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ABSTRACT

We report the development of a Weibull based Long-Short-Term-Memory approach (W-LSTM)
for the prediction of COVID-19 disease. The W-LSTM model developed in this study, performs
better in terms of MSE,R2 andMAPE, as compared to the previously published models, including
ARIMA, LSTM and their variations. Using W-LSTM model, we have predicted the beginning
and end of the current cycle of COVID-19 in several countries. Performance of the model was
validated as satisfactory in 82% of the 50 test countries, while asking for prediction for 10 days
beyond the period of training. Accuracy of the above prediction with days beyond training was
assessed in comparison with the MAPE that the model gave with cumulative global data. The
model was applied to study correlation between the growth of infection and deaths, and a number
of effectors that may influence the epidemic. The model identified age groups, trade with China,
air traffic, country temperature and CoV-2 virus types as the likely effectors of infection and
virulence leading to deaths. The predictors likely to promote or suppress the epidemic were
identified. Some of the predictors had significant effect on the shape parameters of Weibull
distribution. The model can function on cloud, take inputs in real time and handle large data
country wise, at low costs to make predictions dynamically. Such predictions are highly valuable
in guiding policy makers, administration and health. Interactive curves generated from the
W-LSTM model can be seen at http://collaboration.coraltele.com/covid2/.

1. Introduction
Since the first few reports from Wuhan, China in December, 2019, the Coronavirus disease COVID-19 has now

spread globally to more than 200 countries and territories. It has been declared a pandemic by WHO. In the absence
of a curative drug or vaccine, containing the disease by non-pharmaceutical approaches is the highest priority to
guard against its continued outbreak and spread. It is caused by a member of the SARS group of viruses, called novel
Coronavirus CoV-2, which is more contagious than the previously known SARS viruses. In a large proportion of the
cases, CoV-2 incubates in individuals with no exhibited symptoms, who continue to spread the infection. Within a
period of less than 6 months, more than six million people have globally been tested as infected by CoV-2, which has
claimed some 370000 lives. Containing and managing the spread of COVID-19 requires anticipating well in advance,
the magnitude and dimension that a pandemic like this, may take in coming months.

Mathematical models for simulating the phase based human transmissibility of the disease, requires detailed
knowledge of the epidemiological parameters related to its infectivity and spread. Systematic data on key epidemiological
parameters such as basic reproduction number (a few to several cases to which an individual may pass the disease
by direct and indirect contact), incubation period (2 to 14 days and longer when an individual may or may not have
symptoms but spreads the disease), sensitivity time (time it takes for a suspected individual to be diagnosed as a
confirmed infected case in community), serial transmission time, virus type etc, show large variability (depending upon
the socioeconomic, health and environmental factors) and are at early stages of study [1].
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Based on such parameters, classical models, like SIR and its variations like SEIQDR [2] and SIDARTHE [3] have
been developed for the modelling of COVID-19 disease to guide the implementation of community level interventions to
contain and manage the epidemic. However, the parameters related to such models vary, depending upon the ecosystem.
These are not easy to assess and fully accommodated in the models. Hence, the accuracy and predictability of the
mathematical models for forecasting the epidemic become limiting, though such models are helpful in taking community
level decisions.

A powerful alternative approach to capture the temporal components of the epidemic and deploy those for predicting
the future course of action is statistical modelling. With the growth of machine learning methods, it has become possible
to utilise the statistical principles and build models after learning the principles and parameters from the data itself.
With the availability of real time data on the pandemic from nearly 200 countries, it is immediately desirable to apply
deep learning methods that learn from country wise data and make predictions, without making the core assumptions
required in the epidemiological models. Artificial intelligence (AI) based approaches can handle large data in real time
and can utilise global data from the cloud at low costs to make predictions dynamically. Such predictions are highly
valuable in guiding policy makers, administration and health departments for data driven management of the pandemic ,
at levels varying from communities, territories and countries.

A number of research papers have been published in the last six months on the development of models based on
multiple linear regression, Gaussian and Bayesian statistics and time series analysis. Some of the recent publications
include the application of ARIMA [4] and its variants [4]. The advent of Deep Learning has shown that Recurrent
Neural Networks [5] and Long Short-Term Memory (LSTM) [6, 7, 8] outperform previously used models, due to their
ability to generalize to diverse series types and provide much higher prediction accuracy. Yet there is need to improve
the accuracy and duration of prediction by these models. The AI based models embody the unique feasibility of making
quick adjustments in response to any local factors that may impact the course of the epidemic.

This study presents an improved approach to forecast course of the epidemic, compares its performance with other
contemporary methods and applies the model to analyze associations between a variety of socioeconomic determinants
likely to effect the spread of the infection and the resultant deaths. The prediction model was used to forecast dimensions
of the epidemic in 30 countries. A number of socioeconomic predictors that influence infection and death were identified.
The model was also applied to predict if the global data on the infections suggests the evolution of COV-2 virus into
variants that differed in their degree of virulence. The model was applied to make predictions at desired time points.
Once connected to real time data, it can take inputs in real time to re-learn and make autocorrections in short and long
term predictions for future dates.

