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Abstract 21 

Background and Aims: Smoking is a leading cause of premature death. Although genome-wide association 22 

studies have identified many loci that influence smoking behaviors, much of the genetic variance in these traits 23 

remains unexplained. We sought to characterize the genetic architecture of four smoking behaviors through 24 

SNP-based heritability (h2
SNP) analyses. 25 

Design: We applied recently-developed partitioned h2
SNP approaches to smoking behavior traits assessed in 26 

the UK Biobank. 27 

Setting: UK Biobank. 28 

Participants: UK Biobank participants of European ancestry. The number of participants varied depending on 29 

the trait, from 54,792 to 323,068. 30 

Measurements: Smoking initiation, age of initiation, cigarettes per day (CPD; count, log-transformed, binned, 31 

and dichotomized into heavy versus light), and smoking cessation. Imputed genome-wide SNPs. 32 

Findings: We estimated h2
SNP(SE)=0.18(0.01) for smoking initiation and 0.12(0.02) for smoking cessation, 33 

which were more than twice the previously reported estimates. Estimated age of initiation h2
SNP=0.05(0.01) and 34 

binned CPD h2
SNP=0.1(0.01) were similar to previous reports. These estimates remained substantially below 35 

published twin-based h2 of roughly 50%.  CPD encoding strongly influenced estimates, with dichotomized CPD 36 

h2
SNP=0.28. We found significant contributions of low-frequency variants and variants in low linkage-37 

disequilibrium (LD) with surrounding genomic regions. Functional annotations related to LD, allele frequency, 38 

sequence conservation, and selective constraint also contributed significantly to the partitioned heritability. We 39 

found no evidence of dominance genetic variance for any trait.  40 

Conclusion: h2
SNP of these four specific smoking behaviors is modest overall. The patterns of partitioned h2

SNP 41 

for these highly polygenic traits is consistent with negative selection. We found a predominant contribution of 42 

common variants, and our results suggest a role of low-frequency or rare variants, poorly tagged by 43 

surrounding regions. Deep sequencing of large samples and/or improved imputation will be required to fully 44 

assess the role of rare variants. 45 

Keywords: h2
SNP, heritability, genetic architecture, smoking  46 
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Introduction: 47 

Cigarette smoking is a leading cause of premature death worldwide(1), and many smokers struggle to quit, 48 

despite interest and numerous attempts(2). Smoking prevalence has decreased in recent decades due to 49 

public health efforts(3); however, rates of alternative forms of nicotine use (e.g., vaping) have grown rapidly 50 

during this time(4), demonstrating a pressing need to characterize the underlying biology of nicotine use and 51 

smoking to reduce subsequent premature death. 52 

A key aspect of that underlying biology is the genetic architecture(5) of smoking behaviors, including the 53 

relative contribution of rare vs. common variants, functional annotation of associated loci, and characterization 54 

of the neutral and selective forces shaping that architecture. Numerous(6-10) twin, adoption, and family studies 55 

have demonstrated that up to 50% of the variance in nicotine dependence and individual smoking behaviors, 56 

such as quantity, is attributable to genetic influences. Recent genome-wide association studies (GWAS) have 57 

improved our understanding of this genetic basis by identifying over two hundred conditionally independent loci 58 

associated with these traits to date(11-14). This genetic signal is enriched in loci that influence the epigenome 59 

and within specific brain regions such as the hippocampus, providing a more nuanced interpretation of specific 60 

class(es) of variants, candidate brain regions, and potential causal mechanisms that influence smoking(11). 61 

Together, this body of work strongly indicates a highly polygenic architecture to smoking behaviors. 62 

Nonetheless, significantly associated loci collectively explain only a small proportion of the family-based 63 

genetic variance, leaving many additional loci undiscovered and the majority of the genetic variance 64 

unexplained.  65 

While additional common variants of very small effect are likely to be identified as sample sizes grow, some 66 

of the unexplained variability undoubtedly arises from uncommon and rare variants (MAF<0.01), though their 67 

relative contribution is uncertain. The most recent large GWASs(11, 15) of smoking behaviors and nicotine 68 

dependence, using LD score regression (LDSC), estimate the SNP-based heritability (h2
SNP) due to common 69 

variants as 0.05-0.09 across traits(16). A related exome sequencing study(17) estimated that rare coding 70 

variants explained approximately 1-2% of the phenotypic variance. However, given that the majority of 71 

identified associations are intergenic(11), exome-based studies are unlikely to identify most rare variants 72 

influencing these behaviors. Thus, the rare-variant contribution to smoking behaviors may yet be substantial 73 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 19, 2020. ; https://doi.org/10.1101/2020.06.17.20134080doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.17.20134080
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genetic architecture of smoking 

 4

when assessed with methods that can account for the aggregated influence of common and rare variation. 74 

