progression. APOBEC-

associated mutations are proposed to drive tumor evolution and disease aggressiveness in 

lung cancer 45,46 and high levels of the APOBEC3B protein have been associated with poor 

outcome in breast cancer 47. High tumor mutational burden and APOBEC mutational load 

have, however, previously been associated with a better prognosis of MIBC 27. Possible 

reasons for this discrepancy could be related to better treatment efficacy for muscle-invasive 

tumors with a high mutational burden and APOBEC-related mutational signatures 3.  

The ability to discriminate between class 1 and class 3 tumors was possible since we 

analyzed a very large number of samples by RNA-Seq, a technology with much higher 

resolution than microarrays used in prior studies. Methylation analysis further emphasized 

the distinctive features of these two classes (Fig S1C-D). We also observed that class 3 

tumors showed a high level of keratin 5 gene expression and simultaneously the highest 

level of CK5/6 protein expression; however, this should not be associated with 

basal/squamous MIBC tumors, since we also observed GATA3 expression in all of these 

tumors (see example in Fig S5D). The transcriptomic classes were prognostic per se, which 

further highlights several aspects of tumor biology (Fig 5C). Since all MIBC tumors initially 

arise as NMIBC, a relevant question is whether the recently developed MIBC consensus 

classification 26 would be applicable to NMIBC. We provide strong evidence that this is not 

the case (Fig 1D). Our analysis shows that NMIBC displays less dramatic phenotypic 

variability compared to MIBC, and classifiers have to be adjusted accordingly. The NMIBC 

classes described here overlap partially with previously generated signatures of outcome 

and gene expression subtypes in NMIBC 6,8,48. The subtypes from the Lund group initially 

generated based on the whole spectrum of bladder tumors 7, have now been further 

developed to include five major tumor cell phenotypes 25,49. As the classification system 

spans a large biological range (NMIBC to MIBC), it may not fully capture the subtype 

granularity observed exclusively in NMIBC. In our work, we compared our transcriptomic 

classes to the Lund classes using the Lund single-sample classification system 49. Although 

we observed an overlap between e.g. class 2a and GU, most tumors were classified as 

UroA.  

Our analysis of regulons revealed potential druggable pathways related to sex hormones in 

distinct tumor subsets: the androgen receptor pathway was significantly activated in class 3 

tumors, although there was no enrichment for male patients in this group. In a recent study, 

low levels of the androgen receptor have been linked to increased translation and tumor 
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proliferation in prostate cancer 50, and the high levels observed in class 3 could therefore 

have a protective effect. Class 2a was dominated by high levels of ESR2 regulon activity, 

while 2b was dominated by high levels of ESR1 and PGR, indicating that hormonal receptor 

activity may play a pivotal role in disease development. The estrogen and androgen 

receptors have been linked to urothelial tumorigenesis in animal models 51–53. Furthermore, 

the androgen receptor has been shown to be specifically expressed in early-stage bladder 

tumors 54, corroborating the finding of a unique class with androgen receptor activity in 

NMIBC. It is, however, important to emphasize that the transcriptomic analyses of regulon 

activity were based on bulk tumor analysis and some regulon activities could therefore be 

driven by different tissue compositions, e.g. higher immune infiltration in class 2b tumors.      

The different biological characteristics of the transcriptomic classes suggest that specific 

therapeutic interventions may have different effects in these patients, as outlined in Fig 5C. 

Of note, class 2a tumors were characterized by a high RNA-derived mutational load, which 

is considered to result in an elevated neoantigen burden, and these patients may therefore 

benefit from immunotherapy. Checkpoint inhibitors have been shown to be most effective in 

tumors with high mutational burden 30. Class 2b tumors were frequently PD-L1 positive, 

suggesting that these patients may also benefit from checkpoint inhibitor immunotherapy, 

since high PD-L1 has been linked to an improved response to both PD-1 and PD-L1 

inhibitors in MIBC 55,56. The interest towards the use of systemic immunotherapy in NMIBC 

has gained momentum, and Pembrolizumab (PD-1 inhibitor) has recently been approved by 

the FDA for BCG-unresponsive NMIBC patients. The frequent FGFR3 mutations observed in 

class 1 and 3 suggest that FGFR inhibitors could be effective in these tumors, especially 

since the oral FGFR inhibitor BGJ398 recently showed antitumor activity in a marker lesion 

study of patients with NMIBC (57, NCT02657486), and Pemigatinib (FGFR1,2,3 inhibitor) is 

being tested in an ongoing phase II clinical trial in patients with recurrent low- or 

intermediate-risk tumors (NCT03914794). Intravesical chemotherapy should be considered 

especially for class 3 tumors, but possibly also for class 1 tumors although the recurrence 

rate is lower in these patients.          