2. Methods
2.1. Prediction Model

We have earlier reported that the growth of COVID-19 epidemic fits Weibull distribution better than the Gaussian,
Beta 4, Fisher-Tippet and Normal Logarithmic distributions [9]. For several countries, the number of daily new
infections and deaths was modeled by an improved “Robust Weibull” machine learning approach that fits a Generalized
Weibull Distribution (GIW) as shown below:

f (x) = k ⋅ 
 ⋅ � ⋅ �� ⋅ x−1−� ⋅ exp
(

− 
(�
x
)�
)

. (1)

The above model uses an iterative weighting strategy, calculating weights using residuals from the fit curve, to
prevent outliers and noisy data that lead to poor curve fits using the Levenberg-Marquardt (LM) method [10] as shown
in Algorithm 1. However, this model faces a serious limitation of being very sensitive to new data that may differ even
marginally from the data used for building the model. Whenever new data is added, the earlier model is trained from
the very beginning. This does not allow predictions to be made with high confidence as the fit curve itself changes
significantly with even a single day’s new data. To improve the model in this respect, we developed a time series model
to capture the temporal dependence of the model parameters (k, �, �, 
) and predict appropriate parameter set.

Series analysis has been used abundantly in the past for various activities like weather forecasting, language
translation, etc. Models like ARIMA [4] have prominently been used in the past. However, the advent of Deep Learning
has shown that Recurrent Neural Networks [5] and Long Short-Term Memory (LSTM) [11] outperform previously
used models mostly due their ability to generalize to diverse series types and provide much higher prediction accuracy.
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Algorithm 1 Robust Curve Fitting using Iterative weighting
Require:
x : Input sequence of days from first case
y : Number of cases for each day in x
� : Threshold parameter
procedure ROBUST CURVE FITTING

w0 ← Unit vector [1] × size(x)
for iteration n from 0, step 1 do

f ← LM(input = x, target = y, weights = wn)
di ← |f (xi) − yi| ∀ i

wn+1i ←
exp

(

1−
dni −tanℎ(d

n
i )

maxi dni −tanℎ(d
n
i )

)

∑

i exp
(

1−
dni −tanℎ(d

n
i )

maxi dni −tanℎ(d
n
i )

)

if
∑

i |w
n
i −w

n+1
i | < � then

break
end for

end procedure

We use LSTM to analyze and predict the best GIW parameters (k, �, �, 
). LSTM models use three types of "gates"
to analyze the data sequence: input, forget and output gates. A single LSTM cell takes as input the sequence data
corresponding to each time-step and a hidden state. Now, for an input at xt at time t:

it = �(wi[ℎt−1, xt] + bi) (2)
ft = �(wf [ℎt−1, xt] + bf ) (3)
ot = �(wo[ℎt−1, xt] + bo), (4)

where it corresponds to the input gate, ft forget gate and ot output gate. Here, each gate has its weight matrix w and
bias value b. Moreover, ℎt−1 is the output for the previous time-step. To output ℎt and hidden state ct are calculated as
follows:

ct = ft × ct−1 + iy × tanℎ(wc[ℎt−1, xt] + bc) (5)
ℎt = ot × tanℎ(ct), (6)

where ct−1 is the hidden state of the previous type step. The Equations 2 to 6 can be written compactly as:

ℎt, ct = LSTM(xt, ℎt−1, ct−1). (7)

The LSTM model can be applied to a complete time sequence to predict the output at the end of the sequence.
Main features of the model are given in Figure 1. The time-series LSTM model is applied on the parameters of the
Weibull distribution k, �, �, 
 . The “iterative" optimization, provided by the LSTM, helps in an under-fitted model to
be transformed to a model optimally fitted to the data. The resultant hybrid model is named here as Weibull-LSTM
(W-LSTM).

Model Training: To train the W-LSTM model, we use a sequence of 10 curve fits obtained from Robust-Weibull
Curve fitting (Algorithm 1). The curve parameters of each of these curves is given as input to the LSTM network
in the order of increasing data size as shown in Figure 1. The loss corresponding to each input set is calculated as
the Mean Square Error (MSE) between the prediction and the actual k, �, �, 
 values. This is then weighted by the
normalized inverse error (1 − MAPE

100 ), whereMAPE corresponds to the error of the curve corresponding to the input
shape parameters. This gives higher weight to those parameter sets which have lower MAPE scores, allowing the model
to converge to better parameter values. Detailed description of the training process is given in Algorithm 2.
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Figure 1: LSTM Model

Algorithm 2W-LSTM Training
Require:
countries : List of all countries with data
data : dictionary of data for each country in countries
�training : Threshold parameter for training
m : Sequence length for training
procedure TRAIN LSTM MODEL

t← 0
Initialize new LSTM model
while True do

ℎ0 ← 0
c0 ← 0
losst ← 0
MAPE ← [0] ∗ m
lossvec ← [0] ∗ m
for country in countries do

if
∑

data[country] < 2000 then
continue

for i from 1 to m do
output← ROBUSTCURVEFITTING(data[country][0 ∶ n − m − 1 + i])
ℎi, ci ← LSTM(output, ℎi−1, ci−1)
lossveci ← MSE(output, ℎi)
k, �, �, 
 ← output
pred ← k ⋅ 
 ⋅ � ⋅ �� ⋅ x−1−� ⋅ exp

(

− 
( �x )
�) ∀ x ∈ data[country]