Additionally, the contribution of non-additive genetic variance to these smoking behaviors is poorly 75 

understood. Twin-based studies have typically evaluated ACE models(9), which estimate additive genetic (A), 76 

common environment (C) and unique environment (E) variances using twin correlations, implicitly assuming 77 

zero dominance genetic variance. Extended twin kinship models can estimate dominance genetic variance and 78 

shared environmental effects simultaneously, and the only such model to evaluate smoking initiation found no 79 

evidence of dominance genetic variance(18). Although several h2
SNP estimates of smoking behaviors have 80 

been to published, to our knowledge only one estimate of SNP-based dominance genetic variance (δ2
SNP) has 81 

been reported, which found δ2
SNP of smoker status indistinguishable from zero(19). Furthermore, the allele 82 

frequency spectrum and contribution of functional annotations related to LD, allele frequency, recombination 83 

and related genomic features for smoking behaviors has not been fully explored. One study applied partitioned 84 

h2
SNP approaches to evaluate tissue-specific effects, with results indicating that genes expressed in the 85 

cerebellum are enriched in their contribution to nicotine dependence(15). The only published work has 86 

examined a single trait, smoking status, finding contributions of low-LD and -MAF variants consistent with 87 

negative or purifying selection(20, 21). Whether these same patterns exist for other smoking behaviors, such 88 

as quantity of use or cessation, is unknown. 89 

A comprehensive evaluation of the frequency spectrum, the influence of dominance genetic variance, and 90 

the contributions of functional annotations is needed to provide a more complete picture of the genetic 91 

architecture underlying complex smoking behaviors. Here, we use recently developed methods(19, 21-26) to 92 

evaluate these heritable contributions and characterize the genetic architecture of four smoking behaviors: 93 

smoking initiation (whether an individual has ever been a regular smoker), age of initiation of regular smoking, 94 

cigarettes per day (evaluated with different data encodings), and smoking cessation.  95 

 96 

Methods: 97 

Phenotype and Genetic Datasets 98 

Using the UK Biobank(27) full release, we assessed the same four smoking phenotypes as the GSCAN 99 

project(11), defined identically (final sample sizes after quality control; see below): 1) smoking initiation 00 
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(N=323,068), defined as whether an individual had ever in their lifetime been a regular smoker by having 01 

smoked over 100 cigarettes over one’s lifetime; 2) age of smoking initiation (N=122,200), defined as the age at 02 

which an individual began smoking regularly (UK Biobank data fields 3426 and 2867); 3) cigarettes per day 03 

(CPD; N=116,258), defined as a 5-bin variable based on responses for the number of cigarettes smoked per 04 

day (fields 2887, 3456, and 6183); and 4) smoking cessation (N=160,390), defined as individuals who were not 05 

current smokers but had been regular smokers at one point (fields 1239 and 1249). The latter three 06 

phenotypes required an individual to be a current or former regular smoker. GREML variance estimation (see 07 

below) was limited by available RAM (1 Tb) on a single compute node; therefore, we analyzed the smoking 08 

initiation and smoking cessation data using three and two separate, equally sized subsamples, respectively, 09 

and meta-analyzed the results using inverse-variance weighting. Age of initiation and CPD were each analyzed 10 

in a single analysis. In addition to the binned CPD metric used in recent genetic association meta-11 

analyses(11), we examined the influence of CPD scale on h2
SNP estimates, which we previously found to 12 

influence association effect sizes(28). We evaluated raw CPD count, log-transformed CPD, √CPD, CPD(2/3), 13 

and dichotomized CPD (heavy vs. light) using four different sets of CPD cutoffs for heavy and light smoker 14 

definitions (we applied the following Heavy (H) and Light (L) cutoffs of CPD: a) H: >20, L: <=10; b) H: >30, L: 15 

<=10; c) H: >40, L: <=5; d) Median CPD of 20 (H: >20, L: <=20); Figure S1). Final sample sizes for the different 16 

CPD encodings are presented in the Supplemental Information. These phenotypes encompass key aspects of 17 

nicotine dependence(29).  18 

The UK Biobank release included ~97M imputed variants using both the Haplotype Reference Consortium 19 

(HRC) and 1000 Genomes+UK10K reference panels(27). We removed individuals with mismatched self-20 

reported and genetic sex, |Fhet|≥0.2, and/or no phenotypic information. We restricted our analyses to biallelic 21 

SNPs with minor allele frequency (MAF)≥0.0001, imputation INFO score≥0.3, Hardy-Weinberg equilibrium test 22 

