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ABSTRACT 

BACKGROUND 

Epidemiological studies indicate that as many as 20% of individuals who test positive for COVID-19 develop severe symptoms 

that can require hospitalization. These symptoms include low platelet count, severe hypoxia, increased inflammatory cytokines 

and reduced glomerular filtration rate. Additionally, severe COVID-19 is associated with several chronic co-morbidities, including 

cardiovascular disease, hypertension and type 2 diabetes mellitus.  

The identification of genetic risk factors that impact differential host responses to SARS-CoV-2, resulting in the development of 

severe COVID-19, is important in gaining greater understanding into the biological mechanisms underpinning life-threatening 

responses to the virus. These insights could be used in the identification of high-risk individuals and for the development of 

treatment strategies for these patients.  

METHODS 

As of June 6, 2020, there were 976 patients who tested positive for COVID-19 and were hospitalized, indicating they had a severe 

response to SARS-CoV-2. There were however too few patients with a mild form of COVID-19 to use this cohort as our control 

population. Instead we used similar control criteria to our previous study looking at shared genetic risk factors between severe 

COVID-19 and sepsis, selecting controls who had not developed sepsis despite having maximum co-morbidity risk and exposure 

to sepsis-causing pathogens. 

RESULTS  

Using a combinatorial (high-order epistasis) analysis approach, we identified 68 protein-coding genes that were highly associated 

with severe COVID-19. At the time of analysis, nine of these genes have been linked to differential response to SARS-CoV-2. We 

also found many novel targets that are involved in key biological pathways associated with the development of severe COVID-19, 

including production of pro-inflammatory cytokines, endothelial cell dysfunction, lipid droplets, neurodegeneration and viral 

susceptibility factors.  

CONCLUSION 

The variants we found in genes relating to immune response pathways and cytokine production cascades, were in equal 

proportions across all severe COVID-19 patients, regardless of their co-morbidities. This suggests that such variants are not 

associated with any specific co-morbidity, but are common amongst patients who develop severe COVID-19. 

Among the 68 severe COVID-19 risk-associated genes, we found several druggable protein targets and pathways. Nine are 

targeted by drugs that have reached at least Phase I clinical trials, and a further eight have active chemical starting points for 

novel drug development. 

Several of these targets were particularly enriched in specific co-morbidities, providing insights into shared pathological 

mechanisms underlying both the development of severe COVID-19, ARDS and these predisposing co-morbidities. We can use 

these insights to identify patients who are at greatest risk of contracting severe COVID-19 and develop targeted therapeutic 

strategies for them, with the aim of improving disease burden and survival rates. 
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Introduction 

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major 

threat to public health. As of 16th June 2020, there are estimated to be over 8 million confirmed cases globally, resulting in 

approximately 437,000 deaths worldwide1,2. Although many who develop the disease present with only mild symptoms, reports 

from multiple international health systems have shown that up to 20% of individuals testing positive for COVID-19 go on to 

develop severe forms of the disease that may require hospitalization. 

Significant associations of disease severity risk have been observed with epidemiological factors including age, sex, blood group 

and ethnicity in addition to co-morbidity with many common conditions such as cardiovascular disease, diabetes, hypertension 

and chronic pulmonary diseases including asthma3. It would be clinically useful to be able to identify the features that result in 

differential host responses, particularly those that predispose some patients to developing severe COVID-19. In the context of 

management of at-risk populations, prior to an effective and widely available vaccine, such insights could have great utility in 

developing new detection, protection and treatment strategies targeted specifically at these high-risk individuals. 

In our previous paper, we explored the shared risk factors between sepsis (a major clinical feature in hospitalized COVID-19 

patients) and severe COVID-19 disease4. We observed that 59% of hospitalized COVID-19 cases also have sepsis5, and that the 

two diseases share similar co-morbidity risks6. In that study we identified 70 risk-associated genes in a sepsis population and 

found significant overlap in genetic risk variants between sepsis patients and those hospitalized with severe COVID-19.  

As more data from COVID-19 patients has become available in the UK Biobank7,8, we are now able to investigate the host 

response genetic risk factors directly, using genotype datasets from 779, 877 and 929 patients hospitalized with severe COVID-19 

and comparing them against healthy controls. In this study, we have sought to identify the risk variants associated directly with 

severe COVID-19 patients, to gain insight of the underlying pathology and disease mechanisms in relation to this patient group. 

Methods 

COVID-19 test records were downloaded from the UK Biobank (data releases 18 May, 26 May and 6 June, 2020)7,8. The 18 May 

2020 dataset included 5,657 test records relating to 3,002 individuals in UK Biobank. Of these, 1,073 patients had at least one 

positive COVID-19 test record, including 818 patients who were hospitalized and 255 who tested positive but were not 

hospitalized. In accordance with guidance from UK Biobank, we classified those 818 patients who were hospitalized after testing 

positive with COVID-19 as having a severe form of the disease and the 255 who were not hospitalized as having the mild form of 

the disease.  

The analysis was conducted as a case-control study. After quality control and removal of samples with missing data, we 

assigned as cases 779 patients (442 males, 337 females) who had been hospitalized with severe COVID-19. Of these severe 

cases, 62% had one or more of the most common co-morbidities associated with high severe COVID-19 risk (Figure 1).  

The most prevalent co-morbidity was hypertension (50%), followed by chronic respiratory disease (22%), diabetes (20%) and 

cardiovascular disease (18%). 248 (32%) patients were reported having two or more co-morbidities. 291 severe COVID-19 cases 

had none of these co-morbidities. In comparison, these co-morbidities were found to be less prevalent in the mild cases and an 

age and gender-matched random selection of the UK Biobank population (Figure 1). 

 

Figure 1: Boxplot showing the incidence of five co-morbidities associated with high COVID-19 risk (cardiovascular disease, hypertension, 
diabetes, chronic respiratory diseases and Alzheimer’s disease) among the May 18, 2020 severe COVID-19 patients, sepsis controls, mild 
COVID-19 patients and 77,900 randomly selected UK Biobank patients that were age and gender-matched with the severe COVID-19 patients.  