BCG response mechanisms have been studied intensely 58 and so far one of the most 

promising markers of BCG response is fluorescence in situ hybridization (FISH, Urovysion) 

analysis of chromosomal abnormalities 59. A recent study of resistance to BCG treatment 

showed a higher baseline tumor PD-L1 expression among patients non-responsive to BCG 

compared to patients responsive to BCG treatment 60, indicating that the pre-treatment tumor 

microenvironment may play a crucial role in BCG response mechanisms. Thus, class 2b 

tumors, with the highest PD-L1 expression, may respond poorly to BCG. In this study, we did 
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not observe any tumor-centric biological variables that were associated with BCG treatment 

response. However, the number of patients that received >5 cycles of BCG in connection 

with the analyzed tumor was low, and larger studies of BCG response are needed to 

delineate response mechanisms. 

 

In conclusion, we report the largest integrative multi-omics analysis of NMIBC tumors from a 

total of 834 patients included in the UROMOL project. We delineate biological processes 

associated with disease aggressiveness based on detailed, high-quality clinical data, and we 

provide and validate a classification tool for assigning transcriptomic class and associated 

progression risk to independent samples. Transcriptomic classification of disease biology 

provides an important framework for novel biomarker discovery in next-generation clinical 

trials to optimize the current clinical management of patients with NMIBC. 
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Figure Legends 
 

Figure 1. Transcriptomic classes in NMIBC 
a Left: consensus matrix for four clusters. Samples are in both rows and columns and 

pairwise values range from 0 (samples never cluster together; white) to 1 (samples always 

cluster together; dark blue). Right: comparison between the three UROMOL2016 

transcriptomic classes and the UROMOL2020 four-cluster solution (76% of tumors in 

UROMOL2016 class 1 remained class 1, 92% of tumors in UROMOL2016 class 2 remained 

class 2a/2b and 67% of tumors in UROMOL2016 class 3 remained class 3). b Kaplan-Meier 

plot of PFS for 530 patients stratified by transcriptomic class. c Kaplan-Meier plot of RFS for 

511 patients stratified by transcriptomic class. d-e Clinicopathological information and 

selected gene expression signatures for all patients stratified by transcriptomic class. 

Samples are ordered after increasing silhouette score within each class (lowest to highest 

class correlation). f Regulon activity profiles for 23 transcription factors. Samples are ordered 

as in (D). Regulons are hierarchically clustered. g Regulon activity profiles for potential 

regulators associated with chromatin remodeling. The most-upregulated regulons within 

each class are shown. Regulons are hierarchically clustered. h RNA-based immune score 

and immune-related gene expression signatures for all patients stratified by transcriptomic 

class. 

 

Figure 2. Copy number alterations in NMIBC 
a Genome-wide copy number landscape of 473 tumors stratified by genomic class (GC) 1-3. 

Gains (gain + high balanced gain) and losses (loss + high balanced loss) are summarized to 

the left of the chromosome band panel. b Kaplan-Meier plot of PFS for 426 patients stratified 

by genomic class. c Kaplan-Meier plot of RFS for 399 patients stratified by genomic class. d 

Kaplan-Meier plot of PFS for patients with high EORTC risk score (n=164) stratified by 

genomic class. 

 

Figure 3. Genomic alterations associated with transcriptomic classes  
a Genomic classes (GCs) compared to transcriptomic classes (n=303). b 12-gene qPCR-

based progression risk score compared to GCs. Colors indicate transcriptomic classes. c 
Kaplan-Meier plot of PFS for 154 patients (including only class 2a and 2b tumors) stratified 

by GC. d Number of mutations according to transcriptomic classes. e Landscape of genomic 

alterations according to transcriptomic classes. Samples are ordered after the combined 

contribution of the APOBEC-related mutational signatures (SBS2+SBS13). Panels from the 

top: RNA-derived mutational load, relative contribution of four RNA-Seq-derived mutational 
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signatures (inferred from 441 tumors having more than 100 single nucleotide variations), 

selected RNA-Seq-derived mutated genes, copy number alterations in selected disease 

driver genes (derived from SNP arrays). Asterisks (*) indicate p values below 0.05. Daggers 

(†) indicate BH-adjusted p values below 0.05. f Comparison of RNA-derived SNVs to whole-

exome sequencing data from 38 patients, including 95 positions (non-hotspots) in the genes 

shown in E). We called four SNVs “uncertain” as they were observed in DNA but with few 

reads. g Genomic alterations significantly enriched in one transcriptomic class vs. all others. 

h Overview of p53 pathway alterations for all tumors with available copy number data and 

RNA-Seq data (n=303). i Amount of genome altered (Mb) according to p53 pathway 

alteration. j Number of mutations according to mutations in DNA-damage response (DDR) 

genes (including TP53, ATM, BRCA1, ERCC2, ATR, MDC1). k RNA-based immune score 

according to GCs. l Number of mutations according to GCs. m Relative contribution of the 

APOBEC-related mutational signatures (SBS2+SBS13) according to transcriptomic class. 
 