MAPEi ← MAPE(pred, data[country])
end for
losst ← losst + (1 − MAPE

100 )
⨀

lossvec
BACKPROP(LSTM, losst)
if t > 0 and |losst − losst−1| < �training then

break
t← t + 1

end for
end while

end procedure

Prediction: To predict the best set of parameters for a given data of countries (number of daily new cases/deaths),
we use Algorithm 3. Again, the data is used to generate 10 curves. The 10 curves use a subset of original data with last
n datapoints removed, where n decreases from 9 to 0 (m in Algorithm 3 is 10 in our case). The LSTM network (trained
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Algorithm 3W-LSTM Curve Fitting
Require:
countries : List of all countries with data
data : dictionary of data for each country in countries
m : Sequence length for training
procedure LSTM ROBUST WEIBULL CURVE FITTING

Use pretrained LSTM model
while True do

ℎ0 ← 0
c0 ← 0
for country in countries do

if
∑

data[country] < 2000 then
continue

for i from 1 to m do
output← ROBUSTCURVEFITTING(data[country][0 ∶ n − m − 1 + i])
ℎi, ci ← LSTM(output, ℎi−1, ci−1)

end for
k, �, �, 
 ← ℎk
pred ← k ⋅ 
 ⋅ � ⋅ �� ⋅ x−1−� ⋅ exp

(

− 
( �x )
�) ∀ x ∈ data[country]

end for
end while

end procedure

using Algorithm 2) is given the sequence of curve parameters fit by Algorithm 1 for the 10 curves in a sequence. The
final output is used as the parameters of the GIW curve and predictions are made using this distribution.

2.2. Inferential Statistics
Inferential statistics was applied through Pearson correlation and step wise multiple linear regression analysis. After

fitting a regression model, the p- values were used at 5% (p<0.05, highly significant) and 10% (p < 0.1, significant)
level of significance to identify the relationships that were statistically significant, and hence most likely influential.
To identify the population variables that had highly significant correlation with the disease, only those cases were
considered whose r fell beyond the Critical Value (less than the lower limit and more than the upper limit), as applied
to two tailed test at n-2 degrees of freedom and 0.05 or 0.1 level of significance. Numerical values of the regression
coefficients represent the mean change that the disease (response variable/ dependent variable) will have with one-unit
change in the corresponding predictor variable (independent variable), keeping all other factors that influence growth of
the disease at constant. Only those independent variables were considered significant whose regression coefficients had
p below 0.1, or preferentially below 0.05. Only the variables that were significant at p 0.1 and had a high R2 were listed
as the important predictors of the disease and its severity. The residual plots were examined for unbiased scatter.

2.3. Data Sources
Epidemic data: The data related to daily new cases of confirmed infections and deaths as a consequence of

Covid-19 in different countries was downloaded from Our World in Data COVID-19 Dataset at https://ourworld
indata.org/coronavirus. The site updates its data on daily basis from European Centre for Disease Prevention and
Control (ECDC). Data till May 19, 2020 was used for learning the model based on W-LSTM. Predictions were made
for any desired date, till the numeral value for daily new infections came down to one.

Socioeconomic data: The data related to country wise socioeconomic parameters were taken from a number of
open source public resources. These include Index Mundi and World Bank at the following links. https://www.inde
xmundi.com/facts/indicators/SH.MLR.TRET.ZS; and World Bank https://wits.worldbank.org/Count
ryProfile/en/Country/CHN/Year/2018/.

Virus Type data: The data related to the eleven different types of COV-2 virus strains (technically, clades) was taken
from https://www.biorxiv.org/content/10.1101/2020.05.04.075911v1.supplementary-material
[12] The frequency of the type of COV-2 was determined by the authors in 62 countries, based on the 6181 nucleotide
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Table 1
Evaluation of different models on 5 representative countries, for predicting COVID-19 infections. W-LSTM performs
significantly better than other distributions. The lowest value of MSE/MAPE and highest values of R2 are shown in bold.

Country MSE R2 MAPE
W-LSTM W-ARIMA Weibull Gaussian LSTM W-LSTM W-ARIMA Weibull Gaussian LSTM W-LSTM W-ARIMA Weibull Gaussian LSTM

World 3.13E+05 3.25E+05 3.95E+05 4.16E+05 3.99E+07 0.93 0.95 0.95 0.95 0.95 39.29 40.12 49.12 42.58 60.29
India 1.93E+01 1.96E+01 1.98E+01 2.08E+01 2.19E+03 0.91 0.96 0.94 0.94 0.93 22.00 22.13 23.44 37.03 38.44
United States 1.02E+05 1.15E+05 1.20E+05 1.25E+05 1.33E+05 0.86 0.87 0.86 0.86 0.80 26.09 104.38 27.55 134.66 149.52
United Kingdom 9.92E+03 9.96E+03 9.96E+03 1.21E+04 1.12E+05 0.90 0.91 0.92 0.91 0.90 14.93 14.99 15.13 104.86 93.03
Italy 2.11E+03 2.51E+03 2.53E+03 5.93E+03 3.10E+05 0.89 0.91 0.97 0.93 0.90 12.78 12.66 12.53 214.29 58.23

sequences of the genomes sequenced in those countries by April 16, 2020. The frequency data were smoothed by
Laplace transform. The original data is given in Supplementary Table 1A. The frequency data before and after smoothing
is given in Supplementary Tables 1B and 1C respectively. The Laplace transform data (Supplementary Table 1C) was
used in the analysis here.