Due to the limited number of patients with confirmed mild disease we were unfortunately not able to use this cohort directly as 

our control set due to its small size and lack of statistical power. We therefore adopted similar control cohort criteria to our 
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previous sepsis study4, based on evidence of shared risk factors and that severe COVID-19 patients often present with a similar 

pattern of co-morbid chronic conditions to those with sepsis. We selected patients who had not developed sepsis in spite of 

having been exposed to the most common sepsis-causing pathogens as well as having at least one of the most common chronic 

comorbidities known to increase a patient’s risk of developing sepsis and COVID-19 (Figure 2).  

 

Figure 2: Incidence of co-morbidities by ICD-10 code from UK Biobank in the May 18, 2020 severe COVID-19 dataset (n= 2,332, 1:2 case control 
ratio with 779 cases and 1,553 controls). 

We selected the oldest possible patients (as age is also a critical phenotypic risk factor for the severe form of COVID-19) with the 

highest number of co-morbidities. Controls were therefore selected for a lack of disease given maximum risk and exposure, and 

were gender-matched against the severe COVID-19 cases in the ratio 2:1. The exact control criteria and distribution of the co-

morbidities in cases are described in the Appendix. 

This set of patients represents the most similar available control cohort who could reasonably be expected to have some genetic 

protective effect against developing severe COVID-19 (or to lack any such risk factors). By selecting controls with a higher 

prevalence of similar chronic co-morbidities, we seek to ensure that the severe COVID-associated signal observed is not simply 

caused by the co-morbidities represented in the patient set but has the potential to be a true COVID-19 related enrichment. 

After quality control (removal of SNPs with <95% coverage across subjects), the genotype data for the two cohorts contained 

542,245 SNPs. The age distribution of cases and controls is shown in Figure 3. 

 

Figure 3: Age distribution of cases vs controls from UK Biobank in the May 18, 2020 severe COVID-19 dataset (779 cases and 1,553 controls). 

Having generated our case-control dataset, we analyzed it using the precisionlife platform to identify risk-associated SNPs and 

genes that were strongly associated in the severe COVID-19 disease cohorts. This platform identifies high-order, disease-

associated combinations of multi-modal (e.g. SNPs, transcriptomic, epidemiological or clinical) features at whole genome 
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resolution in large patient cohorts. It has been validated across multiple different disease populations9,10,11. This type of analysis 

is intractable to other existing methods due the combinatorial explosion posed by the analysis of large numbers of patients with 

combinatorial non-linear additive combinations of features per patient. 

When applied to genomic data, precisionlife finds high-order epistatic interactions (multi-SNP genotype signatures - typically of 

combinatorial order between 3-8) that are significantly more predictive of patients’ phenotype than those identified using existing 

single SNP based methods. When the individual SNPs making up these signatures are assessed individually across the whole 

population, they may fall below the GWAS (genome-wide association study) significance thresholds. However, we have 

demonstrated that when evaluated in combination with each other using multiple statistical validation techniques, these SNPs 

can be highly significant in particular disease sub-populations. The phenotype to which the signatures are associated in this 

context might be disease status, progression rate, therapy response or other, depending on the data available and study design.  

We used the platform to find and statistically validate combinations of SNPs that together are strongly associated with the severe 

COVID-19 disease diagnosis. Analysis and annotation of these COVID-19-associated combinatorial genomic signatures took less 

than a day to complete, running on a dual CPU, 4 GPU compute server. The signatures identified by the analysis were then 

mapped to the human reference genome12 to identify disease-associated and clinically relevant target genes. A semantic 

knowledge graph derived from multiple public and private data sources was used to annotate the SNP and gene targets, including 

relevant tissue expression, chemical activity/tractability for gene targets, functional assignment and disease-associated 

literature. This provides contextual information to test the targets against the 5Rs criteria of early drug discovery13 and allows us 

efficiently to form strong, testable hypotheses for their mechanism of action in driving severe, life-threatening host responses to 

COVID-19 infection.  

All of the significant disease signatures were traced back to the cases in which they were found and were associated with 

selected attributes such as case co-morbidities and COVID-19 test records. This generated a high-resolution stratification of 

severe COVID-19 patient subgroups and enabled further analysis of the different underlying factors relating to their specific forms 

of the disease. 

Subsequently, UK Biobank added the COVID-19 test records of 1,508 individuals in data release 26 May, 2020 and 1,607 

individuals in data release 6 June, 20208. Of these, 401 patients were tested positive and 158 of them were hospitalized. We 

repeated our analysis on these two updated datasets with a higher number of controls to make the analysis more robust (see 

Appendix). 50 (~70%) of the genes identified in our initial analysis were identified in more than one subsequent analysis 

(highlighted in bold in the gene tables) and therefore have an additional replication.  

Results  

Using the severe COVID-19 dataset to perform a standard PLINK14 GWAS analysis revealed no significant SNPs (Figure 4) using a 

genome-wide significance threshold of p<5e-08. The lowest SNP PLINK p-value reported was 9.02e-08.  

 
Figure 4: Manhattan plot generated using PLINK of genome-wide p-values of association for the May 18, 2020 severe COVID-19 UK Biobank 
cohort. The horizontal red and blue lines represent the genome-wide significance threshold at p<5e-08 and p<1e-05 respectively.  

When the same May 18, 2020 severe COVID-19 patient dataset was run using the precisionlife platform, we identified 3,515 

combinations of SNP genotypes representing different combinations of SNP genotypes that were highly associated with the 

severe COVID-19 patient cohort (Table 1). The majority (n = 3,494) of SNPs were found in combinations with 5 or more SNP 

genotypes, and as such could not have been found using standard GWAS analysis methods. 
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Table 1: Summary of May 18, 2020 Severe COVID-19 Cases vs Sepsis Controls disease study. 

 Severe COVID19/Sepsis Study 

FDR 5% 
Disease signatures 3,515 
SNPs in all Disease signatures 5,402 
Penetrance 
(cases represented by all signatures) 

100% 

RF scored SNPs 156 
RF scored Genes 71 

 

All of the SNP genotypes and their combinations were scored using a Random Forest (RF) algorithm based on a 5-fold cross-

validation method to evaluate the accuracy with which the SNP genotype combinations predict the observed case: control split. 

156 SNPs were scored by the RF algorithm, indicating that they accurately predict the differences between cases and controls 

(Figure 5A). The chromosomal distribution of the critical SNPs is shown in aggregate in Figure 5B. 

