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Abstract 
 
COVID-19 is a pandemic that shares certain clinical characteristics with other acute viral infections. Here, we 
studied the whole-blood transcriptomic host response to SARS-CoV-2 and compared it with other viral 
infections to understand similarities and differences in host response. Using RNAseq we profiled peripheral 
blood from 24 healthy controls and 62 prospectively enrolled patients with community-acquired lower 
respiratory tract infection by SARS-Cov-2 within the first 24 hours of hospital admission. We also compiled and 
curated 23 independent studies that profiled 1,855 blood samples from patients with one of six viruses 
(influenza, RSV, HRV, ebola, Dengue, and SARS-CoV-1). We show gene expression changes in peripheral blood 
in patients with COVID-19 versus healthy controls are highly correlated with changes in response to other viral 
infections (r=0.74, p<0.001). However, two genes, ACO1 and ATL3, show significantly opposite changes between 
conditions. Pathway analysis in patients with COVID-19 or other viral infections versus healthy controls 
identified similar pathways including neutrophil activation, innate immune response, immune response to viral 
infection, and cytokine production for over-expressed genes. Conversely, for under-expressed genes, pathways 
indicated repression of lymphocyte differentiation and T cell activation. When comparing transcriptome profiles 
of patients with COVID-19 directly with those with other viral infections, we found 114 and 302 genes were 
over- or under-expressed, respectively, during COVID-19. Pathways analysis did not identify any significant 
pathways in these genes, suggesting novel responses to further study. Statistical deconvolution using 
immunoStates found that M1 macrophages, plasmacytoid dendritic cells, CD14+ monocytes, CD4+ T cells, and 
total B cells showed change consistently in the same direction across all viral infections including COVID-19.  
Those that increased in COVID-19 but decreased in non-COVID-19 viral infections were CD56bright NK cells, M2 
macrophages, and total NK cells. The concordant and discordant responses mapped out here provide a window 
to explore the pathophysiology of COVID-19 versus other viral infections and show clear differences in signaling 
pathways and cellularity as part of the host response to SARS-CoV-2. 
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Introduction 
 
A novel coronavirus, SARS-CoV-2, has developed into a global pandemic, resulting in more than 7.6 million 
cases worldwide with over 427,000 deaths as we write (WHO accessed 14Jun2020)1.  Contextually this pandemic 
is likely to surpass the SARS-CoV-1 2003 pandemic by 1000-fold whereby SARS-CoV-1 resulted in 8,098 cases, 
took 12 months to contain and had a 9.6% mortality rate (WHO accessed 1Jun2020).  The novel SARS-CoV-2 
virus, the causative agent for COVID-19 disease, is highly communicable and despite urgent and resource-
intensive efforts globally, we have no vaccine or efficacious treatment in sight2.  
 
COVID-19 clearly shares some immunological features with other viral responses, such as interferon activation, 
simultaneous repression of immune cells, and changes in metabolism including glucose and iron regulation as 
shown by cytokine and cytometry studies3–5 . However, while many acute viral infections can lead to critical 
illness and death, COVID-19 appears both quantitatively and qualitatively to differ when compared to other 
acute viral infections. Notable features of COVID-19 include high rates of acute respiratory distress requiring 
mechanical ventilation; clinical coagulopathy; features of a cytokine storm and/or viral sepsis, and a high case 
fatality rate6.  Thus, while studies comparing COVID-19 to healthy controls (HC) are useful, they do not explain 
the similarities and differences seen in the COVID-19 syndrome vs other viral infections.  
 
Our approach involves a multi-cohort analysis of transcriptomic host response data to investigate host 
inflammation. The core discovery method leverages biological, clinical, and technical heterogeneity across 
datasets to identify generalizable disease biomarkers. We have repeatedly demonstrated that host response can 
be a generalizable sensitive and specific diagnostic and prognostic marker for presence, type, and severity of 
infections7–9, but also in autoimmune diseases, vaccination, TB, cancer and organ transplant7,8,17–20,9–16 We have 
shown in methodological work that this method produces results with the greatest reproducibility in 
independent cohorts21.  
 
In this work, we used RNAseq to profile whole blood samples from 62 COVID-19 patients prospectively enrolled 
in Athens, Greece, together with 24 healthy controls. We simultaneously compiled a database of clinical viral 
infections from 23 studies of > 1,800 samples to represent the conserved immune response to a broad range of 
viral infections including influenza, RSV, HRV, SARS-CoV-1, ebola, and dengue. We here report on the results 
of a comparison of host responses to SARS-CoV-2 and other viruses. We mapped out their similarities and  
differences at the gene level, pathway level, and cell proportion level, as a first step to gain a better 
understanding of this novel pandemic virus.   
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Methods 
 
SAMPLE ACQUISITION AND PROCESSING 
 
COVID-19 samples from Hellenic Sepsis Study Cohort 
A total of 76 adult patients with SARS-CoV-2 pneumonia were prospectively enrolled from April 1st to May 4th 
by department participating in the Hellenic Sepsis Study Group (www.sepsis.gr) using the inclusion criteria 
already described elsewhere22.  Lower respiratory tract infection was defined as the presence of infiltrates in 
chest X-ray or chest computed tomography compatible with COVID-19. SARS-Cov-2 was detected by positive 
molecular testing of respiratory secretions. For patients who required mechanical ventilation (MV), blood 
sampling was performed within the first 24 h from MV. Exclusion criteria were infection by the human 
immunodeficiency virus, neutropenia, and any previous intake of immunosuppressive medication 
(corticosteroids, anti-cytokine biologicals, and biological response modifiers). The studies were conducted under 
the 30/20 approval by the National Ethics Committee of Greece. Written informed consent was provided by 
patients or by first-degree relatives in cases where patients were unable to consent. 
 