Figure 4. Spatial proteomics analysis of tumor immune contexture 
a mIF staining with Panel 1 (CD3, CD8 and FOXP3) of a tumor with high- and low immune 

infiltration, respectively. b Spatial organization of immune cells and antigen 

recognition/escape mechanisms (MHC1 and PD-L1). The immune cells and immune evasion 

markers are defined as percent positive cells in the different regions (stroma and 

parenchyma) and normalized by z-scores. c Immune infiltration according to transcriptomic 

class. Immune infiltration is defined as the percentage of cells in the parenchyma classified 

as immune cells. d Immune infiltration stratified by recurrence rate. p value is calculated by 

the Jonckheere-Terpstra test for trend. e Kaplan-Meier plot of RFS stratified by immune 

infiltration in tumors with few genomic alterations (GC1+2). f Distribution of CK5/6 and 

GATA3 expression in carcinoma cells stratified by transcriptomic class. Each column 

represents a patient. The p value reflects the difference in CK5/6 expression across classes.   

      

Figure 5. Prediction models and summary characteristics of transcriptomic 
classes 
a Overview of hazard ratios calculated from univariate Cox regressions of PFS using clinical 

and molecular features. Black dots indicate hazard ratios and horizontal lines show 95% 

confidence intervals. P values below 0.05 are indicated by asterisks. b Receiver operating 

characteristic (ROC) curves for predicting progression using logistic regression models 

(n=301, events=19). Asterisks indicate significant model improvement compared to the 

EORTC model (Likelihood ratio test, BH-adjusted p value below 0.05). AUC=area under the 
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curve. CI=confidence interval. c Summary characteristics of the transcriptomic classes. 

Molecular features associated with the classes are mentioned, and suggestions for 

therapeutic options with potential clinical benefit are listed. LG=Low grade, HG=High grade.    

 

Figure 6. Validation of transcriptomic classes in independent cohorts 
a Summary of classification results and stage distribution for all tumors, tumors with 

microarray data and tumors with RNA-Seq data. b Association of tumor stage, tumor grade 

and FGFR3 and TP53 mutation status with transcriptomic classes. c Kaplan-Meier plot of 

PFS for 511 patients stratified by transcriptomic class. d Association of regulon activities 

(active vs. repressed status) with transcriptomic classes in the UROMOL cohort (including 

samples with positive silhouette scores, n=507) and transcriptomic classes in the 

independent cohorts (pooled). The heatmap illustrates BH-adjusted p-values from Fisher’s 

Exact Tests. e Pathway enrichment scores within transcriptomic classes in the UROMOL 

cohort (including samples with positive silhouette scores, n=507) and transcriptomic classes 

in the independent cohorts (pooled). Asterisks indicate significant association between 

pathway and class (one class vs. all other classes, Mann-Whitney U-test, BH-adjusted p-

value below 0.05). Triangles indicate direction swaps of pathway enrichment in the 

independent cohorts compared to the UROMOL cohort.  
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Methods 
Patients and data in the UROMOL discovery cohort 
Patients in the discovery cohort were included in the UROMOL project and followed 

according to national guidelines. Further details regarding samples, procedures and clinical 

follow-up are listed in 8. The study was approved by the Central Denmark Region 

Committees on Biomedical Research Ethics (#1994/2920; Skejby, Aalborg, Frederiksberg); 

the Danish National Committee on Health Research Ethics (#1906019), the ethics 

committee of the University Hospital Erlangen (#3755); the ethics committee of the Technical 

University of Munich (#2792/10); Medical Ethics Committee of Erasmus MC 

(MEC#168.922/1998/55; Rotterdam); the Uppsala Region Committee on Biomedical 

Research Ethics (#2008/252); the Ethical Committee of Faculty of Medicine, University of 

Belgrade (#440/VI-7); the Ethics Committee (CEIC) of Institut Municipal d’Assistència 

Sanitària/Hospital del Mar (2008/3296/I); the ethics committee of the University Hospital 

Jena (#4774-4/16).  