 
Figure 5: Distributions of (A) RF scores and (B) chromosomal locations for critical disease associated SNPs 

Clustering the SNPs by the patients in whom they co-occur allows us to generate a disease architecture of severe COVID-19 

patients, providing useful insights into patient stratification. We can use this to find genes and biological pathways that are 

associated with patient sub-populations and co-morbidities, enabling the development of disease biomarkers and precision 

medicine strategies.  

 
Figure 6: Disease architecture of the severe COVID-19 patient population generated by the precisionlife platform. Each circle represents a 
disease-associated SNP genotype, edges represent co-association in patients, and colours represent distinct patient sub-populations.  
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(A)                                                                                                                       (B) 

Figure 7: Disease architecture of the severe COVID-19 patient population highlighting (A) the critical disease SNPs (green) and (B) showing SNP 

genotypes (right - homozygous major allele = blue, heterozygous = green, homozygous minor allele = gold). 

(A) 

(B) 

Figure 8: (A) Distributions of chromosomal locations for RF scored Genes. (B) Functional categories of genes defined by high-level Gene 

Ontology15 terms. 

0 5 10 15

Cell growth

Actin filament-based process

Export from cell
Exocytic process

Execution phase of apoptosis

Microtubule-based process

Cellular homeostasis

Cell death
Cellular development

Cell movement

Cell communication

Signal transduction

Cellular response to stimulus
Biogenesis

Cellular metabolic process

Genes

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.06.17.20134015doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.17.20134015
http://creativecommons.org/licenses/by-nc/4.0/


Our analysis identified 68 protein-coding genes that were strongly associated with the disease phenotype in patients who 

developed severe COVID-19. To date, nine of these genes have already been linked to differential COVID-19 host responses in 

various studies, providing validation for our hypothesis-free approach comparing severe COVID-19 patients against sepsis-free 

controls. We found several biological pathways and processes that were common in across the 68 COVID-associated genes, 

including T cell regulation and host pathogenic responses, inflammatory cytokine production, and lipid formation and endothelial 

cell function (Figure 9). 

Figure 9: Biological pathways and processes known to be associated with some of the genes replicated across the datasets used in this study 

We identified twelve genes that are associated with host immune response to viral infections, including SARS-CoV-2 (Table 2). 

Variants in several of these genes have been associated with increased infectivity to these strains. Genes marked in bold 

represent those that were further validated in subsequent analyses using the updated severe COVID-19 cases.  

Table 2: Severe COVID-19 risk-associated genes associated with host immune response to virus infection, listed alphabetically. Bold text 
indicates genes found in multiple study populations. 

GENE FUNCTION MECHANISM OF ACTION 

ANTXR116,17 Anthrax toxin receptor 1 (TEM8), type I 
transmembrane protein  

ANTXR1 is used by anthrax toxin and Seneca valley virus (SVV) to 
gain entry into host cells   

ATRNL118 Attractin-like 1 Phenotypes associated with decreased Salmonella invasion, 
hepatitis C virus replication and vaccinia virus infection   

CTR9  Paf/RNA polymerase II complex component Acts as a host restriction factor, suppressing HIV replication  

DNAH219 Dynein heavy chain Expressed in lung cilia, may be responsible for effective 
pathogenic clearance  

GFRA120 GDNF family receptor alpha SNPs associated with susceptibility to hepatitis C and 
Staphylococcus aureus infection  

HOPX  Hop homeodomain protein, cofactor High expression in expanded CD8+ T cells, improving SARS-CoV-2 
viral clearance  

IKZF2 Ikaros family member, Helios Helios expression is high in regulatory T cells, necessary for self-
tolerance and prevention of autoimmunity  

ITK  IL-2 inducible T cell kinase, Th2 differentiation  Altered expression associated with SARS-CoV-2 infectivity 

MEP1B  Meprin A subunit beta, membrane metallopeptidase Macrophages in Mep1b-/- mice have greater phagocytic function. 
Biomarker for high tuberculosis burden.  

NRDE221 RNA interference  RNA interference is a mechanism utilized by the innate immune 
response. NRDE2 is used by Kaposi’s sarcoma-associated 
herpesvirus (KSHV) for late gene expression 

SPEF222 Sperm flagellar 2 Loss of Spef2 in mice results in increased inflammatory response 
to Streptococcus pneumonia infection due to defects in pulmonary 
cilia.  

TBC1D2  TBC1 domain family member, regulates Rab7A 
activation  

SNP associated with severe H1N1 infection  

Our analysis also revealed five genes regulating pro-inflammatory pathways such as necroptosis, reactive oxygen species (ROS) 

production and cytokine signalling (Table 3). 
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Table 3: Severe COVID-19 risk-associated genes that have a role in regulation of inflammatory cytokine production 

GENE FUNCTION MECHANISM OF ACTION  

MLKL23 Mixed lineage pseudokinase Activator of TNF-induced necroptosis, high expression results in necrotic 
cell death following coronavirus infection  

NRROS24 Negative regulator of reactive oxygen 
species (ROS)  

Limits phagocytic ROS and pro-inflammatory cytokine production during 
host immune response 

RAB3C25 Rab GTPase RAB3C increases cells’ ability to release IL-6 and activate the JAK2-
STAT3 pathway. 

RBM4726 RNA binding motif protein Promotes IL-10 production in B cells, repressed by TGF-β 

SEMA5A27 Semaphorin 5A High levels of Sema5A are associated with high IFN-ϒ and low IL-4 
expression  

 

There were also six genes associated with severe COVID-19 patients that play central roles in lipid droplet biology, as well as 

having high expression in adipose tissue, correlating with serum lipid levels and coronary artery disease (Table 4).  

Table 4: Severe COVID-19 risk-associated genes that are highly expressed in adipose tissue and relate to lipid storage and signalling 

GENE FUNCTION MECHANISM OF ACTION 

CIDEA28 Cell death inducing DFFA like effector Co-localizes with perilipins, highly expressed in brown adipose tissue  

MACROD229 Mono-ADP ribosylhydrolase Highly associated with VAP-1 in human adipose tissue 

PLIN430 Perilipin 4 Lipid droplet protein, highly expressed in white adipose tissue, high 
expression results in cardiac steatosis 

SLIT331 Slit guidance ligand 3 High expression in adipose tissue controlled by Prdm16 expression. 
Upregulated in obese patients. 