Whole blood was drawn in PAXgene tubes at enrollment along with other standard laboratory parameters. Data 
collection included demographic information, clinical scores (SOFA, APACHE II), laboratory results, length of 
stay and clinical outcomes. Patients were followed up daily for 30 days; outcomes were defined as severe 
respiratory failure (PaO2/FiO2 ratio less than 150 requiring MV) or death. PAXgene Blood RNA samples were 
shipped to Inflammatix for processing.  
 
Healthy control sample sourcing 
Blood RNA tubes were prospectively collected from healthy controls (HC) through a commercial vendor 
(BioIVT) under IRB approval (Western IRB #2016165) using informed consent. Patients were non-febrile and 
verbally screened to confirm that no signs or symptoms of infection were present within 3 days prior to 
sample collection and that they were not currently undergoing antibiotic treatment, nor had not taken 
antibiotics within 3 days prior to sample collection. Furthermore, all samples were negative for HIV, West 
Nile, Hepatitis B, and Hepatitis C by molecular or antibody-based testing.   
 
RNA extraction protocol 
Prior to processing, samples in PAXgene Blood RNA tubes from 76 COVID-19 patients and 24 healthy controls 
were removed from -80C to thaw at room temperature for two hours. The samples were then inverted several 
times to achieve homogeneity, after which 3 mL aliquots were removed for processing. RNA was extracted from 
these samples using a modified version of the RNeasy Mini Kit (QIAgen) protocol executed on the a QIAcube 
automated workstation. PAXgene samples comprise of whole blood in PAXgene stabilizing solution.  The 
sample is diluted with PBS, then centrifuged at 3,000 x g to pellet precipitated nucleic acids. Pellets were washed 
with molecular biology grade water and again pelleted via centrifugation at 3,000 x g. Pelleted material is 
resuspended in Buffer RLT (QIAgen). Using the automated QIAcube, samples are then subjected to treatment 
by Proteinase K and gDNA elimination via columns (QIAgen). Flow-through was mixed with isopropanol and 
passed over a MinElute (QIAgen) spin column. The column was washed with 80% ethanol and purified nucleic 
acid was eluted in RNase-free water. Purified RNA was heat denatured at 55° C for 5 minutes, then snap-cooled 
on ice. RNA was quantitated using a Qubit fluorimeter with the Quant-iT RNA Assay kit (Thermo-Fisher). 
Samples with an RNA integrity number (RIN) below 7 (BioAnalyzer, Agilent) did not proceed to sequencing, 
resulting in 62 COVID-19 samples and 24 HC samples for sequencing. 
 
RNAseq library preparation 
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Total RNA samples were depleted of globin RNA using the GLOBINclear kit (Invitrogen) following the 
procedure described by the manufacturer. Globin-depleted RNA was quantified using the Qubit RNA High 
Sensitivity kit (Life Technologies) and 10ng of globin-depleted RNA was then used for rRNA depletion and 
RNAseq library preparation using the SMARTer Stranded Total RNAseq kit v2 Pico Input Mammalian (Takara 
Bio) following the manufacturer’s protocol. RNAseq libraries were then quantified using the Qubit dsDNA High 
Sensitivity kit (Life Technologies) and their quality and size evaluated by a Fragment Analyzer High Sensitivity 
Small Fragment kit (Agilent Technologies).  
 
RNA sequencing  
A total of 86 RNAseq libraries generated above were pooled and sequenced on an Illumina NovaSeq6000 
Sequencing System (Illumina) in a paired-end fashion (2 x 100 cycles). 41 M to 124 M paired-end reads were 
obtained for each sample obtained for each sample. Fastq files were used as input for RNAseq data processing. 
Library prep and sequencing were performed at TB-SEQ (Palo Alto, CA). 
 
DATA PROCESSING AND ANALYSIS 
 
RNAseq data processing 
Trimming: Quality control (QC) assessment of the reads was done using FastQC 23. The adapter sequence and 3 
bases on the 3’ end of the reads was trimmed using cutadapt as a commonly used procedure 24. 
Alignment: Trimmed reads were mapped to a reference genome index generated based on the human genome, 
GRCh38, and a transcriptome reference, GENCODE v32 primary assembly gtf 25 with the sjdbOverhang option 
set to 100 (default), using STAR aligner (v2.7.3a). 
Quantitation: Mapped reads were quantified as per Ensembl transcript ID as defined in GENCODE v32 
annotation. Reads were summed across Ensembl transcript IDs mapping to Entrez gene IDs in order to compare 
them with other viral data assayed by microarrays (AnnotationDbi from Bioconductor)26. 
Data Quality: Various QC metrics prior to and post trimming were examined to assess data quality as a standard 
procedure for RNAseq data. Additionally, the distributions of raw and trimmed counts were assessed and 
Principal Component Analysis (PCA) with various cutoffs was performed for QC. All 86 samples passed 
standard QC metrics and the resulting counts matrix (12,142 Entrez genes by 86 samples) was used in subsequent 
data integration steps (Supplementary Table 1). 
 
Normalization and voom transformation of RNAseq counts 
Low-expressed genes were filtered using the following cutoff: max counts per million (CPM) less than 5 across 
all 86 samples. Normalization factors were obtained using edgeR’s Trimmed Mean of M values (TMM) method27. 
The voom method was then used to transform counts into normalized log2-CPM (Supplementary Figure 1)28. 
Data is available at Gene Expression Omnibus (GEO) repository (GSE152641).  
 
Non-COVID-19 viral dataset selection 
Transcriptomic data of clinical respiratory infections caused by viruses other than SARS-CoV-2 were surveyed 
from Gene Expression OmniBus (GEO) and ArrayExpress for inclusion to define a conserved host response 
signature for non-COVID-19 viral infection. We identified 23 such independent datasets that profiled a total of 
1,855 peripheral blood samples (PBMCs or whole blood) from patients (infants, children, or adults) with one of 
six viral infections (influenza, RSV, HRV, ebola, dengue, SARS-CoV-1, but not SARS-CoV-2). Collectively the 23 
datasets comprised of 780 samples from healthy controls and 1,075 from patients with a viral infection represent 
biological, clinical, and technical heterogeneity observed in the real-world patient population with viral 
infections.  

