Limited Role for Antibiotics in COVID-19: Scarce Evidence of Bacterial Coinfection

Wenjing Wei, PharmD^{1,2}, Jessica K. Ortwine, PharmD^{1,2}, Norman S. Mang, PharmD^{1,2}, Christopher Joseph, BA³, Brenton C. Hall, PharmD¹, Bonnie C. Prokesch, MD²

¹Department of Pharmacy, Parkland Health & Hospital System, Dallas, TX, USA; ²Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA; ³University of Texas Southwestern Medical School, Dallas, TX, USA

Key words: Coinfection, COVID-19, SARS-CoV-2, antimicrobial stewardship, community-acquired pneumonia

Corresponding Author:

Wenjing Wei, PharmD

Parkland Health & Hospital System

5200 Harry Hines Blvd, Dallas, TX 75235

Phone: 469-419-1808

Email: wenjing.wei@phhs.org

Alternate Corresponding Author:

Bonnie C. Prokesch, MD

University of Texas Southwestern Medical Center

5323 Harry Hines Blvd, Dallas, TX 75390

Phone: 241-648-8806

Email: bonnie.prokesch@utsouthwestern.edu

Abstract

Background:

There is currently a paucity of data describing bacterial coinfections, related antibiotic prescribing patterns, and the

potential role of antimicrobial stewardship in the care of patients infected with SARS-CoV-2.

Methods:

This prospective, observational study was conducted from March 10, 2020 to April 21, 2020 in admitted patients

with confirmed COVID-19. Patients were included if ≥ 18 years old and admitted to the hospital for further

treatment. Data was collected via chart review from the enterprise electronic health record database. Data collected

include factors driving antibiotic choice, indication, and duration of therapy as well as microbiological data.

Findings:

Antibiotics were initiated on admission in 87/147 (59%) patients. Of these, 85/87 (98%) prescriptions were empiric.

The most common indication for empiric antibiotics was concern for community-acquired pneumonia (76/85, 89%)

with the most prescribed antibiotics being ceftriaxone and azithromycin. The median duration of antibiotic therapy

was two days (interquartile range 1-5). No patients had a community-acquired bacterial respiratory coinfection, but

10/147 (7%) of patients were found to have concurrent bacterial infections from a non-respiratory source, and one

patient was diagnosed with active pulmonary tuberculosis at the time of admission for COVID-19.

Interpretation:

Bacterial coinfection in patients with COVID-19 was infrequent. Antibiotics are likely unnecessary in patients with

mild symptoms. There is little role for broad-spectrum antibiotics to empirically treat multidrug resistant organisms

in patients with COVID-19, regardless of disease severity. Antimicrobial stewardship remains important in patients

2

infected with SARS-CoV-2.

Funding:

The authors received no funding for this work.

Introduction:

In December 2019, a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first

detected in Wuhan, China and found to cause acute respiratory symptoms and pneumonia. The disease caused by

SARS-CoV-2 was named coronavirus disease 2019 (COVID-19). SARS-CoV-2 has led to a global pandemic

affecting over 200 countries.1 In the United States, cases continue to increase with over one million confirmed

infections and 73,000 associated deaths as of May 2020.²

Patients with COVID-19 present with a variety of signs and symptoms but the majority exhibit fever, dry cough, and

fatigue. Many patients also experience shortness of breath, myalgias, and anorexia amongst other less common

symptoms. Disease severity can range from asymptomatic or relatively mild to severe with an estimated 20% of

patients requiring admission to an intensive care unit (ICU).³ Chest imaging of patients with COVID-19 typically

reveals bilateral multi-focal opacities on plain radiographs and bilateral, peripheral interstitial ground glass opacities

on computerized tomography (CT).^{2,3} These findings are nonspecific and overlap with other infectious etiologies,

creating uncertainty in differentiating COVID-19 from other common viral or bacterial respiratory infections. Thus,

if bacterial pneumonia or sepsis is strongly suspected, initiation of empiric antibiotics to cover for community-

acquired pneumonia (CAP) has been recommended by national guidelines.^{3,4}

Bacterial infections occur both concomitantly and subsequent to a variety of viral respiratory illnesses. In the pre-

antibiotic era of the 1918 influenza pandemic, bacterial infections complicated nearly all influenza-related deaths.