Government Stringency Index: The daily score was calculated as in Oxford Government Response Tracker
(https://www.bsg.ox.ac.uk/sites/default/files/Calculation%20and%20presentation%20of%20t
he%20Stringency%20Index.pdf) and was taken from Our World In Data. The score is based on several factors
including the closure of schools, market places, works, public gatherings etc. taken as emergency intervention measures
to implement social distancing.

3. Results
3.1. Testing of the W-LSTM model on representative countries

As reported earlier [9] the Robust Weibull curve fitting technique performs superior to other fitting models including
- Gaussian, Beta 4, Fisher-Tippet and Log-Normal. In this paper, we have developed an LSTM-based Robust Weibull
approach (W-LSTM) and compared with other published methods for the accuracy of prediction based on different
estimates of error. We analyzed results obtained from COVID-19 infection data from 5 representative countries : world,
India, USA, UK and Italy. Table 1 gives comparison of the fitness accuracy of the W-LSTM model. It gives distinctly
better results, as compared to the other distributions, and also the previously used ARIMA [5] and Simple LSTM
[6, 7] models that have been applied to COVID-19 infection data. The W-LSTM-based approach developed in this
study performs better in terms of MSE, R2 and MAPE, as compared to the previously published models. This model
was therefore applied to several countries for further analysis. The daily new infection and death curves based on
W-LSTM model are plotted for 30 countries in Supplementary Figure 1 from the beginning to predicted end of the
current epidemic cycle. Curves for the world and few countries with highest cases is reproduced in Figure 2. Data
giving analysis of infections, deaths etc. and shape parameters (k, �, �, 
) are given in Supplementary Table 2.

3.2. W-LSTM prediction of infections and deaths till end of the epidemic cycle
The W-LSTM model was applied to publicly available data on daily new cases of infections and deaths from several

countries as per the data available till May 19, 2020. Raw data from different countries have lots of missing, incomplete
and inconsistent entries, and therefore does not fit any distribution satisfactorily. Out of the 50 countries where sufficient
data (for at least 3 months) is available for public view, the W-LSTM model, fits well on 30 countries. These countries
were selected for further analysis. Supplementary Figure 1 shows the actual daily values as bars and compares those
with the best fitting daily infection and death curves for the predicted values for these 30 countries. Unlike what we
had expected, the peak positions of the infection and death curves for the 30 countries, do not show consistency in the
survival time indicated by the time difference between the peaks of the curves. This difference should represent the
average survival time of population from infection to fatality. In hospital based epidemiological studies, the survival
time from disease onset to death varies from 14 to 22 days [13]. As noticed in Supplementary Figure 1, in case of
some countries, the deaths data begins and reach the peak height before the infection curve. This is obviously because
of late start and large under reporting of infections in several countries, due to insufficient screening of population,
unavailability of diagnostic kits in required numbers, inconsistent quality of the diagnostic kits and their high costs [14].
The limitations of diagnostics, along with ambiguities in the interpretation of COVID as the cause of death, differences
in average population age and other metabolic disorders etc., also effect the calculations. Due to these reasons, the
fatality rates reported from different countries vary from 1 to 7% and more [15]. The survival time difference as
indicated by the infection and death curves for the 30 countries varied from -8 to 20 days (Table 2), with an average at 6
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Figure 2: New daily cases and deaths curves for world and a few of the highest affected countries
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Table 2
Prediction results for select 30 countries + World.

Country R2 for cu-
mulative
infections
WLSTM
predicted

MAPE for
cumulative
infections
WLSTM
predicted

R2 for cu-
mulative
Deaths
WLSTM
predicted

MAPE for
cumulative
Deaths
WLSTM
predicted

Predicted
date for 97
% Infections

Predicted
date for 97
% Deaths

Predicted
Cumulative
Infections
on June 30

Predicted
cumulative
Deaths on
June 30

Cumulative
infection
cases at end
of epidemic

Cumulative
deaths at
end of
epidemic

Cumulative
infected
cases/pop
at end of
epidemic

Cumulative
deaths per
population
at end of
infection

Mortality at
end of epi-
demic

Days difference be-
tween the peaks of
predicted infection
& death curves

United Arab Emirates 0.83 720.63 0.75 19.47 28 Oct 20 05 Jun 20 39,625 286 50,544 276 5.33E-03 2.91E-05 5.46E-01 -1
Australia 0.81 39.10 0.54 22.25 09 May 20 15 Apr 20 7,099 103 7,095 101 2.88E-04 4.11E-06 1.43E+00 12
Austria 0.91 29.16 0.77 36.31 14 May 20 18 May 20 16,404 666 16,394 653 1.86E-03 7.42E-05 3.98E+00 12

Azerbaijan 0.13 28.59 0.02 13.86 24 May 20 22 Apr 20 3,960 46 3,959 46 4.02E-04 4.67E-06 1.16E+00 5
Belgium 0.88 20.52 0.87 15.55 19 Jun 20 02 Jun 20 60,577 9,653 61,783 9,697 5.43E-03 8.52E-04 1.57E+01 6
Belarus 0.92 872.45 0.84 12.56 11 Oct 20 05 Jul 20 55,917 271 72,315 286 7.61E-03 3.01E-05 3.96E-01 -8
Canada 0.94 22.60 0.93 15.60 14 Oct 20 01 Sep 20 109,000 9,028 131,946 10,592 3.61E-03 2.90E-04 8.03E+00 11