 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2020. ; https://doi.org/10.1101/2020.06.18.20131326doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20131326
http://creativecommons.org/licenses/by-nc-nd/4.0/


Non-COVID-19 viral dataset processing 
Raw microarray data for each dataset was renormalized (when available) using standardized methods. 
Affymetrix arrays were renormalized using the robust multichip average (RMA) method. Illumina, Agilent, GE, 
and other commercial arrays were renormalized via normal-exponential background correction followed by 
quantile normalization. Data were log2-transformed. Probe to gene (Entrez ID) summarization was performed 
within each study using the mean signal intensity for probes mapping to a single gene.  
 
COCONUT conormalization of all data sets 
Of the 23 non-COVID-19 viral infections datasets, 20 datasets with a total of 879 viral infected patients and 754 
HCs met the criteria for conormalization: 1) the dataset must have HCs, and 2) the dataset was obtained on a 
single-channel microarray platform.  Integrated with the voom-transformed RNAseq dataset for COVID-19, they 
were conormalized together using COCONUT as previously described8. COCONUT uses COMBAT empiric-
Bayes conormalization on healthy controls to derive correction factors for diseased patients. The technique 
integrates datasets such that (i) no bias is introduced to the diseased samples, (ii) there is no change to the 
distribution of a gene within a study, and (iii) each gene shares the same distribution across healthy controls 
between studies after normalization. This COCONUT conormalized expression data comprising of a total of 941 
(COVID-19 and non-COVID-19) viral patients and 778 HCs across 9,818 genes common across 11 platforms were 
used as input data to perform the following multicohort and integrated analyses.  
 
COVID-19 versus healthy control comparison 
Hedges’ g effect size (ES)29 for each gene was calculated for COVID-19 (62) versus HC (24) two-group 
comparison test from the COCONUT conormalized output. P-value was calculated using a student’s t-test and 
adjusted using the Benjamini-Hochberg method to obtain the False Discovery Rate (FDR). ES threshold of ³ 1 or 
£ -1 in combination with FDR threshold of £ 0.05% was used to identify genes whose expressions are over- or 
under-expressed in COVID-19 infected patients than in the mean value of HCs.  
 
Non-COVID-19 viral versus healthy controls comparison 
14 datasets composed of 1,324 whole blood and PBMC samples were chosen for the discovery cohort, of which 
652 were from respiratory viral infected patients (viral) and 672 samples were from HCs patients. As a multi-
cohort analysis with conormalized data as input, we utilized a well-established MetaIntegrator (version 2.1.1) as 
described previously30. Briefly, Hedges’ g ES was computed for each gene within a study between viral and HC. 
ESs for genes across studies was summarized using the DerSimonian & Laird random-effects model, where each 
ES is weighted by the inverse of the variance in that study31. We used an ES threshold ³ 1 or £ -1 with FDR £ 
0.05% to identify signature genes (Supplementary Table 2). 
 
Validation of non-COVID-19 viral infection signature 
The signature genes identified based on 14 discovery datasets were evaluated for prediction of viral infections 
from HC with a score calculated for each sample using the following formula:  

𝑣𝑖𝑟𝑎𝑙	𝑠𝑐𝑜𝑟𝑒 = 	𝑧𝑠𝑐𝑜𝑟𝑒-𝐺𝑒𝑜𝑀𝑒𝑎𝑛(𝑝𝑜𝑠) − 𝐺𝑒𝑜𝑀𝑒𝑎𝑛(𝑛𝑒𝑔)6 
The score is a rescaled difference between geometric means of positive (over-expressed) genes and negative 
(under-expressed) genes. Receiver-operating characteristics (ROC) plots are generated for held out validation 
datasets and the Area Under the ROC (AUC) is used as a performance metric. For validation of the non-COVID-
19 viral signature, we compiled 9 datasets comprised of 6 held out from the COCONUT expression data, plus 3 
normalized as per platform requirements without COCONUT (Table 3).  We then tested this signature first 
using 4 datasets comprising of 178 respiratory viral infection samples and 58 HCs (236 total) (Table 3). We then 
further validated this signature in 5 datasets of other viral etiology (245 viral and 50 HC, 295 total) (Table 3).  
COVID-19 versus non-COVID-19 viral Comparison 
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Hedges’ g ES was calculated for each gene in a COVID-19 (62) and non-COVID-19 viral (652) two-group 
comparison test from the COCONUT conormalized expression data. P-value was calculated using a Welch’s t-
test assuming unequal variance and sample sizes and adjusted using the Benjamini-Hochberg32 method to obtain 
the False Discovery Rate (FDR). ES threshold ³ 1 or £ -1 in combination with FDR threshold of £ 0.05% was used 
to identify signature genes.  
 
PATHWAY AND IMMUNOSTATES ANALYSIS 
 
Pathway Analysis 
Each over- or under-expressed gene set from comparisons between COVID-19 vs HC, non-COVID-19 viral 
infection vs HC, and COVID-19 vs non-COVID-19 viral infection was subjected to a pathway analysis with Gene 
Set Enrichment Analysis33.  We tested significance of over-representation of genes in each of the pathways 
reflected in Gene Ontology (GO) including biological process (BP), molecular function (MF), and cellular 
compartment (CC). The human transcriptome reference is used as background and the p-values from the hyper-
geometric test were adjusted using the Benjamini-Hochberg method 32. Top-ranked pathways common between 
COVID-19 and non-COVID-19, and specific separately to COVID-19 or non-COVID-19 viral infections were 
selected. 
 
