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Abstract 

Background: After decades of rising life expectancy, life expectancy in the developed West 

is currently stagnated and remains shorter in men than women. Very well-established 

evolutionary biology theory suggests that lifespan trades off against reproductive success, 

possibly sex-specifically. We examined whether a key driver of reproductive success, 

testosterone, affected lifespan using a Mendelian randomization study of longevity in the 

UK Biobank to obtain unbiased estimates, along with control exposures. 

 

Methods: We applied published genetic instruments for testosterone to obtain inverse 

variance weighted estimates of associations with longevity, proxied by survival to (i.e., age 

at) recruitment, in 167020 men and 194174 women. We similarly obtained estimates for 

smoking initiation, and absorbate, a marker of vitamin C metabolism, because. We also 

conducted sensitivity analysis. 

 

Results: Overall testosterone was associated with poorer survival (0.10 years younger at 

recruitment per effect size of testosterone, 95% confidence interval (CI) 0.004 to 0.20). As 

expected, smoking initiation was also associated with poorer survival (0.37 years younger, 

95% CI 0.25 to 0.50), but not absorbate (0.01 years younger, 95% CI -0.09 to 0.11). 

Sensitivity analysis generally gave a similar interpretation 

 

Conclusions: Consistent, with well-established theory, testosterone reduced longevity. 

Several aspects of a healthy lifestyle (such as a low animal fat diet) and several widely used 

medications (such as statins, metformin, dexamethasone and possibly aspirin) happen to 

modulate testosterone. Explicitly designing interventions sex-specifically based on these 

insights might be a means of addressing stagnating life expectancy and sexual disparities in 

life expectancy.  
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Sexual dimorphism in lifespan is widely evident, including among humans, contemporaneously and 

historically.
1 2

 Many reasons have been advanced for shorter life expectancy in men than women, 

from gendered health and health care seeking behavior3 through sex-specific nutrient metabolism 

and steroid hormones4 to sex-specific sexual selection pressures,5 6 but few of these have been 

explicitly exploited as a means of promoting healthy aging in both sexes. As the long-term trend of 

increasing life expectancy in the West now appears to be stagnating,7 reconsidering overlooked 

targets and their implications for the design of interventions might bear consideration.  

 

An obvious modifiable difference between men and women is levels of sex hormones. Estrogen has 

been intensively investigated as a protective factor that might explain differences in longevity by 

sex. Observational evidence concerning benefits of exogenous estrogen in women was very 

promising.
8
 Large-scale trials of estrogen in women and men were stopped early for harm or lack of 

benefit.9 The discrepant findings have been ascribed to overlooked confounding by socio-economic 

position in the observational studies.9 Promising observational evidence exists for longevity benefits 

of endogenous testosterone in women10-12 and men.13 Testosterone in men falls with aging and ill-

health,
14-16

 likely generating residual confounding, as health status is difficult to adjust for 

comprehensively. A trial of the cardiovascular safety of testosterone in women has been successfully 

conducted (https://clinicaltrials.gov/ct2/show/NCT00612742). A small trial of testosterone in frail 

older men was stopped early,
17

 making it difficult to interpret. A larger trial of exogenous 

testosterone on cardiovascular disease is now underway in men 

(https://clinicaltrials.gov/ct2/show/NCT03518034). Theoretically, the expectation for effects of 

testosterone on health might be in a similar direction to those found for estrogen because of the 

well-established Darwinian evolutionary biology trade-off between reproduction, and its drivers, on 

the one hand, and longevity, on the other hand.18-20 However, testosterone in humans could be an 

exception.  