Czech Republic 0.83 25.00 0.72 18.21 24 May 20 01 May 20 9,051 320 9,079 313 8.57E-04 2.95E-05 3.44E+00 9
Denmark 0.81 19.24 0.86 19.39 13 Jul 20 17 May 20 12,503 600 13,079 588 2.27E-03 1.02E-04 4.50E+00 2
Finland 0.72 114.54 0.44 21.38 01 Sep 20 20 May 20 7,910 320 8,914 309 1.62E-03 5.61E-05 3.47E+00 11
France 0.81 34.88 0.78 26.25 28 May 20 24 May 20 148,936 29,043 149,860 29,121 2.24E-03 4.36E-04 1.94E+01 7

United Kingdom 0.93 2213.72 0.90 17.29 22 May 20 02 Jul 20 323,856 40,635 372,999 41,944 5.65E-03 6.35E-04 1.12E+01 -4
Greece 0.65 124.62 0.56 28.24 28 Apr 20 19 Apr 20 2,982 175 2,989 169 2.78E-04 1.57E-05 5.67E+00 6
Croatia 0.87 26.14 0.46 21.47 15 May 20 22 Apr 20 2,291 117 2,281 100 5.53E-04 2.42E-05 4.38E+00 20
India 0.84 33.12 0.93 17.03 26 Sep 22 22 Jan 22 270,235 9,632 1,105,411 35,758 8.26E-04 2.67E-05 3.23E+00 -5
Ireland 0.83 27.87 0.47 45.28 04 Jun 20 04 May 20 25,801 1,750 25,983 1,755 5.40E-03 3.65E-04 6.75E+00 7
Israel 0.80 73.53 0.71 19.94 21 May 20 28 Apr 20 17,103 291 17,151 280 1.97E-03 3.21E-05 1.63E+00 9
Italy 0.96 15.80 0.96 13.02 28 Jun 20 29 Jun 20 243,441 35,035 250,367 36,061 4.14E-03 5.96E-04 1.44E+01 4

South Korea 0.87 60.90 0.62 37.48 02 Apr 20 02 Apr 20 11,165 284 11,165 267 2.17E-04 5.19E-06 2.39E+00 16
Luxembourg 0.84 49.68 0.44 29.22 10 May 20 16 Apr 20 3,999 113 3,987 109 6.69E-03 1.83E-04 2.74E+00 10
Malaysia 0.86 32.57 0.65 19.56 08 Jun 20 22 Apr 20 7,473 117 7,555 115 2.43E-04 3.70E-06 1.52E+00 2
Nigeria 0.89 21.11 0.65 14.36 26 Aug 20 14 Jun 20 12,278 287 14,635 280 7.67E-05 1.47E-06 1.91E+00 -8

Netherlands 0.93 19.98 0.88 21.14 23 Jun 20 21 Jun 20 48,264 6,296 49,414 6,425 2.88E-03 3.75E-04 1.30E+01 4
Norway 0.80 226.03 0.58 40.59 19 Apr 20 19 Apr 20 8,530 244 8,563 236 1.62E-03 4.47E-05 2.75E+00 15

Philippines 0.59 470.46 0.58 44.38 02 Apr 20 21 Jun 20 15,492 971 16,494 984 1.57E-04 9.36E-06 5.97E+00 4
Romania 0.90 17.13 0.82 22.98 20 Aug 20 13 Aug 20 21,481 1,524 23,770 1,733 1.21E-03 8.85E-05 7.29E+00 7
Russia 0.97 26.28 0.94 10.20 18 Dec 20 14 Oct 20 671,288 5,866 1,067,281 8,072 7.39E-03 5.59E-05 7.56E-01 -5

Singapore 0.68 123.92 0.01 6.31 24 May 20 24 Mar 20 31,076 23 31,090 23 5.54E-03 4.10E-06 7.40E-02 10
Thailand 0.64 340.08 0.57 12.87 02 Apr 20 08 Apr 20 3,059 56 3,047 56 4.40E-05 8.09E-07 1.84E+00 9

United States 0.93 26.67 0.83 26.02 17 Aug 20 26 Jun 20 1,906,544 106,752 2,088,445 109,515 6.43E-03 3.37E-04 5.24E+00 3
World 0.93 42.94 0.93 44.32 29 Dec 20 27 Aug 20 6,826,875 412,857 8,928,895 460,366 1.19E-03 6.13E-05 5.16E+00 -3

days. The small time difference is obviously because in many cases, the infection curve rises slower largely due to
under reporting.

Table 2 gives the predicted total (cumulative) number of cases for each of the 30 countries as per the W-LSTM
model, till the date when the daily new case count is predicted to fall down to single infection. The cumulative number
of predicted infections and deaths at end of the epidemic are given in Table 2 along with the country wise dates when
97% of the epidemic will be over. The results show, that out of the 30 countries, India will continue to report cases
till as late as the beginning of 2022. The W-LSTM model curve for India (Supplementary Figure 1 and the link
http://collaboration.coraltele.com/covid2/ ) also shows that the country is yet to reach its plateau. As a
representative case, Table 2 gives the total number of infections and deaths predicted on June 30th viz., 42 days after
the date till when the model was trained.