ImmunoStates Analysis 
A statistical deconvolution method was used to estimate the percentage of 25 immune cell types in the peripheral 
blood transcriptome data 34,35. Statistical deconvolution estimates the percentage of various cell types present in 
a blood transcriptome profile. It uses a set of pre-defined genes that represent cell types of interest, called a basis 
matrix, and a variant of linear regression to make estimates. Previously, it was demonstrated that different 
methods produce highly correlated estimates of cellular proportions once basis matrix is fixed34. Here, 
immunoStates (MetaIntegrator) was used as a basis matrix because it has been shown to reduce the effect of the 
biological and technical heterogeneity in transcriptome data on statistical deconvolution and identify robust 
changes in immune cell proportions 34–37. The 14 non-COVID-19 viral discovery datasets and the COVID-19 
dataset were deconvolved separately, then change in proportion of a given cell type between healthy controls 
and the infected patients of each dataset was estimated.   
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Results 
 
Differential expression analysis of transcriptome profiles of patients with COVID-19  
We prospectively enrolled and sequenced RNAseq from whole blood from 62 patients with COVID-19 and 24 
healthy controls (Table 1). Differential expression analysis of 86 peripheral blood samples identified 2,002 
differentially expressed genes (771 over-expressed, 1,231 under-expressed; Figure 1a, Supplementary Table 2) 
with absolute ES ³ 1 and FDR £ 0.05%), referred to as COVID-19 signature. We performed pathway enrichment 
analysis of the COVID-19 signature using Gene Ontology (GO) terms. The 30 most significant pathways for 771 
over-expressed genes included neutrophil activation, innate immune response, immune response to viral 
infection, type-I interferon signing and cytokine production (Figure 1b), and for 1,231 under-expressed genes 
include lymphocyte differentiation and T cell activation and regulation (Figure 1c). These results suggest that in 
response to SARS-CoV-2 infection T cells are suppressed whereas neutrophils are activated as a hallmark of its 
overwhelming host response represented in the transcriptomic changes. High neutrophil-to-lymphocyte ratios 
have been observed as a marker of severity in sepsis, cancer, and pneumonia38–41.  
 
Identification of host response genes to viral infections through multi-cohort analysis  
Based on our previous results 14, we hypothesized that there is a conserved immune response to respiratory viral 
infections irrespective of age and genetic background of a patient or a virus.  We identified 23 studies of acute 
viral infection, and from these selected 14 as our discovery set for a non-COVID-19 viral signature (Table 2), and 
9 were held out for validation. Statistical power analysis42 found that even with high inter-study heterogeneity, 
we had more than 80% statistical power at p-value = 0.01 for detecting absolute ES > 0.43 in these datasets 
(Supplementary Figure 2). The multi-cohort analysis of 1,324 transcriptome profiles  (652  non-COVID-19 viral 
patients, 672 healthy controls) from these 14 studies using MetaIntegrator30 identified 635 differentially 
expressed genes (314 over-expressed, 321 under-expressed). ROC plots for all of the discovery datasets using 
this signature illustrate the high sensitivity and specificity this gene list possesses, indicating genes that are 
highly discriminatory and hence likely to represent this conserved signature (Figure 2a, Supplementary Table 
2). We refer to these 635 genes in short as the non-COVID-19 viral signature. Similar to the COVID-19 signature, 
GO analysis of over- and under-expressed genes in the non-COVID-19 viral signature identified a similar set of 
pathways highlighted by neutrophil and T cell activation, respectively (Figure 2b, 2c). 
 

Validation of host response genes to viral infections in multiple independent datasets  
Next, we confirmed that the non-COVID-19 viral signature is conserved across viruses by validating it in several 
independent datasets. We calculate the non-COVID-19 viral score for a sample as the difference in geometric 
means of over-expressed and under-expressed genes. In four independent studies consisting of 236 samples (178 
viral infections, 58 healthy controls; Table 3), the score accurately distinguished patients with a respiratory viral 
infection (influenza, HRV, or RSV) from HCs (Figure 3a).  
 
Second, we investigated whether the non-COVID-19 viral signature is observed in other severe viral infections 
including ebola, dengue, and SARS-CoV-1 in five independent studies (50 HC, 54 SARS-CoV-1, 37 ebola, 154 
dengue). In each study, the non-COVID-19 viral score also distinguished patients with a viral infection from 
healthy controls with high accuracy (Figure 3b).  
 
Third, we tested whether the non-COVID-19 viral signature would also distinguish patients with COVID-19 
from healthy controls. We calculated the non-COVID-19 viral score for each of 62 COVID-19 patients together 
with 24 HCs using the conormalized expression data. We found that non-COVID-19 viral score separated 
patients with COVID-19 from HCs with an AUC of 0.96 (Figure 3c), similar to SARS-CoV-1 (AUC=0.98).  
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Comparison of COVID-19 profile with non-COVID-19 viral infection profile 
Next, we investigated similarities and differences in host response to SARS-CoV-2 and other respiratory viruses 
by comparing change in expression with respect to healthy controls across 9,818 genes that were present across 
all datasets. When considering the entire transcriptome, there was high correlation (r = 0.74, p < 0.001) between 
change in expression in response to SARS-CoV-2 or other respiratory viruses (ES from COVID-19 vs HC 
comparison is plotted against ES from non-COVID-19 vs HC comparison in Figure 4a). We visualized 2,002 
COVID-19 signature genes and 635 non-COVID-19 signature genes in the same ES scatter plot by different colors to 
highlight their relationships (Figure 4a, Supplementary Table 2). We observe that 7,626 genes uncolored in the 
middle (gray, with higher density in the center shown by contours) out of 9,818 profiled (77.7%) are not in the 
signature genes in either COVID-19 or non-COVID-19 viral infections.  Given the high correlation (r = 0.74), it is 
not surprising that 223 genes are concordantly over-expressed (ES ³ 1, FDR £ 0.05%) as well as 220 genes 
concordantly under-expressed with (ES £ -1, FDR £ 0.05%). Of the remaining genes from the non-COVID-19 
signature, there are 90 genes over-expressed and 100 genes under-expressed in non-COVID-19, however these 
had ES between -1 and 1 in the distribution of the COVID-19 ESs. As well, of the remaining genes from the 
COVID-19 signature, there are 547 genes over-expressed and 1,010 genes under-expressed in COVID-19 that had 
ES between -1 and 1 in the distribution of the non-COVID-19 ESs. We only found two genes that were completely 
discordant, thus completely oppositely regulated in COVID-19 and non-COVID-19 viral infections: Aconitase1 
(ACO1) over-expressed in COVID-19 and under-expressed in non-COVID-19 viral infections and Atlastin 
GTPase 3 (ATL3) over-expressed in non-COVID-19 viral infections and under-expressed in COVID-19. 
Interestingly, ACO1 is involved in iron metabolism, and heme appears to be interlinked with COVID-19 
pathophysiology43. ATL3 is required for endoplasmic reticulum (ER) membrane junctions and may be linked to 
viral replication sites44.   
 