 

RNA-Seq data from 438 tumors included in our previous work 8 was reanalyzed together 

with new RNA-Seq data from 97 tumors. See File S1 for details. Based on the discovery 

samples, we created a “BCG cohort” of 55 patients who meet the following criteria: 1) 

indication of BCG treatment was high-grade disease, 2) the patient received a minimum of 

six BCG series and 3) BCG treatment was initiated within 12 months after TURB (hence, 

BCG was given in relation to the analyzed tumor). The BCG cohort was used to investigate 

response to BCG treatment using multiple features available from our datasets.  

 
DNA and RNA extraction  
Procedures for nucleotide extraction from tumors and leukocytes are described in 8.   

 

Total RNA-Sequencing 
Sequencing of total RNA was performed using ScriptSeq-v2 RNA-Seq Library Preparation 

Kit (Illumina) and KAPA RNA HyperPrep Kit with RiboErase HMR (Roche). RNA input was 

500 ng for both kits.  

Gene expression quantification and normalization 
We remapped and requantified all new and previously generated expression data. Salmon 61 

was used to quantify the amount of each transcript using annotation from GRCh38. The R 

packages tximport and edgeR were used to summarize the expression at gene-level and 

normalize the data, respectively. 
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Consensus Clustering 
The expression matrix was filtered to only include transcripts with a median expression 

above zero. Genes were ranked based on median absolute deviation (MAD) across all 

samples and divided into subsets of the top -2000, -4000, -6000, -8000, -10,000, -12,000 

MAD-ranked genes. Consensus clustering was performed on the different gene subsets 

using the R package ConsensusClusterPlus (settings: maxK=10, reps=1000, pItem=0.95, 

pFeature=1, clusterAlg=”hc”, distance=”pearson”). To identify the most representative 

samples within each cluster, silhouette scores were computed for all samples using the R 

package CancerSubtypes. A four-cluster solution based on the top-4000 MAD-ranked genes 

was chosen.  

 

Gene expression signatures 
We extracted genes associated with cell cycle, keratins, uroplakins, cancer stem cells, 

epithelial-mesenchymal/mesenchymal-epithelial transition, and differentiation 7,62,63 and 

summarized each biological process as the mean expression of all marker genes associated 

with the given process. Gene expression signatures of bladder cancer have previously been 

reported, including a progression signature and CIS signature 4,5,64,65. All 535 samples in the 

RNA-Seq cohort were classified according to the three signatures using consensus 

clustering. Finally, we characterized the classes using gene signatures of potential relevance 

for different treatment strategies 7,26,30,31,66–69. 

 
RNA-based estimation of immune cell infiltration 
As in Rosenthal et al. 29, we evaluated immune cell infiltration based on the expression of 

predefined gene lists for 14 different immune cell populations 70 (for CD4+ T cells: 71). A 

score for each cell type was calculated as the mean expression of all marker genes 

associated with the given cell type, and a total immune score was defined as the sum of all 

immune cell type scores.  

 

RNA-based mutation calling 
Mutations were called from the RNA-seq data using the GATK pipeline. Briefly, STAR v2.7 

was used to align the raw RNA reads to the hg38 human genome assembly and PICARD 

tools were used to mark duplicates. GATK tools, SplitNCigarReads, BaseRecalibrator and 

ApplyBQSR were applied in order to reformat some of the alignments that span introns and 

correct the base quality score. Finally, the HaplotypeCaller software was used to call 

variants. The resulting VCF files were annotated using SnpEff followed by filtration for 

possible impact on proteins. First, only SNVs annotated with a HIGH or MODERATE impact 
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by SnpEff were included and SNVs in splice-site genomic locations were excluded. Second, 

mutations with an rs ID in dbSNP were excluded. Third, only mutations with a quality score 

above 100 and a Fisher Strand score (FS) below 30.0 were included. Finally, mutations 

called in ten or more samples were filtered out with the exception of known mutation 

hotspots (FGFR3 and PIK3CA). Furthermore, we validated RNA-derived mutations in DNA 

for a subset of patients (n=38) where whole-exome sequencing data were available.   