A validation of the model is given in Supplementary Table 3 where the model trained on data till May 19th was
tested for 10 days beyond the period of training on 50 countries. The analysis shows that the predictions by the model
trained on data till May 19th matched well with the actual values reported during 10 days following the period of
training. The MAPE for the predicted vs actual data on daily deaths to happen during the 10 days after the period
of training was less than that for the world (44.32) in 93% of the countries, when the selected 30 countries on which
W-LSTM gave good fit were used. At a higher level of stringency viz., MAPE less than 25, the predictions were very
good for 70% of the countries (Supplementary Table 3, column C). When additional 20 countries were included, the
predictions for daily deaths during the next 10 days beyond the period of training continued to be good. In this case, the
MAPE for prediction of deaths during the next 10 days for the 50 countries was less than that for the world in 82%
of the countries (Column G). It was less than 25 in case of 58% of the 50 test countries. Quite understandably, the
predictions for new infections had higher error rate than those for deaths (Columns B and F), because, as explained
earlier, the infections data are highly variable from country to country and have larger proportion of outliers, due to
variable approaches to diagnosis of daily new infections.

3.3. Identification of likely effectors of infections and deaths
The W-LSTM model was applied on likely factors to have a preliminary analysis of the factors that may influence

the growth of the pandemic across countries. To identify such effectors, Pearson correlation was computed between
parameters of the epidemic and the likely effectors. The 5 parameters selected for the study were total (cumulative) cases
of infection as predicted by W-LSTM till the end of infection cycle, total (cumulative) deaths till the predicted end of
cycle, total infections/ population of the country, total deaths/ population of the country and mortality (deaths/infections).
The correlations between these 5 parameters and 7 likely effectors are shown in Table 3. Besides the 5 population-based
parameters, the likely relationship of the effectors was also estimated in terms of correlation with the 4 parameters
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Table 3
Correlation of COVID-19 infections and deaths (at end of the epidemic as per W-LSTM model) and the parameters
(k, �, �, 
) of the Model with socio-economic predictor variables. The level of significance of correlation is indicated by **
for p < 0.05 and * for p< 0.1. The significance was determined based on Critical Values (CV) for Pearson Correlation,
applied to data on Infections and deaths in 30 countries that gave a good fit in the W-LSTM model (DF 28, p < 0.05, CV
is 0.361; p< 0.1 CV is 0.306). The table gives the values of Pearson’s Correlation.

Coefficient of correlation and level of significance at p <0.05, CV 0.361 (highly significant **); p<0.1 , CV 0. 306 (significant *)
Predictor variable Indicators of Covid-19 epidemic by end of infection cycle as per model Parameters of W-LSTM model for cumu-

lative infections by end of epidemic cycle
Parameters of W-LSTM model for cumu-
lative deaths by end of epidemic cycle

S.No CoV-2 type Total cases Total deaths Total Infections/
population

Total Deaths/
population

Mortality k � � 
 k � � 


1 % of popu-
lation aged
65 years and
more

(-) 0.040 0.134 0.113 0.432** 0.516** (-) 0.038 (-) 0.020 0.034 (-) 0.100 0.137 (-) 0.257 (-) 0.152 (-) 0.328*

2 % popula-
tion 15-64
years

(-) 0.029 (-) 0.133 0.271 (-) 0.231 (-) 0.361** (-) 0.031 0.181 0.212 (-) 0.139 (-) 0.137 0.350* 0.386** 0.316*

3 % popula-
tion 0 to 14
years

0.059 (-) 0.012 (-) 0.322* (-) 0.198 (-) 0.167 0.059 (-) 0.129 (-) 0.203 0.202 (-) 0.011 (-) 0.056 (-) 0.178 0.035

4 Trade with
China

0.749** 0.760** 0.161 0.097 (-) 0.026 0.741** (-) 0.040 0.035 (-) 0.217 0.742** (-) 0.063 (-) 0.014 (-) 0.065

5 Air passen-
ger traffic

0.859** 0.886** 0.322* 0.214 0.038 0.850** (-) 0.134 (-) 0.174 (-) 0.205 0.869** (-) 0.088 (-) 0.060 0.017

6 Average
yearly tem-
perature

(-) 0.155 (-) 0.107 (-) 0.371** (-) 0.297 (-) 0.240 (-) 0.163 0.198 0.247 0.210 (-)0.107 0.372** 0.325* 0.227

7 Social strin-
gency score

0.043 (-) 0.012 (-) 0.392** (-) 0.023 0.150 0.046 (-) 0.153 (-) 0.139 0.350* (-)0.005 (-) 0.012 (-) 0.100 (-) 0.065

(k, �, �, 
) related to shape of the Weibull curve.
The correlations with k, �, �, and 
 were computed for both the infection and the deaths curves modelled from the

beginning of infection to the end of the cycle. As seen in Table 3, a number of highly significant (**) and significant
(*) associations are suggested by the correlations. Also, the associations are both in form of promoting the parameter
related to the epidemic (positive correlation) and in suppressing the epidemic (Negative correlation). For example,
elderly population beyond 65 years in age showed a highly significant positive correlation with mortality. This suggests,
the elderly is more likely to get more severe disease and die, as compared to the younger population across the globe.
Hence, the countries with more proportion of elderly population are more likely to see deaths. The absence of significant
correlation of the above-65 age group with total infections per population suggests that the elderly are likely not more
prone to getting infected as compared to others, but are more likely to get a severe disease.