TMEM15932,33 Promethin  Activated by peroxisome proliferator-activated receptor γ1 (PPARγ1), 
partners with seipin to regulate lipid droplet organization  

XKR634 XK-related 6 SNP association with serum lipid levels and risk of CAD 

 

In addition to this, our analysis revealed twelve more genes that may be implicated in the vascular complications seen in COVID-

19 (Table 5). These genes are all highly expressed in the cardiovascular system, modulating cardiac function and endothelial cell 

homeostasis. 

Table 5: Severe COVID-19 risk-associated genes that are implicated in cardiovascular and endothelial cell function 

GENE FUNCTION MECHANISM OF ACTION 

ANTXR135 Anthrax toxin receptor 1, type I 
transmembrane protein (TEM8) 

Loss of ANTXR1 results in endothelial basement membrane loss and leaky 
blood vessels  

HOPX36 Hop homeodomain protein, cofactor Acts via serum response factor (SRF), modulating the expression of 
cardiac genes and stress-induced cardiac hypertrophy  

MCUB37 Mitochondrial calcium uniporter Role in cardiac homeostasis, response to cardiac stress including 
ischemia  

PIGX38 Phosphatidylinositol glycan anchor 
biosynthesis class X 

Associated with hypertension. Forms a complex with PIG-M that regulates 
several processes, including maintenance of arterial blood pressure. Acts 
via apelin receptor signalling.  

PRKCB39 Protein kinase C beta form, protein kinase  Variety of different cellular functions, including endothelial cell 
proliferation and insulin signaling 

PLS340 Plastin-3 Induced by angiotensin II in endothelial cells to promote cell migration 

RAP1GAP241,42 GTPase activator for RAP-1A Regulates platelet granule secretion and aggregation 

RBM4743 RNA binding motif protein Missense variant is associated with hypertension 

SEMA5A44 Semaphorin 5A High Sema5A expression increased endothelial cell proliferation and 
angiogenesis and decreased apoptosis 

SLIT345 Slit guidance ligand 3  Upregulation associated with endothelial cell dysfunction in pulmonary 
hypertension 

SORCS246 Sortilin-related VPS10 domain-containing 
receptor 2 (SorCS2), oxidative stress 
response gene  

SorCS2 releases endostatin, an endogenous inhibitor of endothelial cell 
proliferation and angiogenesis  

SRD5A147 Steroid 5 alpha-reductase 1, catalyzes the 
production of androgen dihydrotestosterone 

Androgens have been linked to peripheral artery disease and macrophage 
modulation 
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Amongst other cancer-associated genes, we identified nine risk-associated genes that directly interacted with the Wnt/β-catenin 

signaling pathway (Table 6). With the exception of KRAS and SLC9A9, all of the proteins encoded by these genes act as 

endogenous inhibitors of the pathway.  

Table 6: Severe COVID-19 risk-associated genes that directly interact with the Wnt/β-Catenin signalling pathway 

GENE FUNCTION MECHANISM OF ACTION 

HOPX Hop homeodomain protein, cofactor Promotes BMP-mediated inhibition of Wnt signaling pathway 

KRAS48 KRAS proto-oncogene, GTPase Activates the Wnt/β-catenin pathway  

MACROD249 Mono-ADP ribosylhydrolase Suppresses GSK-3β/β-catenin signaling 

PCDH1750 Protocadherin 17, member of the cadherin 
superfamily 

Acts as a tumour suppressor in breast cancer, inhibiting the Wnt signaling 
pathway  

PRKCB51 Protein kinase C beta form, protein kinase Promotes the phosphorylation of β-catenin 

PTPRK52 Protein tyrosine phosphatase (PTP) 
receptor, type K  

Redistributes and inhibits the transcriptional activity of β-catenin 

RRM253 Ribonucleotide reductase regulatory subunit 
M2 

Downregulation of RRM2 suppresses the activity of β-catenin and the Wnt 
signaling pathway 

SLC9A954 Solute carrier family 9 Upregulates beta-catenin  

SLIT355 Slit guidance ligand 3 Suppresses GSK3β/β-catenin pathway 

 

Finally, our analysis identified four genes that have previously been associated with increased risk of developing Alzheimer’s 

disease (AD), including MAPT, the key gene underlying tau pathology (Table 7).  

Table 7: Severe COVID-19 risk-associated genes that have also been found to confer increased Alzheimer’s disease risk 

GENE FUNCTION MECHANISM OF ACTION 

ATXN1 Ataxin-1, unknown function Loss of ataxin-1 causes increased BACE1 expression and amyloid 
precursor protein (APP) cleavage 

MAPT Microtubule-associated protein tau, 
stabilizes microtubules 

Tau pathology is a hallmark of AD and other neurodegeneration diseases 

SORCS2 Sortilin-related VPS10 domain-containing 
receptor 2, oxidative stress response gene 

SNPs are associated with AD, result in altered APP processing 

STH Saitohin, unknown function  Q7R polymorphism increases risk of AD and other neurodegenerative 
diseases. Interacts with tau.  

 

Out of the total 68 genes, nine are targeted by clinical candidates that have been evaluated in Phase I clinical trials and beyond 

(see Appendix). These could potentially form the basis of repurposing therapies, after evaluating factors such as safety and 

pharmacology data. A further eight targets have active chemistry in ChEMBL56, meaning they have active chemical starting points 

for novel drug development (see Appendix). We can also extend our search for repurposing candidates by looking into known 

gene interactions to find other more tractable targets in implicated in the same biological pathway. 
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Figure 10:  Stacked bar plots showing the number of cases with different co-morbidities (cardiovascular disease, hypertension, diabetes, 
chronic respiratory diseases and Alzheimer's disease) associated with the severe form of COVID-19 who are affected by the risk-
associated genes identified by the precisionlife platform. The line plot shows the total unique number of cases who are affected for each 
gene. 
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Discussion 

Grouping the 68 genes by common biological functions revealed that many are involved in processes that have also been linked 

to aberrant host responses to COVID-19, such as the pro-inflammatory cytokine storm and immune system dysregulation, as well 

as lipid droplet formation and endothelial cell dysfunction.  