More recently during the 2009 influenza A (H1N1) pandemic, bacterial infections were identified in up to 34% of

ICU managed patients.⁵ In a typical, non-pandemic influenza season, nearly 20% of patients are diagnosed with

community-acquired bacterial infections, most commonly caused by Staphylococcus aureus and Streptococcus

pneumoniae. 5.6 However, there is currently a paucity of data describing bacterial infections and related antibiotic

prescribing in patients with COVID-19.

The continued development of antimicrobial resistance globally may be exacerbated in the setting of an infectious

pandemic. Thus, in light of the rising number of COVID-19 cases worldwide, we believe that it is of utmost

importance to continue promoting the judicious use of anti-infective agents and highlight the role of antimicrobial

stewardship. The goal of this study is to assess how often patients with SARS-CoV-2 infection have clear evidence

of concurrent bacterial infections and to better characterize the factors driving antibiotic prescribing, selection, and

duration of therapy in this cohort of patients. This information is critical to defining the role of antimicrobial

stewardship in assisting with antibiotic de-escalation and discontinuation in the management of patients with

COVID-19.

Methods:

Study design and participants

This prospective, observational study was conducted at Parkland Health & Hospital System and included patients

admitted between March 10, 2020 and April 21, 2020. Parkland is an 862-bed safety net hospital as well as the

primary teaching site for the University of Texas Southwestern (UTSW) Medical School providing care to

underserved residents of Dallas County in Dallas, Texas and averages over one million patient visits annually. The

study was approved by the UTSW Medical Center institutional review board and informed consent was waived.

Patients were included if they tested positive for SARS-CoV-2 by polymerase chain reaction (PCR), were 18 years

of age or older, and were admitted to the hospital for management of COVID-19. Patients were excluded if the index

admission for COVID-19 was at an outside facility.

Data collection

Patient charts were retrospectively reviewed and data was collected from the enterprise electronic health record

database by the primary investigator and study personnel. Baseline characteristics collected include demographic

information, significant comorbidities, smoking history, history of intravenous (IV) antibiotic exposure in the 90

days prior to admission, and COVID-19 disease severity. In addition, data regarding fever, white blood cell (WBC)

count, oxygen requirement, pulmonary imaging findings, pathogen-directed infectious work up, requirement of

mechanical ventilation, vasopressors, continuous renal replacement therapy, length of stay, infection with

Clostridioides difficile during admission, and in-hospital mortality related to COVID-19 were collected. Antibiotics

initiated within 48 hours of admission were recorded along with rationale, therapeutic indication, and duration of

use. Antibiotics that were initiated greater than 48 hours after time of admission were considered treatment for a

possible secondary bacterial infection, rather than coinfection upon admission, and thus were excluded. Clinical data

and outcomes were monitored through June 1st,, 2020.

Laboratory procedures

From March 10, 2020 to March 27, 2020, patients were confirmed to have SARS-CoV-2 via PCR testing on

nasopharyngeal and oropharyngeal samples through outside testing facilities. On March 27, 2020, Parkland

instituted in-house PCR testing on nasopharyngeal samples via the Xpert Xpress SARS-CoV-2 test manufactured by

Cepheid®. Influenza/respiratory syncytial virus (RSV) PCR as well as a composite respiratory pathogen PCR panel

were performed using nasopharyngeal samples. Other infectious work-up included Legionella urinary antigen

testing and methicillin-resistant Staphylococcus aureus (MRSA) surveillance collected from the nares.

Outcomes

Patients who received antibiotics on admission were compared to those who did not in order to characterize the

factors driving antimicrobial prescribing in patients presenting with COVID-19. In addition, patients were assessed

for evidence of community-acquired bacterial respiratory coinfection (CABRC) as well as concurrent bacterial

infections from a non-respiratory source on admission.

Definitions

The severity of COVID-19 was defined using an institution-specific management algorithm (See Supplementary

Material). Fever was defined as greater than 100·4 °F (38 °C). Leukopenia and leukocytosis were defined as a WBC

count less than 4,000 cells/μL or greater than 11,000 cells/μL, respectively. CABRC was defined as presence of a

positive bacterial culture consistent with CAP within 48 hours of admission and clinical signs and symptoms

consistent with CAP as documented by the treatment team. Concurrent bacterial infection was defined as a positive

non-respiratory bacterial culture within 48 hours of admission plus documentation consistent with active infection.