 

RNA-based mutational signature analysis 
To infer mutational signatures, we included mutations called within the gene sequence 

(HIGH, MODERATE, and LOW impact) and excluded mutations with rs ID together with 

mutations with a quality score below 100 or a Fisher Strand score (FS) above 30.0. Finally, 

mutations were included if they met the following criteria: 1) alternate allele frequency (AF) 

>0.15 and <0.60; 2) number of reads >20. Only samples with more than 100 SNVs were 

kept to infer the mutational signatures (n=441). We used non-negative matrix factorization to 

decompose the motifs matrix into seven signatures and their corresponding weights using 

the R package SomaticSignatures. The similarity between the seven inferred signatures and 

defined COSMIC signatures was examined using the R package MutationalPatterns. 

 

Copy number analysis 
GSA Illumina SNP arrays (~760k positions) were used on tumor DNA from 473 patients in 

order to assess copy number alterations. We previously applied the Infinium OncoArray-

500K BeadChipGenotyping arrays for the paired germline samples and used this as 

reference. LogR Ratio (LRR) and B-allele-fraction (BAF) were corrected and normalized 

using the Genotyping module from GenomeStudio 2.0 (Illumina) within each array type and 

all positions uniquely found in both arrays were exported for further analysis (151,291 

probes). The R package ASCAT was used for segmentation of the genome and we used the 

raw-segmented total copy number, the raw-segmented BAF data and various empiric 

thresholds (gains: > 0.08, high gains: > 0.16, loss: <-0.1, high loss: <-0.2, allelic imbalance 

(AI): <0.45) to identify five different types of CNAs: 1) losses associated with AI (i.e., 

associated with a deviation in BAF), 2) gains associated with AI, 3) high losses without AI, 4) 

high gains without AI and 5) AI without a change in total copy number. The applied 

thresholds were validated using histograms of LRR and in all diploid cases (83%), the peak 

for no change in copy number was within the thresholds defined for the gains/losses without 

deviation in BAF. Using these thresholds, subclonal events present in a minority of 

carcinoma cells will either not be called or instead be defined as regions with no copy 

number changes but with deviation in the BAF (due to the higher sensitivity of the BAF 
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measurement). Therefore, defined gains/losses are clonal events or subclonal events 

present in the majority of carcinoma cells.    

The amount of genome in a non-normal state was calculated using the thresholds above 

(referred to as the CNA burden). Tumors were assigned to three genomic classes (GC1-3) 

of equal size based on the CNA burden to illustrate low, intermediate and high chromosomal 

instability (cut-offs at the 33rd and 67th percentiles). Furthermore, based on LRR and BAF 

plots, we manually defined tumors as being diploid or not diploid. 

 

Methylation analysis 
DNA methylation analysis was performed using DNA from 29 patients based on the 

UROMOL2016 classification with 10-11 samples from each class. After re-classification, we 

had 10 samples in class 1, 12 in class 2a/2b with a majority in class 2b and 6 in class 3. All 

tumors were selected to have a high silhouette score, and all were Ta high-grade tumors. 

We used 500 ng genomic DNA for bisulfite conversion followed by whole-genome 

amplification prior to hybridization to EPIC BeadChip (Illumina, San Diego, CA) overnight as 

described by the manufacturer and then scanned with the Illumina iSCAN system. Data was 

imported and processed using the RnBeads v2.2 R package pipeline. For the preprocessing 

of the data, the normalization method was set to ‘illumina’ and the background correction 

method to ‘methylumi.noob’. 

 

Regulon analysis 
We reconstructed transcriptional regulatory networks (regulons) consisting of 23 

transcription factors and associated induced/repressed targets using the R package RTN, as 

previously described 27. Additionally, we investigated 78 candidate regulators associated 

with chromatin remodeling in cancer 28. Potential associations between a regulator and all 

possible target genes were inferred from the expression matrix by Mutual Information and 

Spearman’s correlation, and permutation analysis was used to remove associations with a 

BH-adjusted p-value > 1 x 10-5. Unstable associations were eliminated by bootstrap analysis 

(1000 resamplings, consensus bootstrap >95%) and the weakest association in triangles of 

two regulators and common target genes were removed by data processing inequality (DPI) 

filtering (tolerance=0.01). Regulon activity scores for all samples were calculated by two-

tailed gene set enrichment analysis.   

 

12-gene progression score 
All molecular data related to the 12-gene progression score were generated previously 6 and 

analyzed here with additional follow-up information.   
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Construction of single-sample transcriptomic classifier 
We constructed a Pearson nearest-centroid classifier for NMIBC based on the recently 

published classifier for the MIBC consensus subtypes 26. Only samples with positive 

silhouette scores were used for feature selection (n=507). We filtered the expression matrix 

to include genes with a median expression > 0 in at least one of the four classes and used a 

step-wise ANOVA approach to identify genes with significantly different expression levels 

across classes. ANOVA between all four classes resulted in 13,650 significant genes (BH-

adjusted p-values < 0.05). Genes highly expressed in class 2b dominated the list, so we 

removed class 2b samples and previously significant genes from the dataset and performed 

a second round of ANOVA on the remaining classes. This analysis added only four 

significant genes to the feature list (BH-adjusted p-values < 0.05). Next, class 2a samples 

were removed and one last round of ANOVA between class 1 and class 3 was performed 

(corresponding to a t-test), resulting in 109 significant genes (BH-adjusted p-values < 0.05). 