HOST RESPONSE FACTORS AND INFLAMMATION 

The host immune response must maintain a balance between effective viral clearance and limiting the immune response to 

prevent chronic inflammation and collateral tissue damage. In many patients who develop severe COVID-19 reactions and acute 

respiratory distress syndrome (ARDS) there is evidence of dysregulated cytokine production, resulting in increased levels of pro-

inflammatory mediators including IL-1, IL-6, IL-8, CXCL-1057, causing pathological features such as inflammatory cell infiltration, 

pulmonary edema and sepsis58. 

From the number of genes we found relating to immune response pathways and cytokine production cascades, it is clear that 

patients who develop severe COVID-19 and ARDS may have innate genetic variants that prevent this balance from being struck. 

These variants were found in equal proportions across all severe COVID-19 patients, regardless of their co-morbidities. This 

suggests that variants in these genes may not be associated with any specific co-morbidity, but are common amongst many 

patients who develop severe COVID-19.  

HOPX regulates a variety of different cellular processes, including cardiac development and myogenesis36. However, it was 

reported in a recent COVID-19 study as part of a selection of genes upregulated in expanded CD8+ T cells in patients with mild 

COVID-1959. These expanded CD8+ effector T cells likely represent SARS-CoV-2-specific T cells, indicating greater efficiency in 

viral clearance in those patients. However, it is also necessary for Th-1 persistence and resistance to apoptosis, driving chronic 

inflammation and autoimmune mechanisms60. This exemplifies the delicate balance between establishing an effective host 

immune response necessary for viral clearance and preventing the development of chronic inflammation that results in collateral 

tissue damage. It seems likely that patients who develop severe COVID-19 may have an inherent imbalance in these factors.  

Similarly, we identified SNP variants in ITK that were highly associated with severe COVID-19. High ITK expression is associated 

with Th2-driven diseases such as allergic asthma, causing pro-inflammatory cytokine production, eosinophil infiltration and 

production of mucus61. A range of potent and selective inhibitors (both small molecule and biologic) of ITK have been developed 

by several pharmaceutical companies62,63. No selective ITK inhibitors have progressed beyond preclinical testing to date, 

although ibrutinib – a joint ITK and BTK inhibitor – is currently licensed for use in B cell malignancies and as also demonstrated 

efficacy in the treatment of leishmaniasis. Data collected from several clinical trials indicate that ibrutinib is reasonably well-

tolerated by patients64. Inhibition of ITK diminishes lung injury, cytokine production and inflammation in a mouse model of 

asthma65. Many of the pro-inflammatory cytokines, such as  IFNγ, IL-2, and IL-17, blocked by ITK inhibition are raised in patients 

with ARDS66,67. Furthermore, use of a selective ITK inhibitor blocked HIV cell entry, transcription and particle formation, effectively 

reducing viral replication68.  

A study has found that MLKL is implicated in necrotic cell death following infection with a neurovirulent human coronavirus 

(HCoV)69. Whilst MLKL-induced necrosis may be useful in limiting viral replication, increased necroptosis can also lead to 

increased inflammation and tissue damage. SNP variants in MLKL could be predisposing patients to severe COVID-19 in one of 

two ways; with under-functioning protein resulting in poor viral clearance, or through over-expression and over-activation of the 

necroptotic inflammatory response resulting in organ damage. The SNP variant identified in MLKL was found in the highest 

scoring 20% of the significant genes in the severe COVID-19 dataset and is present in 251 cases. It is not highly associated with 

any of the most common co-morbidities found in this dataset. Necrosulfonamide (NSA) is a specific inhibitor of MLKL that 

potently suppresses necroptosis70. Inhibition of this pathway using NSA decreases pro-inflammatory cytokines such as IL-1β, IL-6 

and IL-17A in a way that was protective in a model of psoriasis. High levels of IL-1β and IL-6 have both been observed in cases 

with severe COVID-1971. Unfortunately, NSA has only ever been evaluated in preclinical trials, so there is no safety or toxicology 

data in humans available. 

NRROS (LRRC3) is an inhibitor of multiple toll-like receptors (TLR) and subsequent NF-ĸB signalling, acting as a brake on pro-

inflammatory cytokine production72. NRROS also limits the amount of reactive oxygen species (ROS) produced by phagocytes 

during the innate immune response, thereby limiting tissue damage caused whilst defending against invading pathogens. It could 

therefore be hypothesized that SNP variants in this gene, limiting its activity, could make individuals more susceptible to COVID-

19-induced inflammatory damage73. This is supported by the evidence that Lrrc33-/- mice suffered from increased organ damage 

as a result of greater pro-inflammatory signalling when challenged with LPS. There are currently no specific small molecule 

activators of NRROS in publicly-available databases, however a number of chemical agents have been shown to increase the 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.06.17.20134015doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.17.20134015
http://creativecommons.org/licenses/by-nc/4.0/


expression of both the protein and mRNA forms of this gene which may provide chemical starting points for novel drug 

discovery74. 

RAB3C may be driving inflammation by inducing the release of IL-6 and activation of the IL-6/JAK2/STAT3 pathway, driving the 

production of pro-inflammatory cytokines25,75. Ruxolitinib – a JAK2 inhibitor – has been shown to mitigate the effects of RAB3C-

induced IL-6 release25. Ruxolitinib is currently being trialled as a treatment for respiratory distress caused by SARS-CoV-276.  

VASCULAR INFLAMMATION, AUTOPHAGY AND CARDIOVASCULAR DYSFUNCTION 

Endothelial dysfunction and vascular inflammation, resulting in neutrophilic infiltration, endothelial cell apoptosis and tissue 

edema, is seen in patients who develop ARDS from SARS-CoV-2 infection77. Many of the common co-morbidities associated with 

severe COVID-19 development, - such as diabetes, hypertension and cardiovascular disease – are already associated with 

vascular inflammation and endothelial cell dysfunction pathological features78,79,80. It is therefore unsurprising that these patients 

are at higher risk of developing severe COVID-19. 

Many of the risk-associated SNPs that we found that were related to these pathological pathways were found in severe COVID-19 

patients who had at least one of these co-morbidities. However, we controlled for this effect by co-morbidity-matching these 

cases against the sepsis-free controls, meaning that these SNPs are not likely to be just be artefacts of the co-associated co-

morbidity, but a differentiating factor in the development of severe COVID-19 and ARDS.  