The elderly age group shows a negative correlation (p< 0.1) with the 
 of death curve, thus making the curve
less sharp in rise. In contrast, the adult population (15 to 64 years age) shows highly significant (p < 0.05) negative
correlation with mortality, thus suggesting the adults to endure COVID-19 infection and not allow the disease to become
severe, hence lower likelihood of leading to death. The endurance of the adult population is reflected in the model by
the curve becoming flatter due to higher � and � (significant positive correlation), besides 
 of the death curve. The
analysis also shows that the young age group (0 to 14 years) is tolerant to infection by the CoV-2 virus and shows a
negative correlation with infection at population level. Hence, the three age groups in population are likely to show
different sensitivity and response to different stages of the infection and disease cycle.

Figure 3 illustrates how the lower values of � and � lead to flatter curves compared to higher values for the constants
k and 
 . In this model, k increases the peak of the distribution at the same x-coordinate value. On the other hand,
increasing � and 
 moves the curve forward and flattens it. However, this behavior is observed on reducing �. In that
context, � and 
 have opposite effect on the curve shape compared to �. If k and 
 are held constant, it is clear from the
figure that lower values of � and � lead to a flattened and elongated curve (purple) compared to the case with higher
values of � and � (red). Thus, a positive correlation with � and � and a negative correlation with k would mean a higher
peak with a more prolonged effect of the disease.

3.4. Prediction of likely effect of CoV-2 virus type on the pandemic
The various parameters of infection at population level, as predicted by W-LSTM and the parameters related to the

shape of the curve were examined for correlation with virus types that have evolved and spread across countries, since
initiation of the pandemic in Wuhan in December 2019. The virus types described here, are technically the clades that
show differences in the nucleotides in RNA genome of the virus. The SARS-CoV-2 virus has 29926 nucleotide long
genome. By now more than 37000 viruses isolated from human patients from different countries have been sequenced
across the globe and the sequences deposited at GISAID Database (https://www.gisaid.org). These viruses
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Figure 3: Death cases for constant k = 10000 and 
 = 2500 with (a) higher values of � = 38.5, � = 4.6 in red and (b)
lower values of � = 22, � = 3.4 in purple.

Table 4
Predicted association of CoV-2 virus types with the WLSTM predicted growth of COVID-19 pandemic across countries.
@: Blank cells indicate the absence of predictions in favor of significant influence.

Coefficient of correlation and level of significance at p <0.05, CV 0.361 (highly significant **); p<0.1 , CV 0. 306 (significant *)
Predictor variable Indicators of Covid-19 epidemic by end of infection cycle as per model Parameters of W-LSTM

model for cumulative infec-
tions by end of epidemic
cycle

Parameters of W-LSTM
model for cumulative deaths
by end of epidemic cycle

S.No CoV-2 type Total cases Total deaths Total Infections/
population

Total Deaths/
population

Mortality k � � 
 k � � 


1 O @ (-) 0.315* (-) 0.373** 0.334* 0.437** 0.471** 0.358**
2 B (-) 0.390 ** (-)0.418** (-) 0.360** 0.316*
3 B1 (-) 0.327*
4 B2 (-) 0.414** (-) 0.363**
5 B4 (-) 0.419** (-) 0.374**
6 A3 (-) 0.364* (-) 0.424** (-) 0.357*
7 A6 (-) 0.321 * (-) 0.311
8 A7 (-) 0.413** (-) 0.362**
9 A1a (-) 0.324*
10 A2 (-) 0.409** (-) 0.359**
11 A2a 0.359** 0.334*

show about 87% similarity that can be used to cluster them into distinct groups called, clades. Bhattacharya et al. [11]
deployed 6181 of the CoV-2 genome sequences and clustered those into 11 groups that are shown in Supplementary
Table 1A as the virus types. The frequency of these virus types reported from 61 countries was smoothed by Laplace
transform (Supplementary Table 1C) and applied to the group of 30 countries used for modelling the epidemic by
W-LSTM. The correlations (Table 4) suggest that the virus type A2a has a highly significant association with deaths /
population. Hence this may be the most virulent strain with respect to causing mortality at end of the current cycle of
the epidemic. A number of strains show negative correlation with deaths, and thus are infective but less likely killing.
Two strains, B and A3 show negative correlation with infections per population, thus suggesting that the countries with
prevalence of B and A3 may more likely get a milder disease.

4. Discussion
The novel coronavirus CoV-2 continues to be leaving a death trail, midst devastating sweep of infection, fear

and economic loss across the globe. The only strategy to manage the pandemic currently is the non-pharmaceutical
approaches. The first need is to have preparedness of the hospitals to manage patients for least distress to patients,
quick recovery and minimal mortality. The second important need is to prepare the society for sufficient isolation
wards, quarantine centers and social distancing to contain spread of the infection. Identifying infected cases is central to
such containment, but non availability and non-affordability of quality diagnostic kits is a serious limitation. Whole
population screening is a utopian thought and the savaging character of CoV-2 to continue to be incubated in a large
proportion of population without causing any symptoms, weakens all management strategies.