Thereby, a total number of 13,762 genes were suggested to be differentially expressed 

between classes. The step-wise ANOVA approach was chosen instead of multiple pairwise 

t-tests to reduce the number of statistical tests while still accessing differences between all 

classes. We computed the area under the curve (AUC) associated with each gene for 

prediction of the four classes and kept genes with an AUC > 0.6 (n=10,149). An additional 

filtering of genes was performed to only keep genes with a mean expression > 0 across all 

samples. Overall, the initial selection of features resulted in a list of 9,451 genes. 

We used Leave One Out Cross-Validation (LOOCV) to assess the classification 

performance associated with different subsets of the 9,451 features. In each LOOCV run, we 

computed the mean fold-change associated with each gene for each class versus the 

others. Genes were ordered by their mean fold-change within each class and the four-gene 

lists were used to generate several gene subsets. The N top up-regulated and N top down-

regulated genes within each class, with N varying from 50 to 800, were selected and used as 

feature input for the classifier. We obtained the lowest LOOCV error rate when selecting the 

368 top up-regulated and 368 top down-regulated genes within each class (1,964 unique 

genes in total). Finally, genes appearing in >80% of the LOOCV runs were selected and 

used to build the final classifier (n=1,942). We computed four centroids corresponding to the 

four NMIBC classes (i.e. the mean gene expression profile of the 1,942 chosen feature 

genes for each class), and class labels are then assigned to single NMIBC samples based 

on the Pearson correlation between a sample’s expression profile and the four-class 

centroids. The NMIBC classifier is available as a web application at http://cit.ligue-
cancer.net:3838/apps/BLCAclassify/. 
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Proteomics  
Formalin-fixed paraffin-embedded (FFPE) tissue from transurethral resection of bladder 

tumors (TURBT) was obtained from 167 Danish patients at Skejby and Frederiksberg 

hospital. Tissue microarrays (TMAs) were constructed from representative tumor areas with 

1 mm triplicate core biopsies using the automated TMA-GRAND Master (3DHISTECH Ltd, 

Budapest, Hungary). Multiplex immunofluorescence analysis (mIF) was performed on TMA 

sections (3 μM) applying two panels of antibodies targeting CD3, CD8 and FOXP3 in the first 

panel and CD20, CD68, CD163 and HLA-A, B, C  in the second (see Table S5 for a detailed 

description of the panels). We utilized a tyramide signal amplification strategy on the 

BenchMark ULTRA staining instrument (Ventana) according to the manufacturer's operating 

instructions. The fluorophore-labeled sections were imaged using the NanoZoomer s60 

scanner (Hamamatsu). Immunostaining for pan-cytokeratin (Clone A1/A3, 1:100; Dako) as a 

second layer was performed on all mIF stained sections to identify carcinoma cells. For 

digital pathology, we utilized the Visiopharm image analysis software. For each tissue core, 

the pan-cytokeratin stained image was aligned to its corresponding fluorescence image. 

Intratumoral and stromal regions were defined automatically as pan-cytokeratin positive and 

negative, respectively. All immune cell populations from each panel were automatically 

characterized and quantified - and verified by an experienced pathologist (Fig S5A). 

 

Identification of PD-L1 expression on the carcinoma cells was performed using two 

sequential TMA sections, the first section stained for pan-cytokeratin (Clone A1/A3, 1:100; 

Dako) and the second against PD-L1 (Clone Sp263, ready to use; Ventana). These sections 

were aligned and analyzed in a similar fashion as for the immune cell markers. 

Identification of basal and luminal markers on the carcinoma cells was performed using three 

sequential TMA sections, stained for pan-cytokeratin (Clone  A1/A3, 1:100; Dako), GATA3 

(Clone L50-823, ready to use; Ventana) and CK5/6 (Clone D5/16 B4, ready to use; 

Agilent/Dako) (Fig S5D). These sections were aligned and the proportion of carcinoma cells 

positive for GATA3, CK5/6 or double-positive was quantified for each tumor. Tumors were 

classified as positive if more than 50% of the carcinoma cells expressed the marker.      