(HWE) p-value≥10-10, and variant missingness≤0.02 using plink1.9(30), yielding 22,982,114 SNPs. The choice 23 

of INFO score threshold was based on previous results demonstrating that variants with relatively poor 24 

imputation still contribute to h2
SNP estimates(23), although h2

SNP for a given partition will be underestimated to 25 

the degree that SNPs in that bin have average INFO<1 (22). We identified individuals of European ancestry 26 

using principal components analysis using flashpca (31) from a set of MAF- and LD-pruned array markers 27 
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(plink2 command: --maf 0.05 --indep-pairwise 50 5 0.2), retaining those whose scores on the first four PCs fell 28 

within the range of the UK Biobank-identified individuals of European ancestry (UK Biobank data field ID 29 

22006). We identified unrelated individuals using GCTAv1.91.3 (32) with an initial relatedness cutoff of < 0.05. 30 

After observing differences between REML- and Haseman-Elston-based variance estimators (see below), we 31 

applied relatedness thresholds of 0.02, 0.03, 0.04 & 0.05 to assess the potential for environmental effects 32 

confounding rare variation. Because sample size varied for each of the four phenotypes, we applied these 33 

relatedness thresholds for each phenotype separately. All sample sizes are presented in Tables S1-S3. 34 

 35 

Variance Estimation 36 

We estimated genetic variance in unrelated individuals using a set of genetic relatedness matrices (GRMs) 37 

partitioned by MAF- and individual marker LD-stratified bins (LDMS-I), which provides the most robust 38 

estimates of genetic variance across the allelic frequency spectrum in imputed data(22) and can be used in a 39 

GREML (GCTA(32)) or moment-matching framework such as phenotype correlation-genotype correlation 40 

(PCGC) regression(33, 34). These analyses were not pre-registered, and are therefore exploratory. We used 41 

both GCTA and PCGC (for binary traits) to estimate variances accounted for by GRMs (described next), and 42 

included the following as fixed effect covariates: sex (UK Biobank field ID  31), age (21003), age2, Townsend 43 

deprivation index (189), educational attainment (6138), genotyping batch (22000), scores of the first 10 44 

worldwide principal components (22009), and scores of the first 10 principal components of the retained 45 

individuals of European ancestry estimated as described above. 46 

We estimated h2
SNP using six LDMS-I-partitioned GRMs. We calculated LD scores for all imputed markers 47 

(GCTA: --ld-score-region 200). We stratified markers into four MAF intervals ([0.0001, 0.001), [0.001, 0.01), 48 

[0.01, 0.05), ≥0.05). For the two more common MAF bins, we further stratified SNPs into low and high 49 

individual SNP LD score bins based on median LD score within MAF bins. We did not LD stratify the rarest two 50 

MAF bins because there is low variation in LD for low MAF SNPs (most SNPs have low LD), because of limited 51 

power to differentiate across LD bins of SNP s of low MAF, and because inclusion of more GRMs required 52 

more memory than available. Because of incomplete data across all four phenotypes, we estimated all GRMs 53 

for each set of unrelated individuals for each phenotype separately.  54 
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To estimate dominance genetic variance, δ2
SNP, we included a dominance genetic relatedness matrix(19) 55 

for each dataset (GCTA: --make-bin-d) using all markers with MAF>0.01. We did not partition the dominance 56 

matrix by MAF or LD because of practical limitations, noted above.  57 

For binary traits (age of initiation, smoking cessation, and heavy/light CPD), we converted observed scale 58 

h2
SNP estimates to the liability scale using within-sample trait prevalence and the conversion of Lee et al.(35). 59 

Finally, we evaluated the influence of the relatedness threshold used, i.e., potential environmental 60 

confounding and cryptic relatedness, by using progressively lower relatedness thresholds (0.02, 0.03, 0.04 and 61 

0.05), then estimating h2
SNP as above. Resulting sample sizes across thresholds are presented in Tables S1-62 

S3.  63 

 64 

Functional Annotation and Tissue-Specific Expression Heritability Enrichment 65 

We used LD Score Regression to estimate partitioned h2
SNP for functional annotations (25). We applied the 66 

baseline+LD model (21) to assess functional annotations such as LD, allele frequency and age, recombination 67 

rate, and related annotations, and the possible role of purifying selection. We applied a Bonferroni cutoff either 68 

within traits (p<0.00052, as suggestive) or across all traits (p<0.00013) to identify significant LDSC regression 69 

coefficients. 70 

 71 

Results: 72 

Using GREML-LDMS-I with unrelated individual, we estimated smoking initiation h2
SNP(SE)=0.176(0.007), 73 

smoking cessation h2
SNP=0.119(0.018), cigarettes per day h2

SNP=0.098(0.011), and age of initiation 74 

h2
SNP=0.055(0.011) (Figure 1, Table S1). MAF- and LD-partitioned heritability estimates differed across traits. 75 

Common variants (MAF>0.05) contributed substantially to all traits, particularly common variants with relatively 76 

low LD (Figure 1). Uncommon variants (MAF 0.01-0.05) with low LD, but not high LD, contributed to all traits. 77 