Statistical analysis

Continuous measurements were presented as means and standard deviations (SD) or medians and interquartile

ranges (IQR) and evaluated using Student's t-test, or Mann-Whitney U test, respectively. Categorical variables were

presented as counts (%) and evaluated using a χ^2 test or Fisher's exact test.

Role of funding source

This study had no funder. The corresponding author had full access to all the data in the study and had final

responsibility for the decision to submit for publication.

Results:

A total of 151 patients met inclusion criteria with 147 ultimately included in the study. Four patients were excluded

due to having their index admission for COVID-19 at an outside facility. The average age of patients was 52 years

and 60/147 (41%) were female (Table 1). One or more comorbidities were found in 114/147 patients (78%), with 16

patients (11%) having underlying chronic lung disease and 21 patients (14%) reporting being active cigarette

smokers. Patients were admitted to the hospital after experiencing a median of 5 days (interquartile range, 3 to 7) of

symptoms with the majority presenting with moderate severity COVID-19 disease (109/147, 74%). Seventeen

patients (12%) met the criteria for severe COVID-19 with 10 (7%) requiring either mechanical ventilation or

vasopressor support on admission.

Antibiotics were initiated within 48 hours of admission in 87/147 patients (59%). Of these, 85 patients (98%)

received antibiotics as empiric therapy, and 2 (2%) had antibiotics continued from an outpatient course. The most

common indication for empiric antibiotics (Table 2) was CAP (76/85, 89%). The median duration of antibiotic

therapy for any indication was 2 days (interquartile range, 1 to 5). Following the introduction of in-house PCR

testing for SARS-CoV-2, a shorter duration of antibiotic therapy was noted (Figure 1). The majority of patients

(74/85, 87%) were exposed to two or more antibiotics during the empiric course of therapy, most commonly

ceftriaxone and azithromycin (Table 3). Broad-spectrum antibiotic therapy (vancomycin, piperacillin/tazobactam,

and/or cefepime) was prescribed in only 24/147 (16%) patients. Of these 24 patients, only four patients had a recent

history of IV antibiotic exposure in the 90 days prior to admission and none had a history of MRSA or *Pseudomonas*

aeruginosa.

Antibiotic prescribing was significantly more common in patients with severe disease, evidence of pneumonia on

imaging, leukocytosis, or supplemental oxygen requirements on admission. Patients who presented with mild

disease were significantly less likely to receive antibiotics. There was no difference in frequency of antibiotic

prescribing in patients with moderate disease or in those who were febrile on admission. Patients initiated on

antibiotics upon admission also underwent a significantly more robust infectious workup than those who were not

started on empiric antibiotic therapy (Table 1).

While respiratory cultures were ordered on 47/147 (32%) patients, none returned positive for significant bacterial

growth. All Legionella urine antigen tests were negative. Most patients had blood cultures drawn on admission

(112/147 [76%]), including all 24 patients who were started on broad-spectrum antibiotics. In addition, 45/147

(31%) had urine cultures sent and 19/147 (13%) were screened for MRSA nares colonization. No proven CABRCs

were identified in our patient cohort. However, clinical suspicion remained high enough that 19/76 (25%) patients who received empiric antibiotics for CAP on admission completed at least five days of therapy. Overall, 10/147 (7%) of patients were found to have concurrent bacterial infections unrelated to a respiratory source and one patient was diagnosed with active pulmonary tuberculosis (Table 4). Although nine patients were found to have positive blood cultures on admission, eight cultures were deemed contaminants (see Supplementary Material). One patient was considered to have a veritable bacteremia which was secondary to a gastrointestinal source. Similarly, ten patients had positive urine cultures on admission, but only five were considered pathogenic per treatment team documentation.

Discussion:

Early epidemiological studies of patients with COVID-19 reported empiric antibiotic use in 71-100% of patients, with Chen and colleagues reporting a median duration of therapy of five days (interquartile range, 3 to 7).⁷⁻¹¹ Comparatively, we found lower rates of empiric antibiotic utilization with shorter durations of therapy overall. Longer durations of therapy were noted earlier in the outbreak and may be correlated with lengthy turnaround times (more than one week) to receive final SARS-CoV-2 testing results from a commercial reference laboratory. Once inhouse testing was established, turnaround times decreased dramatically with results typically available to clinicians within two hours. This likely contributed to increased levels of physician comfort in withholding empiric antibiotics in more stable patients given the prompt return of diagnostic testing, as well as facilitating more rapid antibiotic deescalation in those patients testing positive for COVID-19. The availability of rapid on-site testing for SARS-CoV-2 plays an important role in the decision-making process for discontinuation of antibiotic therapy.