Helios (IZKF2) expression is used as a marker for regulatory T cells (Tregs), and therefore has an important role in self-tolerance 

and regulating autoimmunity81. Decreased levels of Helios+ Tregs have been observed in patients with hypertension and 

rheumatoid arthritis, with lower expression levels correlating with increased inflammatory markers82. Tregs may protect against 

hypertension by limiting vascular inflammation through suppression of effector T cells83,84. Furthermore, our analysis revealed 

that variants in IZKF2 were disproportionately co-associated with patients with hypertension (Figure 10). This adds further 

evidence to the association between vascular inflammation, severe COVID-19 and cardiovascular hypertensive co-morbidities.  

MCUB encodes one of the pore-forming subunits of the mitochondrial Ca2+ uniporter (MCU). MCUB is a necessary part of a 

protective response against mitochondrial Ca2+ overload during cardiac injury and ischemia85. Mcub -/- mice displayed increased 

cardiac remodelling and ischemic injury as a result of increased mitochondrial Ca2+ uptake86. Although more research is required 

to fully understand the role of MCUB in severe COVID-19 pathogenesis, a decreased level of serum calcium has been suggested 

as a biomarker for increased COVID-19 severity and ARDS87. 

PKCβ (PRKCB) is a serine/threonine protein kinase that is activated by calcium. It has a range of functions, including B cell 

activation, endothelial cell proliferation and activation of apoptosis35. However, PKCβ has also been linked to a number of 

different vascular diseases, including atherosclerosis, diabetes and hypertension88,89. We find that in our case population, the 

risk-associated SNP found in PRKCB was found in 165 severe COVID-19 cases (penetrance = 20.2%), and was present in 45% of 

patients with cardiovascular disease and 51% of patients with hypertension. High levels of PKCβ result in increased vascular 

inflammation, endothelial dysfunction and oxidative stress, all of which have been found in patients with severe COVID-1990,91. 

PKCβ also drives the accumulation of cholesterol in macrophages, leading to foam cell development and macrophage 

dysregulation92. Therefore, inhibition of PKCβ could help to reverse some of the vascular-related pathology, contributing to sepsis 

development and multi-organ failure, that is seen in severe COVID-19 patients. Ruboxistaurin (LY333531) is a selective PKCβ 

inhibitor that has been trialled as an anti-diabetic drug to reduce vascular and retinal complications that certain diabetic patients 

develop93. It has reasonable pharmacokinetic and toxicology data, as it can be orally administered and is well-tolerated by 

patients94,95. However, it was discontinued and has failed to progress beyond Phase III clinical trials96.  

We also found genes, including CIDEA and PLIN4, that protect against insulin resistance (IR). IR results in increased 

cardiovascular inflammation and oxidative stress, contributing to atherosclerotic plaque formation and hypertension97. High 

Cidea expression decreases circulating fatty acid levels by increasing the level of triglycerides stored in lipid droplets. This helps 

to protect against insulin resistance98. The anti-diabetic drug rosiglitazone may have insulin sensitising effects by increasing the 

expression of both Cidea and perilipins28. Our analysis identified CIDEA and a perilipin, PLIN4, as being highly associated with 

severe COVID-19 patients. SNPs in CIDEA were found in one of the highest proportions in severe COVID-19 patients, particularly in 

patients with cardiovascular and hypertensive diseases (Figure 10). This indicates that insulin resistance is a contributing factor 

to vascular inflammatory pathologies that may predispose patients to developing ARDS in response to SARS-CoV-2.  

Finally, variants in GFRA1 are within the highest 10% of genes most associated with hypertensive patients in our case population. 

GFRα1, encoded by GFRA1, plays a key role in glial cell line-derived neurotrophic factor (GDNF)-mediated signalling99. GFRα1 

induces autophagy via activation of the RET/AMPK signalling pathway independently from its interaction with GDNF. In the early 

stages of sepsis, autophagy is a protective mechanism employed by cells to remove damaged proteins, reduce mitochondrial 

dysfunction-induced inflammation and eliminate pathogens100,101. Furthermore, inhibition of autophagy in mouse models of 
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sepsis results in increased mortality. Selective agonists of GFRα1 are under development102, which may help to protect against 

sepsis-induced tissue damage in the early stages of the disease.  

LIPID DROPLET BIOLOGY 

There is increasing evidence that lipid dysfunction plays a role in COVID-19 pathogenesis. Lipid droplets (LD) play a key role in 

viral pathogenesis, as intracellular lipid stores are crucial for viral replication and assembly103. LD proteins have been associated 

with particle load and pathogenicity in other virus strains, including hepatitis C, dengue and rotavirus104. It has also been shown 

that coronaviruses use host cellular lipid machinery during replication105.  

We identified six genes associated with lipids and adipose tissue, with three genes directly involved in lipid droplet formation 

(Table 4). A different member of the perilipin family (PLIN3) is used by hepatitis C virus (HCV) for steatosis development and viral 

assembly106, with PLIN3 inhibition resulting in decreased viral particle release from host cells107. Promethin (TMEM159) has also 

been recently identified as lipid droplet organiser (LDO) in partnership with seipin33. Although promethin has not been studied in 

the context of viral disease, overexpression of its co-associated protein seipin results in significantly reduced viral particle 

secretion and infectivity in a model of hepatitis C108.  

WNT/β-CATENIN SIGNALLING PATHWAY  

Our analysis identified nine genes that regulate either the Wnt or β-catenin components of the Wnt/β-catenin pathway.  

There is a long-established role of the Wnt gene-family and the associated signally pathway in embryogenesis and therefore its 

relationship to developmental disorders and carcinogenesis. However recent work109,110 shows an emerging and complex picture 

of the role of Wnt genes in host cell defence mechanisms, the modulation of inflammatory cytokine production and connections 

between innate and adaptive immune systems. The role of these ligands varies within the family members and their relation to β-

catenin. 