Alternatively, uncommon (MAF<0.01) variants contributed significantly only to smoking initiation and age of 78 

initiation, and rare (MAF<0.001) variants did not contribute significantly to any trait.   79 

Notably, we estimated significantly different (non-overlapping 95% CI) total and binned h2
SNP for different 80 

CPD encodings. Total h2
SNP ranged from 0.092(0.011) for the raw CPD count to 0.289(0.038) when CPD was 81 
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dichotomized into heavy(CPD>20)/light(CPD<=10) smokers (Figures 2 & S2-S3, Tables S1-3). All 82 

dichotomized CPD total h2
SNP estimates (except using the median) were >0.2. We found differences in 83 

partitioned estimates, where common variants (MAF>0.05) contributed to substantially higher h2
SNP of 84 

heavy/light CPD than the other CPD encodings. Rarer (MAF 0.001-0.01) variant contribution was also higher, 85 

though the smaller sample size of the dichotomized data led to larger standard errors.  86 

We estimated the contribution of dominance variance. For all traits, the 95% CI of δ2
SNP estimates 87 

overlapped zero (Table S4). 88 

The relatedness threshold strongly influenced estimated h2
SNP when using PCGC, but not when using 89 

GREML (Tables S1-3, Figs. S2-S6). Specifically, the PCGC estimates were considerably higher than GREML 90 

estimates when applying a relatedness<0.05 cutoff with smoking initiation and smoking cessation, but dropped 91 

and had overlapping 95% CIs at lower relatedness thresholds. The higher estimates when using PCGC with 92 

relatedness<0.05 were driven by a much greater contribution of rare variant h2
SNP (MAF<0.0001; Figure S5-93 

S6).  94 

We applied partitioned LDSC to assess contribution of functional annotations and the role of LD and 95 

selective constraint in smoking behaviors. Across smoking behaviors, we found that SNPs that were highly 96 

conserved, that had lower MAF-adjusted LD or lower MAF quantiles (MAF>0.001 in Liu et al.(11)), and that 97 

were in areas of high CpG content and low recombination rate contributed significantly to heritable genetic 98 

variation (Figures 3 & S7, Table S5).  99 

 00 

Discussion: 01 

We estimated h2
SNP and δ2

SNP across four key smoking behaviors, and partitioned variance among rare vs. 02 

common variants and functional annotations. Our h2
SNP estimates are more than double the previously 03 

reported(11) LDSC-based and single-component GREML-based estimates for smoking initiation (0.18 vs. 0.08 04 

and 0.12) and smoking cessation (0.12 vs. 0.05 and 0.06), but are nearly identical for binned CPD (0.1). Our 05 

estimate of age of smoking initiation h2
SNP=0.05 is nearly identical to the LDSC-based estimate, but is much 06 

lower than the previous single-component GREML estimate of 0.11.  The difference in age of initiation h2
SNP 07 

may be due to including all variants in a single GRM when the causal variants are relatively common(22). 08 
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Partitioned estimates of common, well-tagged variants are similar to the LDSC-based estimates(11) across all 09 

four traits, consistent with expectations, as LDSC estimates variance due to common, well-tagged variants(16, 10 

22). The higher h2
SNP estimates for smoking initiation and cessation results from larger contributions of low-LD 11 

and low-frequency variants (MAF<0.01), suggesting that for these traits, a non-trivial portion of the genetic 12 

variance is due to rarer variants and those that are poorly tagged by surrounding SNPs. This contribution is 13 

likely underestimated in the current study, because even with HRC-imputed data, these sites are typically 14 

poorly imputed, which leads to a downward bias in h2
SNP estimates(22, 23). 15 

Alternative CPD encodings led to different estimates, wherein total h2
SNP for dichotomized heavy/light 16 

smoker status was over twice that of other encodings. This may be explained by one or more possible 17 

phenomenon that occur after restricting the analyses to phenotypic extremes, i.e., removing the center of the 18 

distribution. First, the extremes of the CPD distribution may be capturing a phenotype more closely 19 

approximating physical dependence on nicotine. Tolerance and withdrawal may index severity of nicotine 20 

dependence(36), a construct for which we do not have formal diagnoses, but which is highly heritable. In this 21 

case, though lacking other important aspects of the clinical presentation such as craving or loss of control, the 22 

dichotomized heavy/light phenotype is comparing individuals who may find overnight abstinence less aversive 23 

and start smoking later in the day, and endorse lower levels of nicotine dependence (light) to those who meet 24 

criteria for severe nicotine dependence (heavy), whereas the standard continuous CPD encoding includes 25 

intermediate levels of smoking heaviness that may or may not correlate with clinical presentations of nicotine 26 

dependence. Our GREML-based estimate of common, well-tagged h2
SNP (~0.09) is approximately the same as 27 

one recently reported LDSC-based estimate of nicotine dependence(15), consistent with this hypothesis. 28 