 

Here to clarify, we conducted a Mendelian randomization (MR) study of the effects of testosterone 

on longevity in men and women. MR studies take advantage of the random allocation of genetic 

material at conception to obtain unconfounded estimates.
21

 Longevity studies compare 

characteristics of survivors to older ages with characteristics of younger people because lifetime 

harmful factors inevitably become less common with increasing age.22 In contrast, observational 

prospective cohort studies comparing mortality incidence after recruitment are open to selection 

bias from any deaths prior to recruitment having already depleted the susceptibles
23

 which may 

attenuate estimates even to the extent of suggesting no benefit of proven interventions.24 As such, 
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longevity studies, take advantage of the changing structure of risk factors with age to obtain 

estimates of effects on mortality free from selection bias.
25

 Smoking initiation was used as a positive 

control outcome because smoking is very well-known to be addictive and to substantially reduce 

longevity.26 A marker of vitamin C metabolism, absorbate, was used as a negative control outcome 

because vitamin C is no longer thought to affect mortality.
27

 

 

 

Methods 

Data sources 

The UK Biobank recruited half a million people intended to be aged 40 to 69 years from across Great 

Britain in 2006-10.28 Average age is about 57 years and just over half the participants are women. 

We extracted overall and sex-specific genetic associations with age at recruitment from publicly 

available UK Biobank summary statistics in white British (http://www.nealelab.is/uk-biobank). These 

specific summary statistics were generated from linear regression adjusted for sex and the first 20 

principal components, after excluding poor quality samples. Where relevant genetic information was 

not available from these summary statistics, we similarly generated corresponding information from 

the UK Biobank individual data. 

 

Exposures 

We used published sex-specific genetic predictors of testosterone (125 variants for men and 254 for 

women).29 We used published genetic predictors of smoking initiation (361 variants),30 and of 

vitamin C metabolism (1 variant).31  

 

Outcome 

In this longevity study, we used age at recruitment to the UK Biobank as a proxy for survival, as there 

is no particular reason, apart from prior death (i.e., lack of survival), why genetics should generate 

differences in willingness to participate by age. So, harmful exposures would be expected to be 

associated with younger age at recruitment. 

 

Statistical analysis 

We obtained the F-statistics for the genetic instruments using an established approximation (square 

of genetic variant on exposure divided by its variance).32 As F-statistic of 10 or less is usually taken as 

indicating a weak instrument. We aligned genetic associations on the same allele for exposures and 

outcome. We included palindromic and non-biallelic genetic variants because the genetic 
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associations with exposures and outcome were obtained in the same study or have been used in the 

same study. We used proxies, as necessary. We meta-analyzed genetic variant specific Wald 

estimates (ratio of genetic variant on outcome to genetic variant on exposure) using inverse variance 

weighting (IVW) with multiplicative random effects. IVW estimates assume balance pleiotropy.33 We 

used estimates with different assumptions as sensitivity analysis. The weighted median has a 

majority valid assumption and assumes >50% of the genetic variants are valid instruments, while the 

contamination mixture method has a contrasting plurality valid assumption.33 MR-Egger detects 

pleiotropic effects acting on the outcome other than via the exposure, but assumes that the genetic 

instruments do not act via confounders of exposure on outcome.
32

 As previously, to avoid 

pleiotropic effects of sex hormone binding globulin, we used established genetic predictors of bio-

available testosterone in men and total testosterone in women.34 Bio-available testosterone may 

also be a more sensitive indicator that total testosterone of active testosterone in men.
35

 Where 

necessary we combined estimates for men and women using IVW meta-analysis. 

 

We used the MendelianRandomization R package to obtain estimates. We did not adjust for multiple 

comparisons because this is a hypothesis driven study addressing one question with the use of 

control exposures, both positive and negative. This study only uses publicly available summary 

associations from the UK Biobank supplemented by individual level data for information not 

included in the publicly available summary statistics which was obtained under applicant number 

42468. The UK Biobank has ethics approval from the North West Multi-centre Research Ethics 

Committee. All participants gave informed consent.  

 

 

Results 

In total 167020 men and 194174 women from the UK Biobank were included. Almost all genetic 

variants for the exposures were available for the outcome, just two variants for smoking initiation 

were replaced by highly correlated (r2>0.9) variants (rs2587507 replaced by rs745571, and 

rs2359180 by rs768576) obtained from LDlink (https://ldlink.nci.nih.gov/). The average F-statistic for 

testosterone was 128.6 in men and 83.6 in women, and for smoking initiation was 44.9. As expected, 

smoking initiation was associated with younger age at recruitment (Table 1), corresponding to 

poorer survival. Similarly, as expected absorbate was unrelated to age at recruitment (Table 1). 