 

Independent transcriptomics datasets used for validation 
Transcriptomics data from ten historical cohorts (Kim 72, GEO: GSE13507; Lindgren 39, GEO: 

GSE32549; Sjödahl2012 7, GEO: GSE32894; CIT 66, ArrayExpress: E-MTAB-1803; Choi 73, GEO: 

GSE48075; Sjödahl2017 25, GEO: GSE83586; Song 74, GEO: GSE120736; Sjödahl2019 75, GEO: 

GSE128959; Thorsen 76; Aaboe 77) were used for the validation of the four-class NMIBC 

classification. The data was downloaded from GEO or ArrayExpress and annotated with 

HUGO Gene Symbols. In addition to using the publicly available data, we included data from 
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five yet unpublished cohorts (listed below). Each sample in each cohort was classified using 

the single-sample classifier trained using the UROMOL cohort.  

Unpublished cohort 1 provided by David DeGraff, Joshua Warrick and Jay Raman: total 

RNA-Seq was obtained on 81 Ta tumors, all from formalin-fixed paraffin-embedded tissue, 

macro-dissected to enrich for tumor. Patients and materials from the Pennsylvania State 

University were retrospectively included and analyzed following Institutional Review Board 

approval and waiver of informed consent. RNA was extracted with Qiagen kits (Venlo, 

Netherlands). Sequencing was performed on the Illumina Novaseq 6000 instrument and run 

for 2X50 cycles. Only cases with alignment rate >85% were included. Expression was 

estimated from read counts using FPKM, then log2 transformed.  

Unpublished cohort 2 provided by Margaret Knowles: Data from Affymetrix Human 

Transcriptome 2.0 microarrays for 104 stage T1 and 113 stage Ta tumors from the Leeds 

Multidisciplinary Research Tissue Bank (REC reference: 10/H1306/7). Total RNA was 

isolated from frozen tissue sections using a RNeasy Plus Micro Kit and amplified using the 

Affymetrix GeneChip WT PLUS Reagent Kit. The resulting cDNA was hybridised onto 

Affymetrix Human Transcriptome 2.0 microarrays. Quality control checks, gene level 

normalisation (using SST-RMA) and signal summarisation was conducted using Affymetrix 

Expression Console Software. 

Unpublished cohort 3 provided by Joshua Meeks: RNA-seq based analysis of 73 FFPE 

tumors from T1 tumors treated with BCG at Northwestern University. All tumors were 

retrospectively included and analyzed following Institutional Review Board Approval and 

waiver of informed consent (STU00204352). RNA libraries were prepared using the Illumina 

TruSeq Stranded Total RNA Library Preparation Kit including rRNA depletion with RiboZero 

Gold. Libraries were sequenced on an lllumina HiSeq 4000, generating single-end, 50 bp 

reads. Trimmed reads were mapped to the GRCh37/hg19 genome with STAR v2.5.2. BAM 

files were processed to per-gene FPKMs with cuffquant from Cufflinks v2.2.1, using settings 

-u -p 12--library-type fr-firststrand, with an Ensembl v97 GRCh38 gene annotation GTF file, 

and cuffnorm, using default settings.  

 

Unpublished cohort 4 provided by Richard Bryan: RNA-Seq based analysis of 85 tumors 

from the West Midlands Bladder Cancer Prognosis Programme (BCPP, ethics approval 

06/MRE04/65), as previously described 78. RNA libraries were prepared using the Truseq 

Stranded Total RNA with Ribo-zero Gold kit (Illumina) and 2 x 100 bp PE sequenced (Hiseq, 

n=26) or 2 x 75 bp PE sequenced (Nextseq, n=52). The data were aligned to GRCh37 and 
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reads counted with STAR aligner (v2.5.2b). Log2(Read count+1) for each gene has been 

used as input for the class prediction.  

 

Unpublished cohort 5 provided by Trine Strandgaard: RNA-Seq based analysis of 47 fresh 

frozen tumors from patients enrolled at Aarhus University Hospital with high-risk NMIBC, and 

analyzed following approval by the the Danish National Committee on Health Research 

Ethics (#1708266). RNA-Seq data was generated using analysis pipelines described above 

for the additional samples included in the discovery cohort in this work.      

 

Pathway enrichment analysis 
Pathway enrichment analysis was performed independently in the UROMOL cohort and 

each historical cohort that contained representatives of all classes. First, we collected 

pathway annotation from the Reactome (using R package reactome.db v1.68.0) and KEGG 

(using the R package KEGGREST v1.24.1) databases. We joined these annotations and 

performed gene-set variation analyses (using the R package GSVA v1.32.0) to obtain single-

sample enrichment scores for each pathway. 