Alternatively, the dichotomized phenotype may reflect lower environmental variance and result in higher h2
SNP, 29 

if, for example, environmental effects such as reduced access to cigarettes or regular use of nicotine 30 

replacement therapy lead to intermediate values of CPD. Such differences in variance cannot be tested when 31 

either trait is dichotomous because the liability underlying the dichotomous trait must be assumed to have unit 32 

variance. Ongoing work will seek to distinguish between these two possibilities, and determine whether 33 

variants that contribute to heavy/light CPD and other smoking behaviors examined here also contribute to 34 

nicotine dependence liability or severity. 35 
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We found no evidence of dominance genetic variance for any phenotype, though we note that the power to 36 

detect δ2
SNP is lower relative to h2

SNP(19) and therefore sample size may be a limiting factor to detect low, but 37 

non-zero δ2
SNP. Our findings are consistent with those of Zhu et al.(19), who reported low δ2

SNP across 79 traits 38 

and δ2
SNP~0 for one smoking phenotype, smoking status. For the four smoking phenotypes in the current study, 39 

dominance genetic variance likely contributes little or not at all to the phenotypic variance. We note that 40 

dominance interactions of alleles within individual loci may still be contributing to these traits, but as this 41 

contributes to additive genetic variance (i.e., h2
SNP), its contribution to δ2

SNP can be limited, particularly for low-42 

frequency variants(37). Alternatively, interactions between, rather than within, loci may lead to epistatic genetic 43 

variation underlying smoking behaviors, and such effects could not be tested using the current approach. 44 

We identified several functional annotations related to LD, MAF, and sequence conservation that 45 

significantly contribute to h2
SNP (Figure 3, Table S5). In addition, GREML-LDMS-I h2

SNP analyses identified 46 

higher contribution of poorly tagged variants relative to well-tagged variants within the same MAF range across 47 

all four traits, and also identified nominally significant (95% CI>0) contribution of rare variants (MAF<0.01) for 48 

smoking initiation, raw CPD count, and age of initiation. Across the four traits analyzed, rare variants 49 

accounted for between 10 and 20% of total h2
SNP (Table S1). This suggests a role of low-frequency SNPs in 50 

low LD with surrounding regions, consistent with purifying and background selection acting to remove 51 

mutations with deleterious effects. Given that tobacco use in high concentrations, such as found in cigarettes, 52 

is evolutionarily novel for humans, it is unlikely that negative selection acted directly on these smoking 53 

behaviors, but rather mutations that today influence nicotine related behaviors may have pleiotropic effects on 54 

other traits that were subject to negative selection across evolutionary time(20). 55 

Our h2
SNP estimates are still considerably lower than twin-based estimates, which range from 50%-80% for 56 

dependence, smoking initiation and quantity of use(6-10), suggesting that additional still-missing heritability 57 

remains. This is unlikely to be explained by common causal variants, which are well-tagged in current 58 

imputation reference panels and from which we expect little downward bias in h2
SNP estimates(22). Further 59 

work will be required to fully characterize non-additive genetic variance, such as epistasis or gene-environment 60 

interaction. Rare variants are a likely source of the still-missing heritability. The SE of the rarest MAF partitions 61 

were substantially larger than the common variant partition SE, indicating that increased sample size will 62 
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improve the precision of estimates of rare-variant contribution. Overall, estimates are still generally low 63 

compared with those attributable to common variants, and even with large reference panels such as the HRC, 64 

rare variants are expected to be poorly imputed, resulting in downwardly-biased h2
SNP(22, 23). Further work 65 

through deep sequencing of large samples(38) or using those deeply-sequenced individuals as an improved 66 

imputation reference panel is needed to obtain less-biased estimates of rare-variant h2
SNP. For example, height 67 

and BMI h2
SNP estimates using whole genome sequencing have approached twin-based heritability estimates; 68 

rare variants account for a substantial proportion of the heritability(39). 69 

Beyond the limitation of rare variant imputation, our study highlights several key issues in h2
SNP estimation. 70 

First, while we used the largest relatively homogenous sample available, even larger samples will be needed 71 

for more precise estimation of rare variant contribution, as demonstrated by the much smaller SE of h2
SNP 72 

estimates of traits with larger sample sizes. Second, estimates are sensitive to the estimation method, i.e., H-E 73 

Regression-based vs. GREML, which may be due to how environmental confounding differentially influences 74 

estimates across methods. GREML-based estimates were relatively stable across relatedness thresholds 75 

(Table S1). However, PCGC-based estimates were quite sensitive to relatedness thresholds, being much 76 

higher than GREML-based estimates at a .05 threshold and declining with lower thresholds. Although a full 77 

assessment of performance of estimators is beyond the scope of this study, it will be important to assess the 78 

potential for environmental confounding. As with the possibility of rare variant-environment confounding in 79 