Therefore, in order to identify a statistically significant set of genes differentially expressed in COVID-19 patients 
compared to those with other viral infections, we employed COCONUT to conormalize the two disease types 
into a single matrix for comparison of 62 COVID-19 patients versus 652 non-COVID-19 viral infection patients. 
Using COCONUT allows for comparison across datasets with heterogeneity while simultaneously creating a 
way to calculate an FDR for the gene effect size when compared “head-to head” or “disease to disease” directly, 
rather than looking for correlated and anti-correlated genes for which ES and FDR are calculated separately.  At 
|ES| ³ 1 with FDR £ 0.05%, we found 416 genes as COVID-19-specific genes, 114 over-expressed and 302 under-
expressed in patients with COVID-19 than in those with non-COVID-19 viral infection (Figure 4b). To illustrate 
the gain in identification of genes to investigate and re-iterate the value in this statistical method, this set of genes 
from (b) are highlighted in the same scatter plot from panel a (Figure 4c).  
 
Unlike the COVID-19 and non-COVID-19 viral signatures, the pathway analysis of this gene set did not identify 
any statistically significant GO terms, potentially indicating novel pathophysiology unique to COVID-19. This 
combination of genes may include those less well annotated within pathways and thus less likely to result in 
statistically significance assignment to a pathway. Nonetheless, top-ranked but statistically insignificant GO 
terms include muscle contraction, regulation of epithelial cell proliferation, and biological processes involved in 
lung and respiratory development for 114 positive genes, as well as pathways related to T cell homeostasis and 
T cell differentiation for 302 negative genes. The significance of these pathways in connection with clinical 
manifestation needs to be investigated further.  
 
 
Similarities and differences in pathways between COVID-19 and non-COVID-19 viral infection 
We expanded our comparison of significant pathways in response to SARS-CoV-2 versus non-COVID-19 viruses 
by including all pathways instead of only 30 most significant pathways. We found pathways for over-expressed 
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genes are highly concordant between patients with COVID-19 and non-COVID-19 viral infections (Figure 5a), 
pathways for under-expressed genes are discordant (Figure 5b).  
 
To amalgamate these findings we performed hierarchical clustering of all pathway analysis results of all gene 
sets of interest including three signature sets: 1) COVID-19 vs HC (771 over- and 1,231 under-expressed), 2)  non-
COVID-19 viral vs HC (314 over- and 321 under-expressed), and 3) COVID-19 vs non-COVID-19 viral (114 over- 
and 302 under-expressed) as well as the 8 gene groups based on concordance between signatures (Figure 5c, 
Supplementary Table 2). To check the dependency of GO term enrichment results on the cutoffs for selecting 
signature genes, we tested three additional cutoffs (less or more stringent than the chosen one) each for COVID-
19 vs HC, non-COVID-19 vs HC, or COVID-19 vs non-COVID-19 comparison. The results for over-expressed, 
under-expressed, and all genes from each cutoff together with the 9 gene sets from Figure 4a show a merging 
and comprehensive picture of pathway analysis results (Supplementary Table 3, Supplementary Figure 4) 
allowing one to focus on pathways of interest, either commonly significant across gene sets or uniquely 
significant in a gene set or a combination of genes of interest.  
 
Similarities and differences in changes in immune cell proportions between COVID-19 and non-COVID-19 
viral infection 
We estimated proportions of 25 immune cell types in bulk gene expression in blood samples from patients with 
COVID-19 or non-COVID-19 viral infections using immunoStates. In patients with COVID-19, we found 
immune cells from myeloid-lineage (M1 macrophages, neutrophils, and MAST cells) increased significantly 
(FDR £ 10%), and lymphoid cells (CD4+ and CD8+ alpha-beta T cells, B cells) decreased significantly (FDR £ 
10%) during viral infection (Figure 6a, Supplementary Table 3). These results are in line with recent reports 
demonstrating increased neutrophil and decreased T cell counts in COVID-19 patients39–41.   In patients with non-
COVID-19 viral infections, we observed significant increase in proportion for myeloid cells (M1 macrophages, 
CD14+ monocytes, MAST cells), and significant decrease in proportion for lymphoid cells (CD4+ and CD8+ T 
cells, gamma-delta T cells, B cells) (Figure 6b, Supplementary Figure 3). Indeed, when considering changes 
within each dataset, M1 macrophages, plasmacytoid dendritic cells, CD14+ monocytes, CD4+ T cells, and total 
T cells showed change consistently in the same direction across all viral infections including COVID-19 (Figure 
6b). 