Wnt/β-catenin signalling has both anti- and pro-inflammatory effects in different contexts, dependent on its interaction with NF-

ĸB109. In several studies, activation of β-catenin was shown to inhibit IL-1β and the subsequent production of IL-6 and matrix 

metalloproteinases (MMPs), resulting in an anti-inflammatory effect110,111. Although its role in sepsis pathogenesis is yet to be 

fully elucidated, patients with severe sepsis and sepsis-driven ARDS had increased levels of Wnt5A in lung tissue and serum112.  

However, in bronchial epithelial cells, inhibition of beta-catenin’s activation of NF-ĸB resulted in fewer proinflammatory cytokines 

and cell injury113. In a previous unpublished analysis using the same combinatorial approach on a Sjögren’s Syndrome cohort 

found in the UK Biobank, we identified a significant number of genes involved in the Wnt/β-catenin pathway. As with severe 

COVID-19, patients with Sjögren’s syndrome also present with elevated cytokines and inflammation-driving pathology114.   

The Wnt/ β -catenin pathway has also been implicated in promoting viral replication. In a model of influenza (H1N1), activation of 

this pathway resulted in higher viral replication and inhibition of Wnt/ β -catenin signalling using iCRT14 reduced viral production 

and improved clinical symptoms115. It has been demonstrated that Rift Valley Virus exploits the proliferative cell state that 

activation of Wnt signalling promotes to enable viral replication through easier trafficking of viral proteins within the cell. It has 

also been shown that coronaviruses use this mechanism in proliferative cells116. Therefore, inhibition of the Wnt/β-catenin 

pathway may help limit SARS-CoV-2 replication and reduce viral load in this way. This theory is supported by the fact that 

niclosamide – an anti-helminthic drug – limits coronavirus replication in a model of SARS117. The study did not investigate how 

this drug inhibited viral replication, but a subsequent study has revealed that niclosamide is an inhibitor of the Wnt signalling 

pathway118. Due to the significant number of genes found to regulate this pathway in our analysis, we believe that modulation of 

this pathway could be of benefit to a large number of patients who develop severe COVID-19.  

NEURODEGENERATIVE DISEASE ASSOCIATIONS 

There is emerging evidence that key genes associated with Alzheimer’s Disease (AD) risk such as APOE4 are associated with 

increased risk of severe COVID-19 disease, although the reasons for this link are still unclear119. Our analysis identified a strong 

conserved signal for four genes that also confer greater risk of developing AD, including MAPT.  

We also found three additional genes that were significant in a previous neurodegenerative disease study we performed. This 

unpublished study identified 33 genes variants in which were highly associated in cases with sporadic amyotrophic lateral 

sclerosis (ALS). We have also shown that increasing the activity of two of these genes targets in a mixed cell neuronal assay 

containing SOD1 reactive astrocytes significantly improves motor neurone survival. This could indicate shared biological 

pathways that drive both severe COVID-19 and neurodegeneration, potentially through pro-inflammatory, neurotoxic mechanisms. 

However, the SNP variants found in these genes were not highly enriched in the few severe COVID-19 patients who had been 

diagnosed with AD. This is probably due to the relatively low numbers of cases diagnosed with AD in UK Biobank as a whole. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.06.17.20134015doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.17.20134015
http://creativecommons.org/licenses/by-nc/4.0/


Conclusion 

We performed this analysis using only genetic data from patients found in the UK Biobank, identifying 68 protein coding genes 

that are highly associated with the development of severe COVID-19. These targets would not have been found using standard 

analytical approaches such as GWAS on the same population. In addition to this, we have identified 29 drugs and clinical 

candidates and a further eight targets with chemical starting points that could be used in the development of treatment strategies 

that improve clinical outcomes in severe COVID-19 patients. 

It appears that the variants we found in genes relating to immune response pathways and cytokine production cascades were in 

equal proportions across all severe COVID-19 patients, regardless of their co-morbidities. This suggests that such variants are 

not associated with any specific co-morbidity, but are common amongst patients who develop severe COVID-19. In contrast there 

were small deviations in the penetrance of some of the SNPs identified in different co-morbidity cohorts. While the pattern of 

these deviations were similar across cardiovascular, diabetes and hypertension co-morbidity cohorts, the pattern across the 

respiratory co-morbidity cohort was somewhat different. These differences, while suggestive of the need for further study, were 

not yet significant enough to be reported in detail. 

As more test records and additional medical data become available in the UK Biobank and other data sources, we will be able to 

fully ascertain the severe and mild COVID-19 cases and provide an additional layer of validation to the results from this study.  

One limitation of the UK Biobank dataset is that the ethnicity distribution of the participants is heavily skewed to white British 

participants and it has consequently not been possible to fully investigate additional risk factors in BAME patients. We are 

actively seeking to investigate severe COVID-19 risk factors in other datasets with more ethnically diverse populations. The 

addition of more phenotypic and clinical data in our analyses may also be used to gain greater understanding into the association 

of other observed epidemiological risk factors such as ethnicity, socioeconomic status and prescription medication history with 

development of severe COVID-19. 
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Appendix 

SEPSIS CONTROL CRITERIA 

1. Controls to exclude any patients with the following ICD-10 codes:  

ICD-10 Disease 

A02.1 Salmonella septicemia 

A22.7 Anthrax septicemia 

A40.x Streptococcal septicemia 

A41.x Other septicemia 

B37.7 Candidal septicemia  

O35 Puerperal sepsis  

R57.2 Septic shock 

 
2. Controls to include at least one of the following ICD-10 codes: 

ICD-10 Disease 

J12-J18 Pneumonia 

J20-J22 Lower respiratory infection  

B95 Streptococcus 

B95 Staphylococcus  

 

3. Controls to include least one of the following ICD-10 codes: 

ICD-10 Disease 

E10-E14 Diabetes 

N00-N19 Kidney Disease 

K70-K77 Liver Disease 

J40-J44 COPD 

 

Table 8: Pairwise comparison of co-morbidities prevalent in severe COVID-19 patient population 

 All Severe COVID-19 
Cardiovascular  

Disease 
Hypertension 

Respiratory  
Disease 

Diabetes 

All Severe COVID-19 779     

Cardiovascular Disease 136     

Hypertension 385 115    

Respiratory Disease 170 39 105   

Diabetes 143 55 117 38  

Alzheimer's Disease 10 1 5 1 2 

 