GWAS(40), environmental confounding is particularly relevant to estimates of rare variant h2
SNP because very 80 

rare variants are more likely to be shared by individuals sharing recent common ancestors and who may 81 

therefore be more likely to share environmental influences. Models that incorporate environmental sharing of 82 

families, partners, and close relatives or geography (e.g.,(41, 42)) are a possible avenue to address 83 

confounding. To this effect, we note that a full extended twin family design found a lower and possibly sex-84 

dependent estimate of common additive genetic variance, as well as strong environmental influences(18). 85 

In conclusion, though our h2
SNP estimates of the four different smoking behaviors were generally modest, 86 

they are higher than previously published estimates for smoking initiation and cessation and indicate that 87 

additional genetic variance may be explained by low- and rare-frequency variants, which may be due to the 88 

impact of purifying selection on genes involved in these highly polygenic traits. Quantity of use, as measured 89 
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by CPD, may also be modestly heritable, but as it depends on the encoding of the variable, additional 90 

characterization of the phenotype and its relationship with nicotine dependence is required. All estimates will 91 

be improved by the use of complete whole genome sequencing of large numbers of individuals(38), including 92 

the contribution of rare variants to smoking behaviors. 93 

 94 

 95 

Acknowledgements: 96 

This work was supported by R01 MH100141-06(PI: Keller); R01 DA 044283, R01 DA 037904, and R01 HG 97 

008983(PI: Vrieze); and the Institute for Behavioral Genetics. We thank John Hewitt, Jerry Stitzel, Charles 98 

Hoeffer, Laura Saba, Christian Hopfer, Dana Hancock, Naomi Wray, and Peter Visscher for helpful discussion 99 

and comments. 00 

 01 

 02 

References: 03 

1. US Department of Health and Human Services. Health Consequences of Smoking—50 Years of Progress 04 

A Report of the Surgeon General, Report of the Surgeon general 2014: 1081. 05 

2. CENTERS FOR DISEASE CONTROL AND PREVENTION. Quitting Smoking Among Adults — United States, 2001–06 

2010., Morbidity and Mortality Weekly 2011: 60: 1513-1519. 07 

3. VAN MEIJGAARD J., FIELDING J. E. Estimating Benefits of Past, Current, and Future Reductions in Smoking 08 

Rates Using a Comprehensive Model With Competing Causes of Death, Preventing Chronic Disease 09 

2012: 110295. 10 

4. CULLEN K. A., AMBROSE B. K., GENTZKE A. S., APELBERG B. J., JAMAL A., KING B. A. Notes from the Field: Use of 11 

Electronic Cigarettes and Any Tobacco Product Among Middle and High School Students - United 12 

States, 2011-2018, MMWR Morb Mortal Wkly Rep 2018: 67: 1276-1277. 13 

5. TIMPSON N. J., GREENWOOD C. M. T., SORANZO N., LAWSON D. J., RICHARDS J. B. Genetic architecture: the shape 14 

of the genetic contribution to human traits and disease, Nature Reviews Genetics 2017: 19: 110-124. 15 

6. HABERSTICK B. C., EHRINGER M. A., LESSEM J. M., HOPFER C. J., HEWITT J. K. Dizziness and the genetic influences 16 

on subjective experiences to initial cigarette use, Addiction 2011: 106: 391-399. 17 

7. HABERSTICK B. C., ZEIGER J. S., CORLEY R. P., HOPFER C. J., STALLINGS M. C., RHEE S. H. et al. Common and drug-18 

specific genetic influences on subjective effects to alcohol, tobacco and marijuana use, Addiction 2011: 19 

106: 215-224. 20 

8. KAPRIO J. Genetic epidemiology of smoking behavior and nicotine dependence, COPD 2009: 6: 304-306. 21 

9. ROSE R.J., BROMS U., KORHONEN T., DICK D.M., J. K. Genetics of Smoking Behavior. In: YK K., editor. 22 

Handbook of Behavior Genetics, New York, NY: Springer; 2009. 23 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 19, 2020. ; https://doi.org/10.1101/2020.06.17.20134080doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.17.20134080
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genetic architecture of smoking 

 13

10. KENDLER K. S., SCHMITT E., AGGEN S. H., PRESCOTT C. A., VIRGINIA V. Genetic and Environmental Influences on 24 

Alcohol, Caffeine, Cannabis, and Nicotine Use From Early Adolscence to Middle Adulthood., Arch Gen 25 

Psychiatry 2008: 65: 674-682. 26 

11. LIU M., JIANG Y., WEDOW R., LI Y., BRAZEL D. M., CHEN F. et al. Association studies of up to 1.2 million 27 

individuals yield new insights into the genetic etiology of tobacco and alcohol use, Nat Genet 2019: 51: 28 