Management of COVID-19 requires robust prediction of the size, duration and dimensions of the ensuing epidemic.
As discussed in the background, machine learning methods, backed by good statistical modelling provide a good
opportunity to develop on line dynamic systems to prepare the society for managing such epidemic. Because the time
series models are based on original numbers from a country, these models may be better predictions of the trend, rather
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Table 5
Predictor variables that significantly influence the growth of infection and intensity of disease caused by CoV-2. The
inference is drawn from Tables 3 and 4

Predictor variables that influence the spread of infection Predictor variables that influence intensity of disease/ mortality Effect of predictor on shape param-
eters of W-LSTM modelPromoter (+ve correlation) Suppressor (-ve correlation) Promoter (+ve correlation) Suppressor (-ve correlation)

Elderly (>65 years) population Reduces 
 of death curve
Adult (15 – 64 years)
population

Increases �, � and 
 of death curve

Young ( <14 years) population
Trade with China Trade with China Increases k of infection curve as well

as death curve
Air passenger traffic Air passenger traffic Increases k of infection curve as well

as death curve
Average yearly temperature Increases � and � of death curve
Social stringency score Increases 
 of infection curve

Virus types B, A3 Virus types B, A3 Virus types
O, B, B1, B2, B4, A3,
A6, A7, A1a, A2

O increases � of infections curve
O increases �, � and 
of death curve
B increases � of infection curve
A6 reduces k of death curve

than mathematical models based on epidemiological parameters whose values are often variable, do not account for a
variety of socioeconomic, managerial and environmental interventions and involve certain assumptions. The hybrid
model developed by us utilizes Weibull distribution as the best fit to the disease data on population and integrates the
advantage of self-learning to smooth outliers and train itself in response to shifting trends and fluctuations in data. We
have given error based analysis to establish that W-LSTM is superior to other Gaussian and Bayesian distributions used
by others. Our model is also superior to other time series applications, including the variations of ARIMA and LSTM.
Our analysis shows that W-LSTM trains itself well on country data and makes good predictions with low MAPE for
data beyond the period on which the model was trained, as well as for countries that were not part of the constituent data.
We have shown that the predictions hold good for 10 days beyond the period of training. We have given predictions for
the 42nd day (June 30th, 2020) after the last date of training and for the day when the model predicts the current cycle of
epidemic to end. The latter two predictions for future will establish the power and applicability of the model, provided
the socioeconomic, environmental and administrative factors remain fairly similar to the conditions as prevailing at the
time of the training dataset.

Various population and shape parameters of W-LSTM based modelling of total infections and deaths at end of the
epidemic in 30 countries were used to study correlations with a variety of effectors that may influence the spread and
severity of the epidemic. Table 5, summarizes a number of predictor variables/ effectors that are likely to exercise
significant influence in determining the course of the epidemic. Some of the predictors have promoting influence,
while others have suppressing influence. Different age groups clearly respond to CoV-2 infection in different ways.
The 65 plus age group is vulnerable to getting the disease in its severe form, though not particularly vulnerable to
getting infected. Old age has been suggested as an independent risk factor associated with individuals getting clinically
infected with COVID-19 [16]. Meta data analysis suggesting lower vulnerability of children to falling clinically sick
with COVID-19 has also been reported [17, 18].

Countries with higher trade with China and higher air passenger traffic show the likelihood of getting higher level
of infections. Average yearly temperature in a country, and effective social distancing are likely to have a significant
suppressive effect on the spread of COVID-19. Interestingly, the strains of the causative virus CoV-2 show differential
association with the growth of infection and severity of the disease. In a recent analysis, high temperature and humidity
were reported to reduce the daily new cased and new deaths [19] One strain, namely A2a particularly is likely to be
associated with severity of the disease. A number of strains are likely to cause infection but not likely to lead to severity
of the disease. Corresponding effect on shape parameters of the model is seen in some cases, as shown in Table 5.

The COVID-19 pandemic is being handled differently in different countries. The government policies related to
screening of the population, isolation of confirmed infectious individuals, quarantine of likely infected individuals
based on contact tracking, hospital and health care facilities, social distancing measures, socio-economic structure of
communities, lock down extent and measures etc., will determine future development of new cases, recoveries and
deaths. In response to government measures, the transmission and growth of the epidemic will change dynamically [20].

Currently, a majority of the countries are tapering down closures and lockdowns and are opting for partial lockdown
as a strategy to phase out lifting of the lockdown. In some cases, primarily because of unawareness or misinformation,
pockets of infected individuals stay unnoticed, and are discovered following a search campaign by the government. In
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other cases, unplanned migration of workers from cities to rural homelands may shift the territory of infection. Each of
these actions affects the distribution of infected and deceased cases in populations differently. This calls for a model to
be agile and able to adapt to changing patterns. This can be accommodated in the LSTM-based approach proposed by
us. The ARIMA models perform well for stationary time series. LSTMs are beneficial due to the fact that they can
store the features of the data for long periods of time. The “iterative" optimization, provided by an LSTM, helps in an
under-fitted model to be transformed to a model optimally fitted to the data.

When applying LSTM directly on the number of cases or deaths data (Simple LSTM in Table1), the model is not
able to utilize the underlying temporal distribution followed by the data and hence performs poorly. Hence, W-LSTM
outperforms approaches trying to model the time-series distribution of cases/deaths directly using LSTM [6, 7]. On the
other hand, the W-ARIMA, applies ARIMA on the distribution parameters and only performs well for stationary time
series. Further, LSTMs are beneficial due to the fact that they can store the features of the data for long periods of time.
The model proposed here can be operated on cloud and linked to global data bases to be updated on real time basis.
The model is made to respond appropriately to any temporal changes and learn to modify its forecast. A static version
of the model is available on http://collaboration.coraltele.com/covid2/.

Software Availability
Our prediction model is available online at https://github.com/shreshthtuli/covid-19-prediction.

Few interactive graphs can be seen at https://collaboration.coraltele.com/covid2/.
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