Antibiotic choice was not reported in most prior studies published on this topic, but empiric agents primarily targeted common CAP pathogens. Wang and colleagues reviewed antibiotic use among 102 patients with COVID-19 and observed 87 (85%) patients received quinolones, 34 (33%) cephalosporins, and 25 (25%) carbapenems, while Cao and colleagues reported receipt of moxifloxacin in 39/67 (58%) patients and antifungal therapy in 8/67 (12%). Unlike previously published literature which showed a high use of quinolones and carbapenems, we observed more narrow-spectrum antibiotic utilization. This is consistent with the 2019 American Thoracic Society/Infectious Diseases Society of America (ATS/IDSA) practice guidelines for CAP, which recommend

combination therapy with an IV beta-lactam (e.g. ceftriaxone) plus azithromycin for patients admitted with CAP in the absence of risk factors for infections caused by multi-drug resistant organisms.¹³

We observed limited use of broad-spectrum agents in general, though that may be because this study focused only on antibiotics prescribed within 48 hours of hospital admission. The ATS/IDSA CAP guidelines recommend empirically treating MRSA or *Pseudomonas aeruginosa* only if specific risk factors are present. These risk factors include recent hospitalization with receipt of IV antibiotics, prior history of either pathogen in the last 12 months, or high local prevalence rates for either pathogen.¹³ Only four patients in this study had risk factors for multi-drug resistant (MDR) organisms, and therefore the majority of patients were appropriately prescribed narrow-spectrum antibiotics. Most of the patients initiated on broad-spectrum regimens were de-escalated quickly if MRSA surveillance screen and/or blood cultures were negative. Based on these observations, we recommend that careful assessment of MDR risk factors be performed before initiating broad-spectrum antibiotics and cultures should be obtained to help guide de-escalation. MRSA nasal screening has a negative predictive value of > 95% for MRSA pneumonia. The utilization of MRSA surveillance screening to assist with early de-escalation should be encouraged in order to decrease unnecessary exposure to vancomycin, lab draws and monitoring, and reduce risk of nephrotoxicity.^{14,15}

There is currently limited information available regarding rates of bacterial coinfections with COVID-19. However, bacterial coinfection rates of 0-47% and 2-65% were reported in systematic reviews of pandemic influenza H1N1 and of influenza and other respiratory viruses, respectively. 16,17 While *S. pneumoniae* was the most commonly identified organism, MRSA and nosocomial Gram-negative organisms were also reported. Differences in illness severity, timing of infection, and whether coinfection was documented on admission or resulted as a complication of prolonged hospital stay, mechanical ventilation, or secondary to the virus may have contributed to the variability in reported rates. In a prospective analysis of CAP by Abelenda-Alonso and colleagues only 57/1123 (5·1%) patients had influenza and a bacterial coinfection on admission, which is similar to the minimal evidence of coinfection in our study. 18 Because COVID-19 has emerged recently, there is limited literature regarding bacterial coinfections in the setting of primary SARS-CoV-2 infection, but a review of 18 studies describing bacterial coinfections in patients with any coronavirus infection was performed by Rawson and colleagues. 19 The authors described low rates of bacterial coinfection among the nine studies published for COVID-19 (62/806 [8%]). However, most studies were not specifically evaluating coinfections and thus did not report the organisms identified. The low rates of bacterial

coinfections among patients with respiratory viral illnesses, including COVID-19, are similar to the findings in our cohort of 147 patients. Interestingly, the average time to development of a bacterial superinfection in patients with influenza has been reported to be 7-14 days after the onset of the viral infection.²⁰ Therefore, the fact that none of the patients in our cohort were found to have definitive evidence of bacterial coinfection on admission is not unusual, as the patients presented a median of five days from symptom onset.