237-244. 29 

12. TOBACCO AND GENETICS CONSORTIUM. Genome-wide meta-analyses identify multiple loci associated with 30 

smoking behavior, Nat Genet 2010: 42: 441-447. 31 

13. HANCOCK D. B., GUO Y., REGINSSON G. W., GADDIS N. C., LUTZ S. M., SHERVA R. et al. Genome-wide association 32 

study across European and African American ancestries identifies a SNP in DNMT3B contributing to 33 

nicotine dependence, Mol Psychiatry 2018: 23: 1911-1919. 34 

14. HANCOCK D. B., WANG J. C., GADDIS N. C., LEVY J. L., SACCONE N. L., STITZEL J. A. et al. A multiancestry study 35 

identifies novel genetic associations with CHRNA5 methylation in human brain and risk of nicotine 36 

dependence, Hum Mol Genet 2015: 24: 5940-5954. 37 

15. QUACH B. C., BRAY M. J., GADDIS N. C., LIU M., PALVIAINEN T., MINICA C. C. et al. Expanding the genetic 38 

architecture of nicotine dependence and its shared genetics with multiple traits: findings from the 39 

Nicotine Dependence GenOmics (iNDiGO) Consortium, bioRxiv 2020: 40 

DOI:10.1101/2020.1101.1115.898858. 41 

16. BULIK-SULLIVAN B. K., LOH P. R., FINUCANE H. K., RIPKE S., YANG J., SCHIZOPHRENIA WORKING GROUP OF THE 42 

PSYCHIATRIC GENOMICS C. et al. LD Score regression distinguishes confounding from polygenicity in 43 

genome-wide association studies, Nat Genet 2015: 47: 291-295. 44 

17. BRAZEL D. M., JIANG Y., HUGHEY J. M., TURCOT V., ZHAN X., GONG J. et al. Exome Chip Meta-analysis Fine Maps 45 

Causal Variants and Elucidates the Genetic Architecture of Rare Coding Variants in Smoking and 46 

Alcohol Use, Biol Psychiatry 2019: 85: 946-955. 47 

18. MAES H. H., MORLEY K., NEALE M. C., KENDLER K. S., HEATH A. C., EAVES L. J. et al. Cross-Cultural Comparison of 48 

Genetic and Cultural Transmission of Smoking Initiation Using an Extended Twin Kinship Model, Twin 49 

Res Hum Genet 2018: 21: 179-190. 50 

19. ZHU Z., BAKSHI A., VINKHUYZEN A. A., HEMANI G., LEE S. H., NOLTE I. M. et al. Dominance genetic variation 51 

contributes little to the missing heritability for human complex traits, Am J Hum Genet 2015: 96: 377-52 

385. 53 

20. SCHOECH A. P., JORDAN D. M., LOH P. R., GAZAL S., O'CONNOR L. J., BALICK D. J. et al. Quantification of 54 

frequency-dependent genetic architectures in 25 UK Biobank traits reveals action of negative selection, 55 

Nat Commun 2019: 10: 790. 56 

21. GAZAL S., FINUCANE H. K., FURLOTTE N. A., LOH P. R., PALAMARA P. F., LIU X. et al. Linkage disequilibrium-57 

dependent architecture of human complex traits shows action of negative selection, Nat Genet 2017: 58 

49: 1421-1427. 59 

22. EVANS L. M., TAHMASBI R., VRIEZE S. I., ABECASIS G. R., DAS S., GAZAL S. et al. Comparison of methods that use 60 

whole genome data to estimate the heritability and genetic architecture of complex traits, Nature 61 

Genetics 2018: 50: 737-745. 62 

23. YANG J., BAKSHI A., ZHU Z., HEMANI G., VINKHUYZEN A. A. E., LEE S. H. et al. Genetic variance estimation with 63 

imputed variants finds negligible missing heritability for human height and body mass index, Nature 64 

Genetics 2015: 47: 1114-1120. 65 

24. EVANS L. M., KELLER M. C. Using partitioned heritability methods to explore genetic architecture, Nature 66 

Reviews Genetics 2018: 19: 185-185. 67 

25. FINUCANE H. K., BULIK-SULLIVAN B., GUSEV A., TRYNKA G., RESHEF Y., LOH P. R. et al. Partitioning heritability by 68 

functional annotation using genome-wide association summary statistics, Nat Genet 2015: 47: 1228-69 

1235. 70 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 19, 2020. ; https://doi.org/10.1101/2020.06.17.20134080doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.17.20134080
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genetic architecture of smoking 

 14

26. FINUCANE H. K., RESHEF Y. A., ANTTILA V., SLOWIKOWSKI K., GUSEV A., BYRNES A. et al. Heritability enrichment of 71 

specifically expressed genes identifies disease-relevant tissues and cell types, Nat Genet 2018: 50: 621-72 