Overall, testosterone was associated with younger age at recruitment, i.e., poorer survival (Table 1), 

with slightly larger estimates in men than women (Table S1). Estimates were similar in sensitivity 
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analysis using age at recruitment as a categorical variable (age 60 years or less) (Table S2) and using 

sensitivity analysis (Table S1). 

 

Discussion 

Despite observational studies suggesting that testosterone might promote longevity,
10-13

 our study 

with greater robustness to confounding and selection bias, consistent with theoretical expectations 

from evolutionary biology,18 19 suggests that testosterone reduces longevity. Our study also showed 

smoking initiation reduced survival as would be expected.
26

  

 

Our findings differ from previous observational studies which suggest that endogenous testosterone 

might improve longevity.10-13 However, these studies are open to both confounding by health 

status
14 15

 and selection bias from inevitably only recruiting survivors.
23

 Our findings are more 

consistent with previous MR studies suggesting exogenous testosterone increases cardiovascular 

disease,36 37 and corresponding warnings from regulators (https://www.fda.gov/drugs/drug-safety-

and-availability/fda-drug-safety-communication-fda-cautions-about-using-testosterone-products-

low-testosterone-due).   

 

Several potential mechanisms could underlie our findings. Experimental studies suggest 

testosterone increases coronary plaque volume
38

 and coagulation
39

 while impairing endothelial 

function.40-42 Testosterone increases vulnerability to hormone related cancers, including prostate 

cancer,29 breast cancer29 and endometrial cancer.29 Testosterone is also increasingly acknowledged 

to be an immune-suppressant,43 potentially increasing susceptibility to cancer,44 as well as to 

infectious diseases,
43

 such as COVID-19. Testosterone also may also induce impulsive behaviour.
45

  

 

Relevance to interventions 

Given the importance of testosterone to reproductive success, testosterone is likely responsive to 

environmental indicators of suitable conditions for procreation, and hence a modifiable target of 

intervention. Serendipitously, many aspects of a healthy lifestyle and several widely used 

interventions reduce testosterone. A healthy diet, i.e., low-fat, high fiber, high soy, and low animal 

fat reduces testosterone in men
46-48

 and women.
49

 Exercise and weight loss reduce testosterone in 

women,50-52 but possibly less so in men,53 54 although severe calorie restriction reduces testosterone 

in men.55 One of the most effective medications for preventing and treating cardiovascular disease, 

i.e., statins, reduces testosterone in men and women.
56

 The first-line treatment for diabetes, 

metformin, may reduce testosterone in women,57 but not men.58 Aspirin may also reduce 
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testosterone.59 Another essential medicine, dexamethasone reduces testosterone.60 61 As such, many 

current interventions to promote longevity do happen to reduce testosterone, particularly in 

women. Explicitly, searching sex-specifically for interventions based on this insight might facilitate 

the search for new means of promoting healthy aging, identify at an early stage any potential 

interventions that are likely to be unsuccessful, and identify where interventions should be sex-

specific.   

 

Limitations 

Although this study used an innovative approach to generate an unbiased assessment of the effect 

of testosterone on longevity, it has several limitations. First, MR has stringent assumptions including 

that the genetic instruments predict the exposures, hence our use of published instruments,29-31 that 

the instruments are independent of exposure outcome confounders, which stems from the use of 

genetic instruments not related to confounders such as health status, lifestyle and socioeconomic 

position, and that the instruments only affect the outcome via the exposure, hence our use of 

sensitivity analysis and control exposures. Second, we assumed a linear relation of survival with age 

when it is exponential. However, at the relatively young ages considered here such an 

approximation is less of an issue than in old age. A sensitivity analysis using survival to age 60 years 

as the outcome gave a similar interpretation for genetically predicted testosterone (Table S2). Third, 

the samples used for exposures and outcome overlap. However, that would be expected to bias 

towards the null,62 so our estimates may be conservative. Moreover, the potential bias is less of 

concern as we did not use weak instruments to predict exposures.62 Fourth, our study gives lifetime 

effects of endogenous testosterone up to age ~57 years rather than the effect of an intervention. 