IDENTIFICATION OF CASES WITH SPECIFIC CO-MORBIDITIES 

Cases with co-morbidities were identified using the following disease codes: 

 

Disease ICD-10 Self-Reported codes Operation codes 

Cardiovascular disease I20-I25 1070, 1075, 1095 K40-41, K45, K49, K50.2, K75 

Hypertension  I10, I11, R03 1065  

Diabetes E10-14 1220, 1222, 1223  

Chronic respiratory diseases J40-47 1111, 1112  

Alzheimer’s disease G30   
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Table 9: Table of severe COVID-19-associated genes with chromosomal location and RF score (genes in bold have been validated in further 
studies) 

GENE CHROMOSOME RF SCORE 
RPL7AP57 11 7.80 
TMEM159 16 2.41 
CDC7 1 1.83 
REX1BD 19 1.26 
PSMC1 14 1.16 
STH 17 1.10 

KRAS 12 0.95 
CIDEA 18 0.82 
PLS3 X 0.74 
COQ6 14 0.72 
PLIN4 19 0.67 
HOPX 4 0.67 
PCDH17 13 0.67 
SRD5A1 5 0.61 
MLKL 16 0.57 
TBC1D2 9 0.53 
MEP1B 18 0.49 

B3GLCT 13 0.48 
CRLF1 19 0.46 
MCUB 4 0.45 
SAMD3 6 0.44 
ENTPD5 14 0.42 
LINC02210-CRHR1 17 0.39 
L3MBTL3 6 0.36 
PEX14 1 0.36 
SPEF2 5 0.35 
SLC16A10 6 0.35 
LINC02210 17 0.34 

ERICH1 8 0.29 
MAPT 17 0.28 
SMCHD1 18 0.26 
RRM2 2 0.26 
NRDE2 14 0.25 
ANTXR1 2 0.25 
STAC 3 0.23 
ITK 5 0.22 
ZNF106 15 0.21 
DNAH2 17 0.20 
CTR9 11 0.19 

NRROS 3 0.19 
RBM47 4 0.18 
RAB3C 5 0.17 
GFRA1 10 0.15 
KANSL1 17 0.14 
C9orf92 9 0.14 
IKZF2 2 0.13 
XKR6 8 0.11 
EIF3E 8 0.11 
MAST4 5 0.10 
PIGX 3 0.10 

GAREM1 18 0.10 
IQCM 4 0.09 
RAP1GAP2 17 0.09 
PRKCB 16 0.09 
AACSP1 5 0.09 
ATXN1 6 0.08 
VTI1A 10 0.08 
C4orf50 4 0.07 
SEMA5A 5 0.07 
SLC9A9 3 0.07 
SPPL2C 17 0.07 
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PTPRK 6 0.06 
ATRNL1 10 0.06 
LHFPL2 5 0.05 
PRUNE2 9 0.05 
CNTN5 11 0.05 
SLIT3 5 0.05 
SORCS2 4 0.04 
KCNIP4 4 0.03 
MACROD2 20 0.02 
CNTNAP2 7 0.02 

 

Table 10. Table showing drug repurposing candidates for 10 target genes identified as being COVID-19 related 

GENE COMPOUND CHEMBL ID DRUG PHASE MOLECULE TYPE 

CDC7 CHEMBL3544943 bms-863233 2 Small molecule 

CDC7 CHEMBL3545090 rxdx-103 1 Small molecule 

CDC7 CHEMBL3545321 nms-1116354 1 Small molecule 

PSMC1 CHEMBL325041 bortezomib 4 Small molecule 

PSMC1 CHEMBL451887 carfilzomib 4 Protein 

PSMC1 CHEMBL2103884 oprozomib 1 Small molecule 

PSMC1 CHEMBL3545432 ixazomib citrate 4 Small molecule 

SRD5A1 CHEMBL254328 abiraterone 4 Small molecule 

SRD5A1 CHEMBL1200969 dutasteride 4 Small molecule 

RRM2 CHEMBL467 hydroxyurea 4 Small molecule 

RRM2 CHEMBL1637 gemcitabine hydrochloride 4 Small molecule 

RRM2 CHEMBL1750 clofarabine 4 Small molecule 

RRM2 CHEMBL1096882 fludarabine phosphate 4 Small molecule 

RRM2 CHEMBL1200983 gallium nitrate 4 Small molecule 

RRM2 CHEMBL3544910 motexafin gadolinium 3 Small molecule 

RRM2 CHEMBL3989496 tezacitabine 2 Small molecule 

ITK CHEMBL1201733 pazopanib hydrochloride 4 Small molecule 

ITK CHEMBL4085457 pf-06651600 3 Small molecule 

ITK CHEMBL1873475 ibrutinib 4 Small molecule 

CIDEA CHEMBL121 rosiglitazone 4 Small molecule 

PLIN4 CHEMBL121 rosiglitazone 4 Small molecule 

MLKL CHEMBL3220918 necrosulfanomide preclinical Small molecule 

GFRA1 CHEMBL2108380 liatermin 1 Small molecule 

PRKCB CHEMBL300138 enzastaurin 3 Small molecule 

PRKCB CHEMBL91829 ruboxistaurin 3 Small molecule 

PRKCB CHEMBL494089 gsk-690693 1 Small molecule 

PRKCB CHEMBL574737 ucn-01 2 Small molecule 

PRKCB CHEMBL565612 sotrastaurin 2 Small molecule 

PRKCB CHEMBL608533 midostaurin 4 Small molecule 

PRKCB CHEMBL3545332 cep-2563 1 Small molecule 

 

Table 11. Table showing 8 target genes identified as being COVID-19 related that have active compounds in ChEMBL56 

GENE NO. OF ACTIVE COMPOUNDS (ChEMBL) 

MACROD2 3 

MAST4 6 

MLKL 11 

SLC16A10 70 

MEP1B 90 

KRAS 120 

L3MBTL3 122 

MAPT 9,589 
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Table 12. Table showing all the UK Biobank COVID-19 datasets and numbers of cases:controls (post-QC) used in this study 

UK Biobank Data Release 18 May 2020 26 May 2020 6 June 2020 

Cases 779 

(442 males, 337 females) 

877 

(492 males, 385 females) 

929 

(524 males, 405 females) 

Controls 1,553 5,438 5,563 
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