 
We observed an overall correlation of 0.493 (p=0.017) for change in cellular proportions in patients with COVID-
19 compared to non-COVID-19 viral infections (Figure 6c, Supplementary Table 3), where all but 6 cell types 
changed in the same direction, though not all changes were statistically significant. We again observed increased 
neutrophil and decreased T cell counts in COVID-19 which is in line with a recent study that compared COVID-
19 to the 2009 H1N120.Cell types that increased in COVID-19 relative to non-COVID-19 were CD56bright NK cells, 
M2 macrophages, and total NK cells. Those that decreased in non-COVID-19 relative to COVID-19 were CD56dim 
NK cells, memory B cells, and eosinophils. Although change in memory B cells was not statistically significant, 
the direction of change is expected as patients with non-COVID-19 infection are highly likely to have memory 
to those viruses, whereas SARS-CoV-2 is a novel coronavirus with no pre-existing memory in the population. 
Similar findings are reported when the absolute cell counts were measured by flow cytometry in smaller patient 
populations20. 
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Discussion 
 
Understanding the pathophysiology of COVID-19 is critical to finding new treatments. Here we take a host 
response transcriptomics approach using peripheral blood transcriptomics of the immune response to COVID-
19 (n=62) compared to 652 non-COVID-19 viral infections spanning 6 viruses.  While the vast majority of the 
host immune response appears to be similar between COVID-19 and other viruses, our study highlights some 
key differences. 
 
The scatter plot of the correlation of the differential expression of non-COVID-19 viral infections versus COVID-
19 infections illustrates this large proportion of concordance and seemingly small amount of discordance (Figure 
4). We found only two genes, ACO1 and ATL3, that were expressed in opposite directions. ACO1 was over-
expressed in COVID-19 versus HC and under-expressed in non-COVID-19 viral infections versus HC, whereas 
ATL3 entirely oppositely regulated (Figure 4). Prior reports suggest that both genes may be involved in viral 
replication and immune evasion. ACO1 is an iron-sulfur protein that regulates ferritin and transferrin. When 
cellular iron levels are low, the protein binds to iron-responsive elements (IREs), which represses translation of 
ferritin (a protein that stores iron), and simultaneously stabilizes the normally rapidly degraded transferrin 
receptor mRNA allowing for translation of the receptor and more cellular uptake of iron, which is required for 
proliferation45. High levels of ferritin are also indicative of macrophage activation syndrome (MAS) and have 
been observed in COVID-19 patients 22,46–48. ATL3 is a member of the integral membrane GTPases. Proper 
formation of ER tubules is affected by mutations in this gene. Viruses are known to target host organelles to 
enter a host cell and avoid destruction49. Lack of ATL results in delayed cargo exit and coat assembly for budding 
from the ER which is necessary for export of cytokines and chemokines in response to infection; ATL3 has been 
linked directly to viral replication in Zika44, although Zika was not studied here.   
 
The power of using COCONUT to combine heterogeneous datasets allowed for a pooled, head-to-head 
comparison of COVID-19 with non-COVID-19 viral infections. Interestingly, the differentially expressed genes 
in this analysis were not enriched for any GO terms. However, there is bias in the annotation of gene ontologies, 
so absence of evidence does not denote evidence of absence of coordinated differential response 50,51. Indeed, 
Figure 5 illustrates the comparison of COVID-19 to non-COVID-19 GO terms. We found many downregulated 
pathways are discordant when comparing to healthy controls. Within these, a cluster of pathways that are high 
in COVID-19 and low in non-COVID-19 viral infections involve ribosome related processes. In SARS-CoV-1 
infections it was determined that viral nsp1 disrupts ribosomal function52. The inverse cluster of pathways that 
are high in non-COVID-19 viral infections and low in COVID-19 positively regulate cell-cell adhesion, cell 
activation, leukocyte activation, immune response-activating cell surface receptor signaling, perhaps suggesting 
a more dysregulated immune response. While the host response to SARS-CoV-2 in essence is highly similar to 
other viral infections, it does clearly have some molecular differences. Of particular interest was the observation 
that while both diseases had increased type-1 interferon signaling pathways, the magnitude of this pathway 
response was lower in the COVID-19 (Figure 5).  
 
Interestingly, the consistency in the change in the immune cell proportions are mostly consistent across COVID-
19 and non-COVID-19 datasets. Our results are in line with several recent studies that found high neutrophil-
lymphocyte-ratio (NLR) in COVID-19 patients38–41. Expansion of CD56bright NK cells is common in many viral 
infections, as part of recognizing and killing virally infected cells while orchestrating adaptive immune 
responses53. Comparing patients with COVID-19 to HCs shows an increase in NK cells (Figure 6a), largely driven 
by the CD56bright population. When compared to non-COVID-19 viral infections the increase in NK cell (via 
CD56bright NK cell) proportion remains high in the COVID-19 infections. This phenomenon was also directly 
observed using mass spectrometry to measure cell abundance over time in COVID-19 patients, and when 
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considering factors most explanatory in those that recovered the cells that were the most dynamic included 
CD56dim NK cells54.  

When comparing COVID-19 to non-COVID-19 viral infections, we see M1 macrophage proportions are similar 
to that of other viral diseases, but the elevated M2 response is discordant. M1 macrophages are pro-
inflammatory and kill invaders, whereas M2 macrophages are considered anti-inflammatory and reparative. A 
large body of work in bacterial sepsis found that individuals with high M1 profiles had increased mortality 
whereas those with a more evenly balanced M1/M2 were more likely to survive55.  However, in general, 
monocytotropic viruses including SARS-CoV-1 have evolved mechanisms to interfere with effective 
macrophage polarization, favoring the M2 population for immune evasion.  For example, virus-induced 
macrophage depletion is executed by viruses that carry pro-antiapoptotic proteins, thus initially reducing the 
number of M1s to skew population to M2 and avoid attack, then further suppress the production and action of 
type I IFNs, stunting the progression of M1 macrophage polarization56 . This shift we see in the proportion of 
M2 macrophages in COVID-19 versus non-COVID-19 viral infections indicate that this novel pathogen may be 
executing these immune evasion techniques with a high degree of success.  