The median duration of antibiotic therapy in our cohort was short, indicating that suspicion for bacterial coinfection was low with only 19/147 (13%) patients receiving five days or more of empiric antibiotic therapy for CAP. Due to concern for increased infection transmission, most respiratory samples were collected from throat swabs rather than sputum or lower respiratory tract samples and half of the samples obtained from sputum were rejected due to being unsatisfactory quality specimens. Although identification of organisms may have been limited by this inability to obtain quality respiratory cultures, sputum cultures overall have poor yield for pathogen isolation. Our institution does not perform S. pneumoniae urine antigen testing; however, both S. pneumoniae and Legionella urine antigen tests have modest sensitivity for clinical disease and the most recent ATS/IDSA CAP guidelines do not recommend routinely testing these urine antigens in adults with non-severe CAP.14 Procalcitonin has been suggested as a potentially useful biomarker to differentiate bacterial and viral infections and assist with antibiotic decisionmaking.^{21–23} However, due to the lack of data regarding its reliability in completely ruling out bacterial pneumonia with accuracy, the role of procalcitonin in COVID-19 is currently unknown. 13,24 Although blood cultures are not routinely recommended in non-severe CAP, they were collected from a majority of patients in this cohort. Blood culture results were ultimately not helpful in identifying clinically significant pathogens as nearly all organismal growth was considered to be from skin contamination. Therefore, blood cultures are likely not necessary in patients presenting with mild to moderate COVID-19 who do not meet the criteria for severe CAP.

In summary, we identified zero cases of CABRC in patients with COVID-19. While it is reasonable to initiate empiric antibiotics for possible bacterial infection in clinically severe patients awaiting diagnostic confirmation of COVID-19, broad-spectrum agents are likely unnecessary in the absence of risk factors for MDR organisms. Based on this study, it appears antibiotics are of limited utility in the setting of proven COVID pneumonia. If antibiotics are initiated, they should be de-escalated early in patients positive for SARS-CoV-2 with no other evidence of bacterial infection within 48 hours. Antimicrobial stewardship has an important role in limiting unnecessary antibiotic exposure and optimizing resources during this COVID pandemic.

Contributors

WW, JKO, NSM, and BCP conceived and designed the study. WW and CJ performed the data collection. WW and

BCH performed data analysis. WW drafted the manuscript and all authors participated in critical revision of the

manuscript for important intellectual content. All authors approved the final manuscript and were responsible for the

decision to submit for publication.

Declaration of Interests: The authors report no relevant conflicts of interest.

References:

1. Coronavirus (COVID-19) pandemic [Internet]. World Health Organization. [cited 2020 May 1]; Available

from: http://www.who.int/emergencies/diseases/novel-coronavirus-2019.

2. Coronavirus (COVID-19) [Internet]. Center for Disease Control and Prevention. [cited 2020 May 1];

Available from: https://www.cdc.gov/coronavirus/2019-ncov/index.html.

3. COVID-19 treatment guidelines panel. Coronavirus disease 2019 (COVID-19) treatment guidelines

[Internet]. National Health. [cited 2020 13]; Available Institutes of May from:

https://www.covid19treatmentguidelines.nih.gov.

Alhazzani W, Møller MH, Arabi YM, et al. Surviving sepsis campaign: guidelines on the management of

critically ill adults with coronavirus disease 2019 (COVID-19). Crit Care Med 2020; 48:e440-69.

Chertow DS, Memoli MJ. Bacterial coinfection in influenza: a grand rounds review. JAMA 2013; 309:275–

82.

Teng F, Liu X, Guo S, et al. Community-acquired bacterial co-infection predicts severity and mortality in

influenza-associated pneumonia admitted patients. J Infect Chemother 2019; 12:129–36.

7. Lupia T, Scabini S, Mornese Pinna S, Di Perri G, De Rosa FG, Corcione S. 2019 Novel coronavirus (2019-

10

nCoV) outbreak: a new challenge. J Glob Antimicrob Resist 2020; 21:22-7.