 

To find associations between pathways and classes, we performed Mann-Whitney U-tests 

using the pathway enrichment scores between samples in each class versus samples in 

other classes in each cohort separately. P values were BH-adjusted. For the pathway 

visualizations, we first filtered pathways that were enriched in the same class in the 

UROMOL cohort and in at least 4 other datasets and then manually selected pathways from 

the filtered list. Pathway enrichment scores were grouped using hierarchical clustering with 

correlation distances (1 – r) and Ward clustering using the enrichment scores in the 

UROMOL cohort and the same pathway order was then used for the independent cohorts. 
 

Regulon activity in other cohorts 
The regulons from the transcriptional networks calculated from UROMOL data were used to 

derive differential enrichment scores in each cohort separately using the two-tail GSEA 

method (R package RTNsurvival v1.8.3). We discretized the activity scores into ‘active’ and 

‘repressed’ status, aggregated the regulon status in all cohorts, and used Fisher’s Exact 

Tests to find the association of regulon status with each class. P values were BH-adjusted. 

 

Weighted in Silico Pathology (WISP) analysis 
To approximate intra-tumor heterogeneity, we used the bulk transcriptomic profiles and the 

consensus clustering results for the UROMOL cohort and applied the Weighted in Silico 
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Pathology (WISP, R package v. 2.3) method with default settings. Only samples with a 

positive silhouette score were used for the WISP analysis (n=507). WISP consists of two 

main steps: 1) Calculation of pure population centroid profiles and 2) Estimation of pure 

population weights for each sample. First, WISP selects features for each class by iteratively 

considering ANOVA p values (FDR adjusted p values < 0.05), AUC scores (AUC > 0.8) and 

expression log-fold changes between classes, fitting a non-negative least squares model 

and removing samples considered mixed. A model is then built from the core of pure 

samples for each class (154 samples were kept as “pure” and 199 top marker genes were 

included in the centroid profiles). Next, WISP class weights were estimated for all the 

samples in the cohort (n=507) using the centroid profiles (hence, each sample is weighted 

between all four transcriptomic classes). We recovered the estimated WISP class weights 

and used Pearson and Spearman correlations to investigate their association to silhouette 

scores and MCPcounter immune scores, respectively. Finally, we used Mann-Whitney U-

tests to associate WISP class weights to genetic mutations and clinical variables. 

 

Quantification and statistical analysis 
Statistical comparisons between groups were performed using the Wilcoxon rank-sum test 

(Mann–Whitney U test) or Kruskal–Wallis test for continuous variables and Fisher’s Exact 

test, with Monte-Carlo simulations when necessary, for categorical variables. It is stated in 

the figure legends if tests other than the above-mentioned were applied. Survival analyses 

were performed using the Kaplan-Meier method and log-rank tests were used to compare 

survival curves (R packages survival and survminer). Cox Proportional-Hazards analyses 

were also performed using the R packages survival and survminer. We built logistic 

regression models to predict progression and used the predicted probabilities as variables in 

ROC analyses (R packages glmnet and pROC). AUCs and associated 95% CIs (computed 

with 2,000 stratified bootstrap replicates) were calculated using the R package pROC. 

Likelihood ratio tests were used to assess model improvement (all models were compared to 

the EORTC model). P values below 0.05 were considered significant across all tests and 

BH-adjustment of p values was performed to control for multiple testing when necessary 

(otherwise unadjusted p values are reported). All statistical and bioinformatics analyses were 

performed with R (v3.6.0 or 3.6.1).  

 

Data availability 
Normalized RNA read counts (accession# to be included, submission in progress) and SNP 

microarray data (accession# to be included, submission in progress) are deposited at the 

European Bioinformatics Institute (EMBL-EBI) Array Express. Raw sequencing data is 
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deposited at The European Genome-phenome Archive (EGA) under accession numbers 

EGAS00001001236 and EGASxx (submission in progress). There are restrictions to the 

availability of raw sequencing data deposited at EGA due to Danish legislation regarding 

sharing and processing of sensitive personal data. Data can be shared if the new research 

purposes proposed by the data importers are approved by the National Committee on Health 

Research Ethics in Denmark. Furthermore, data processor agreements and contracts need 

to be signed to fulfil European GDPR data sharing rules. The lead contact will accommodate 

reasonable requests. Processed (non-sensitive) data will be shared upon request without 

restrictions. 
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