Our study has some limitations due to the design of using public data for non-COVID-19 comparison. First, due 
to the limited nature of clinical studies in a pandemic, we had just 62 patients with COVID-19 compared to >650 
with other viral infections, creating class imbalance in their comparison. Second, we did not investigate effects 
of severity on host response as this was mostly unavailable. It is possible that differences in severity between 
this COVID-19 cohort and the other viral cohorts was a confounder in our analysis. Third, we analysed 
differential expression at single pre-set significance and effect size thresholds. Choosing different thresholds 
(e.g., thresholds based on 80% statistical power in each analysis) would have identified different sets of 
differentially expressed genes. We provide ES and FDR values for all genes (Supplementary Table 2) to enable 
re-analysis of these genes based on thresholds that others may deem more appropriate. Supplementary Figure 
4 is also provided to show the GO term enrichment results by varying cut-offs.  
 
Conclusions 
 
We here provide bulk RNAseq profiling of peripheral blood in COVID-19 in comparison to healthy controls 
which we derived a signature of 2002 genes for investigation of the biology and potentially pathophysiology of 
this disease. We compiled an extensive database of non-COVID-19 viral infections across many platforms, ages, 
diseases and locations globally to compare to healthy controls using metaintegration to derive a set of 635 genes 
representing the host response to known viral pathogens.  We then used COCONUT to conormalize all of the 
data and directly compare COVID-19 to non-COVID-19 viral infections resulting in a signature of 416 gene. We 
used all of these analyses to identify both the similarities and differences in the underlying host response. While 
we identified that a large proportion of the host response is similar to that of other infections, we also identified 
key differences in individual genes, pathways, and cellularity that are suggestive of the clinical differences 
observed in COVID-19. Of particular interest are the potential roles of ACO1 and ATL3 in describing the 
differential host response in COVID-19 complemented by the 416 genes that may identify novel biology and 
further the understanding of ACO1 and ATL3, but our findings will need to be replicated in further clinical 
studies.  
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Table 1. Baseline characteristics table for COVID-19 patients. All continuous 
variables are reported as median and interquartile ranges [IQR] (n). 

COVID-19 Patients

n 62

Age in years: median [IQR] (n) 61 [52,70] (61)

Gender = Male (%) 40 (65)

SOFA score 2 [1,4] (61)

APACHE II 6.5 [4,9] (56)

Pneumonia severity index 89.5 [65,104.5] (48)

White blood cell (mm3) 6180 [4910,8420] (59)

Neutrophils 75.5 [65.43,84.13] (59)

Lymphocytes 15.69 [10.5,22.55] (59)

Platelets (k/ mm3) 195.2 [158.8, 238.8] (58)

Lactate (mmol/l) 1.55 [1.04,2.08] (30)

pO2.FiO2 (mmHg) 255.35 [112.5,310.8] (50)

Creatinine (mg/dl) 0.9 [0.7,1.015] (58)

PCT (ng/ml) 0.1 [0.04,0.41] (49)

CRP (mg/l) 78.85 [29.48,175.8] (60)

Days btwn onset symptoms and sampling 6 [4,8] (53)

Days btwn intubation  and sampling 1 [0.5, 1.5] (23)

Days btwn hospital admission and intubation 2 [1, 3.5] (23)
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Table 2. 14 datasets used for discovery of the non-COVID-19 viral immune response. 

Accession Platform First Author PMID Timing of 
Diagnosis Disease Total Sample 

number
N Healthy 
Controls N Viral Age

GSE60244 GPL10558 Suarez NM 25637350 Within 24h of 
admission

Respiratory viral 
infection 111 40 71 Adults

GSE40012 GPL6947 Parnell GP 22898401 On admission to 
ICU H1N1 influenza A 24 18 8 Adults

GSE40396 GPL10558 Hu X 23858444 On hospitalization Febrile children with 
viral infection 44 22 22 Pediatrics

GSE64456 GPL10558 Mahajan P 27552618 On hospitalization Febrile children with 
viral infection 130 19 111 Infants  

GSE42026 GPL6947 Herberg JA 23901082 On hospitalization H1N1, RSV 74 33 41

GSE67059 GPL6947 Heinonen S 26571305 Within 48h of 
admission/ ED HRV +/- symptoms 101 21 80

EMEXP3589 GPL10332 Almansa R 22852767 Within 24h of 
admission to ICU

Infected COPD in ICU 
with viral infections 9 4 5 Adults

GSE82050 GPL21185 Tang BM 28619954
Within 24h of 

admission Influenza 39 15 24 Adults

GSE68310 GPL10558 Zhai Y 26070066
Within 48 hours of 
acute respiratory 
infection onset

Influenza and other 
respiratory viral 

infections
347 243 104 Adults

GSE73461 GPL10558 Wright VJ 30083721 On presentation 
of symptoms Viral infection 149 55 94

GSE111368 GPL10558 Dunning J 29777224
Within 24h of 

admission
seasonal flu study 
acute timepoints 163 130 33 Adults

GSE77087 GPL10558 de Steenhuijsen
Piters WA 27135599 Within 24h of 

hospitalization RSV 59 18 41

GSE66099 GPL570 Alder MN; 
Sweeney TE

27635771; 
25972003 Admission to ICU Viral infection 58 47 11

GSE27131 GPL6244 Berdal J 21781987 On hospitalization Severe Flu A 14 7 7 Adult

TOTAL 1324

Pediatrics

Pediatrics

Pediatrics

Pediatrics

Pediatrics

672 652
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Accession Platform First Author PMID Timing of 
Diagnosis Disease Total Sample 

number
N Healthy 
Controls N Viral Age

GSE117827 GPL23126 Yu J 30339221 Within 24h of 
hospitalization HRV 24 6 18 Pediatric

GSE20346 GPL6947 Parnell G 21408152 At peak symptoms Influenza 37 18 19 Unknown
GSE34205 GPL570 Ioannidis I 22398282 Within 42-72h of 

hospitalization
Influenza/ 

RSV 101 22 79

GSE103842 GPL10558 Rodriguez-
Fernandez R 29045741 Within 24h of 

hospitalization RSV 74 12 62

TOTAL 236 58 178

Accession Platform First Author PMID Timing of 
Diagnosis Disease Total Sample 

number
N Healthy 
Controls N Viral Age

GSE5972 GPL4387 Cameron MJ 17537853 Within 24h of 
hospitalization

SARS 
(CoV1) * 64 10 54 Adults

GSE122692 GPL16686 Reynard S 30626757 Within 24h of 
hospitalization Ebola * 45 8 37 Adults