However, the estimates for testosterone can be contextualized by the estimates for smoking. Fifth, 

longevity studies have been criticized for not taking account of cohort effects.25 However, there is no 

reason to think that genetics are susceptible to cohort effects in the UK Biobank. Sixth, canalization, 

i.e., compensation for genetic effects might exist. However, this would likely bias towards the null. 

Seventh, the UK Biobank is not a population representative study. However, we used a study of 

longevity rather than a traditional prospective cohort study to avoid selection bias. Eighth, the 

relatively young age at recruitment, and correspondingly high survival means this study lacks power, 

so we focused on major determinants of longevity, but were not able to ascertain if the effects of 

testosterone were greater in men than women. Ninth, the effects of testosterone may vary by age. 

However, causes are generally expected to act consistently, although they may not be relevant in all 

situations.
63

 Testosterone in men falls with age,
16

 so our findings could be relatively less relevant to 

older men, but absolute risk of death increases with age.  
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Conclusion 

Consistent with well-established evolutionary biology theory
18-20

 testosterone appeared to reduce 

lifespan. Serendipitously, many existing strategies for promoting health reduce testosterone, 

particularly in women. Explicitly using an established theory as a guide might facilitate the search for 

new interventions, and draws attention to the importance of sex-specific interventions.  
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Table 1: Differences in age at recruitment to the UK Biobank for published genetic predictors of 

testosterone,
29

 smoking,
30

 and vitamin C (absorbate)
31

 using Mendelian Randomization inverse 

variance weighted estimates  

Exposure type Exposure Years 

younger at 

recruitment 

95% CI p-

value 

Positive control Smoking initiation compared to not -0.37 -0.50 to -0.25 5.2e-9 

     

Negative control Absorbate (rs33972313) -0.01 -0.11 to 0.09 0.79 

     

Exposure Testosterone (standard deviation) -0.10 -0.20 to -0.004 0.04 
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Supplementary Tables 

 

 

Supplementary Table 1: Differences in age at recruitment to the UK Biobank for published genetic 

predictors of testosterone
29

 and smoking
30

 using additional Mendelian Randomization analyses  

Exposure  Method Subgrou

p 

Years 

younger at 

recruitment 

95% CI P-

value 

Interce

pt p 

Q (p-value) 

Smoking  WM all -0.35 -0.52 to -0.17 0.0001   

(361 

variants) 

MR Egger all -0.32 -0.84 to 0.21 0.24 0.83 434.4 (0.004) 

Conmix all -0.61 -0.94 to -0.34 0.0003   

        

Testosterone IVW Men -0.12 -0.29 to 0.05 0.16   

(125 variants 

for men, 254 

variants for 

women) 

 Women -0.09 -0.22 to 0.03 0.14   

WM Men -0.25 -0.54 to 0.04 0.09   

 Women -0.28 -0.51 to -0.05 0.02   

 all -0.27 -0.45 to -0.09 0.003   

 MR-Egger Men -0.20 -0.48 to 0.07 0.15 0.47 154.2 (0.03) 

  Women -0.13 -0.35 to 0.10 0.27 0.72 262.1 (0.32) 

  All -0.16 -0.33 to 0.02 0.08   

 Conmix Men -0.34 -0.59 to -0.01 0.049   

  Women -0.12 -0.28 to 0.05 0.16   

  All -0.17 -0.32 to -0.02 0.03   

WM: weighted median, IVW: inverse variance weighted, Conmix: contamination mixture model 

 

 

 

Supplementary Table 2: Recruitment to the UK Biobank at age 60+ years compared to younger 

than or equal to 60 years for genetically predicted testosterone
29

 using Mendelian Randomization 

inverse variance weighting estimates 

 Odds ratio 95% CI p-value 

All 0.98 0.95 to 0.99 0.049 

Men 0.97 0.93 to 1.01 0.13 

Women 0.98 0.95 to 1.01 0.20 
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