629. 73 

27. BYCROFT C., FREEMAN C., PETKOVA D., BAND G., ELLIOTT L. T., SHARP K. et al. The UK Biobank resource with 74 

deep phenotyping and genomic data, Nature 2018: 562: 203-209. 75 

28. ADJANGBA C., BORDER R., ROMERO VILLELA P. N., EHRINGER M. A., EVANS L. M. Little Evidence of Modified 76 

Genetic Effect of rs16969968 on Heavy Smoking Based on Age of Onset of Smoking, medRxiv 2020: 77 

DOI:10.1101/2020.1104.1122.20071407. 78 

29. HEATHERTON T. F., KOZLOWSKI L. T., FRECKER R. C., FAGERSTROM K. O. The Fagerstrom Test for Nicotine 79 

Dependence: a revision of the Fagerstrom Tolerance Questionnaire, Br J Addict 1991: 86: 1119-1127. 80 

30. CHANG C. C., CHOW C. C., TELLIER L. C., VATTIKUTI S., PURCELL S. M., LEE J. J. Second-generation PLINK: rising to 81 

the challenge of larger and richer datasets, Gigascience 2015: 4: 7. 82 

31. ABRAHAM G., INOUYE M. Fast principal component analysis of large-scale genome-wide data, PLoS One 83 

2014: 9: e93766. 84 

32. YANG J., LEE S. H., GODDARD M. E., VISSCHER P. M. GCTA: a tool for genome-wide complex trait analysis, Am 85 

J Hum Genet 2011: 88: 76-82. 86 

33. GOLAN D., LANDER E. S., ROSSET S. Measuring missing heritability: inferring the contribution of common 87 

variants, Proc Natl Acad Sci U S A 2014: 111: E5272-5281. 88 

34. WEISSBROD O., FLINT J., ROSSET S. Estimating SNP-Based Heritability and Genetic Correlation in Case-89 

Control Studies Directly and with Summary Statistics, Am J Hum Genet 2018: 103: 89-99. 90 

35. LEE S. H., YANG J., CHEN G. B., RIPKE S., STAHL E. A., HULTMAN C. M. et al. Estimation of SNP heritability from 91 

dense genotype data, Am J Hum Genet 2013: 93: 1151-1155. 92 

36. HABERSTICK B. C., TIMBERLAKE D., EHRINGER M. A., LESSEM J. M., HOPFER C. J., SMOLEN A. et al. Genes, time to 93 

first cigarette and nicotine dependence in a general population sample of young adults, Addiction 94 

2007: 102: 655-665. 95 

37. FALCONER D. S., MACKAY T. F. C. Introduction to quantitative genetics Essex, England: Longman; 1996. 96 

38. TALIUN D., HARRIS D. N., KESSLER M. D., CARLSON J., SZPIECH Z. A., TORRES R. et al. Sequencing of 53,831 diverse 97 

genomes from the NHLBI TOPMed Program, bioRxiv 2019: DOI:10.1101/563866. 98 

39. WAINSCHTEIN P., JAIN D. P., YENGO L., ZHENG Z., CUPPLES L. A., SHADYAB A. H. et al. Recovery of trait heritability 99 

from whole genome sequence data, bioRxiv 2019: DOI:10.1101/588020. 00 

40. MATHIESON I., MCVEAN G. Differential confounding of rare and common variants in spatially structured 01 

populations, Nat Genet 2012: 44: 243-246. 02 

41. XIA C., AMADOR C., HUFFMAN J., TROCHET H., CAMPBELL A., PORTEOUS D. et al. Pedigree- and SNP-Associated 03 

Genetics and Recent Environment are the Major Contributors to Anthropometric and Cardiometabolic 04 

Trait Variation, PLoS Genet 2016: 12: e1005804. 05 

42. HECKERMAN D., GURDASANI D., KADIE C., POMILLA C., CARSTENSEN T., MARTIN H. et al. Linear mixed model for 06 

heritability estimation that explicitly addresses environmental variation, Proc Natl Acad Sci U S A 2016: 07 

113: 7377-7382. 08 

 09 

 10 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 19, 2020. ; https://doi.org/10.1101/2020.06.17.20134080doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.17.20134080
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genetic architecture of smoking 

 15

Figures: 11 

  12 

Figure 1. h2
SNP estimates (+/- standard error) across four smoking behaviors, partitioned using GREML-LDMS-13 

I. Note that twin-based estimates are roughly 50% across these smoking traits.  14 

  15 
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 16 

Figure 2. h2
SNP estimates (+/- standard error) of CPD using different phenotype encodings, partitioned using 17 

GREML-LDMS-I. Heavy vs. light is dichotomized with Light: CPD<=10 and Heavy: CPD>20; estimated h2
SNP 18 

shown on the liability scale using a prevalence of 0.42. 19 
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 21 

Figure 3. Partitioned LDSC regression coefficient p-values for all annotations with at least one significant 22 

coefficient across all traits. See Supplemental Figure S5 & Table S3 for all annotations. 23 
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