EMTAB3162 GPL570 van de Weg
CA 25768297 On admission Dengue 36 15 21 Adults and 

GSE51808 GPL13158 Kwissa M 24981333 On admission Dengue 37 9 28 Adults and 

GSE38246 GPL15615 Popper SJ 23285306 Within 24h of 
hospitalization Dengue * 113 8 105

TOTAL 295 50 245

Validation Datasets (Respiratory Viral) 

Validation Datasets (Other Viral) 

Table 3. Datasets for validation of the non-COVID-19 viral vs healthy signature.
* indicates datasets not eligible for COCONUT 

Pediatric

Pediatric

Pediatric

Pediatric

Pediatric
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Figure 1. RNA-seq data of COVID-19 patients vs healthy control.  (a) Significance score [defined as -log10(FDR)] vs mean difference of co-normalized log2-transformed 
expression data between COVID-19 patients (n = 62) vs healthy controls (n = 24). The chosen cutoff of ES ≥ 1 or ≤ -1 with FDR ≤ 0.05% yields the 2,002 COVID-19 signature, 
including 771 positively regulated genes and 1,231 negatively regulated genes. GO term enrichment analysis of positive (b) and negative (c) gene sets reveal increased neu-
trophil function enrichment and decreased T cell related pathways (Gene Ratios represent the number of genes in our gene set within that pathway). 

Gene Ratio
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Figure 2. MetaIntegration of 14 non-COVID-19 viral disease datasets. (a) Multicohort analysis of 14 datasets of viral infections (n = 652) and healthy controls (n = 672) 
identified 635 non-COVID-19 viral signature, including 314 positively regulated genes and 321 negatively regulated genes at the chosen cutoff of ES ≥ 1 or ≤ -1 with FDR 
≤ 0.05%. GO term enrichment analysis of positive (b) and negative (c) gene sets reveal increased neutrophil function enrichment and decreased T cell related pathways, 
similar to those in Figure 1 (Gene Ratios represent the number of genes in our gene set within that pathway).
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Figure 3. Validation of a global host immune response to viral infections. (a) ROC performance of 635 non-COVID-19 signature in 4 independent datasets including HRV, RSV, picornavirus 
and influenza. (b) ROC performance in 5 additional cohorts of disease not included in discovery [Ebola (GSE122692), SARS CoV-1 (GSE5972) and Dengue (GSE38246, EMTAB3162, GSE51808)]. 
(c) The signature is also tested in the 62 COVID-19 patients and 24 HCs.       
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Figure 4. Comparison of COVID-19 signature with non-COVID-19 signature.  (a) Scatter plot of effect size for all 9,818 genes commonly present in all datasets between 
non-COVID-19 vs HC (x-axis) and COVID-19 vs HC (y-axis).  2,002 COVID-19 signature genes from Figure 1 and 635 non-COVID-19 signature genes from Figure 2 are col-
ored distinguishably in 9 quadrats. Concordant host response between COVID-19 and other viral infections is reflected by 223 commonly positively and 220 negatively regulat-
ed genes in both.  Discordant response is only seen in ACO1 whose expression is positively regulated in COVID-19 but negatively regulated in non-COVID, and in ATL3 whose 
expression is negatively regulated in COVID-19 but positively regulated in non-COVID-19. (b) The head-to-head comparison between COVID-19 and other viral infections 
was made possible by using co-normalized data by COCONUT.  Significance score [defined as -log10(FDR)] vs mean difference of co-normalized log2-transformed expres-
sion data between COVID-19 patients (n = 62) vs other viral infections (n = 652). The chosen cutoff of ES ≥ 1 or ≤ -1 with FDR ≤ 0.05% yields 416 COVID-19 specific signature, 
including 114 positively regulated genes and 302 negatively regulated genes. (c) To illustrate the overlap of (a) and (b), the 416 COVID-19 specific signature genes from 
head-to-head comparison in (b) are shown in the same scatter plot in (a).   
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Figure 5.  Summary of pathway analysis results. Scatter plots of the significance level from pathway en-
richment analysis between COVID-19 and non-COVID-19 viral infections obtained for positive genes in (a) 
and negative genes in (b) respectively. The significance level is defined as -log10(BH-corrected p-value) 
for each pathway. The concordance is seen in results for up-regulated genes between COVID-19 and 
non-COVID-19, while a degree of discordance is evident in down-regulated genes between COVID-19 and 
non-COVID-19.  (c) The heatmap shown as the significance level in each gene set of interest including 
COVID-19 vs HC (+) and (-),  non-COVID-19 viral vs HC (+) and (-), and COVID-19 vs  non-COVID-19 viral 
(+) and (-), together with 8 gene sets from Figure 4a (column) belonging to a pathway represented by Gene 
Ontology (row).   Scale in heatmap is from 1 to 10 for the significance level.
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Figure 6. Statistical deconvolution of bulk transcriptome profiles using immunoStates of COVID-19 versus non-COVID-19 viral infections. a) Changes in cell pro-
portions when comparing COVID-19 patients to healthy controls. Note the trends of increased neutrophil and decreased T cell proportions. b) Heatmap of changes in cell 
proportions of all datasets: non-COVID-19 and COVID-19 c) Concordant and discordant changes in cellular proportions comparing COVID-19 to non-COVID-19 viral infec-
tions. Cell types that increased in COVID-19 (hence decreased in non-COVID-19) were CD56bright NK cells, M2 macrophages, and total NK cells. Those that decreased in 
non-COVID-19 but increased in COVID-19 were CD56dim NK cells, memory B cells, and eosinophils.
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