- 8. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet* 2020; **395**:497–506.
- 9. Chen N, Zhou M, Dong X et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet* 2020; **395**:507–13.
- 10. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *Lancet* 2020; **395**:1054–62.
- 11. Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. *Clin Infect Dis* 2020 [Epub ahead of print].
- 12. Cao J, Tu W, Cheng W, et al. Clinical features and short-term outcomes of 102 patients with corona virus disease 2019 in Wuhan, China. *Clin Infect Dis* 2020 [Epub ahead of print].
- Metlay JP, Waterer GW, Long AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia: an official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Resp Crit Care Med 2019; 200:e45–67.
- Dangerfield B, Chung A, Webb B, Seville MT. Predictive value of methicillin-resistant Staphylococcus aureus (MRSA) nasal swab PCR assay for MRSA pneumonia. Antimicrob Agents Chemother 2014; 58:859–64.
- 15. Tilahun B, Faust AC, McCorstin P, Ortegon A. Nasal colonization and lower respiratory tract infections with methicillin-resistant *Staphylococcus aureus*. *Am J Crit Care* 2015; **24**:8–12.
- 16. MacIntyre CR, Chughtai AA, Barnes M, et al. The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a(H1N1)pdm09. *BMC Infect Dis* 2018; **18**:637.
- 17. Klein EY, Monteforte B, Gupta A, et al. The frequency of influenza and bacterial coinfection: a systematic review and meta-analysis. *Influenza and Other Respir Viruses* 2016; **10**:394–403.
- 18. Abelenda-Alonso G, Rombauts A, Gudiol C, et al. Influenza and bacterial coinfection in adults with community-acquired pneumonia admitted to conventional wards: risk factors, clinical features, and outcomes. *Open Forum Infect Dis* 2020; 7:ofaa066.
- 19. Rawson TM, Moore LSP, Zhu N, et al. Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. *Clin Infect Dis* 2020 [Epub ahead of print].

- 20. Paget C, Trottein F. Mechanisms of bacterial superinfection post-influenza: a role for unconventional T cells. *Front Immunol* 2019; **10**:336.
- 21. Cuquemelle E, Soulis F, Villers D, et al. Can procalcitonin help identify associated bacterial infection in patients with severe influenza pneumonia? A multicentre study. *Intensive Care Med* 2011; **37**:796–800.
- 22. Rodriguez AH, Aviles-Jurado FX, Diaz E, et al. Procalcitonin (PCT) levels for ruling-out bacterial coinfection in ICU patients with influenza: a CHAID decision-tree analysis. *J Infect* 2016; **72**:143–51.
- 23. Pfister R, Kochanek M, Leygeber T, et al. Procalcitonin for diagnosis of bacterial pneumonia in critically ill patients during 2009 H1N1 influenza pandemic: a prospective cohort study, systematic review and individual patient data meta-analysis. *Crit Care* 2014; **18**:R44.
- 24. Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. *Clin Chim Acta* 2020; **505**:190–1.

Table 1. Clinical Characteristics of Patients and Relation to Antibiotic Prescribing

	Total	Antibiotic	No Antibiotic	
Characteristic	(N=147)	(N=87)	(N=60)	P-value
Age, years	52 (18)	53 (18)	48 (15)	0.015
Female sex	60 (41)	34 (39)	26 (43)	0.606
Comorbidities				
None	33 (22)	23 (26)	10 (16)	0.231
Chronic lung disease	16 (11)	9 (10)	7 (12)	0.800
Hypertension	63 (43)	37 (43)	26 (43)	0.923
Diabetes	48 (33)	25 (29)	23 (38)	0.223
Hyperlipidemia	35 (24)	19 (22)	16 (27)	0.499
Chronic kidney disease/ESRD	14 (10)	7 (8)	7 (12)	0.462
Active cancer	9 (6)	8 (9)	1 (2)	0.083
Congestive heart failure	9 (6)	3 (3)	6 (10)	0.160
Coronary heart disease	8 (5)	5 (6)	3 (5)	1.000
HIV	5 (3)	3 (3)	2 (3)	1.000
Cirrhosis	2 (1)	1 (1)	1 (2)	1.000
Active smoker	21 (14)	12 (14)	9 (15)	0.837
IV antibiotics in the last 90 days	4 (3)	4 (5)	0 (0)	0·145
COVID-19 disease severity				
Mild	21 (14)	5 (6)	16 (27)	0.00037
Moderate	109 (74)	65 (75)	43 (73)	0.681
Severe	17 (12)	17 (20)	0(0)	0.00027
Presentation				
Pneumonia on imaging	124 (84)	79 (91)	45 (75)	0.010
Fever on admission	105 (71)	66 (76)	39 (65)	0.152
Fever > 3 days	71 (48)	45 (52)	26 (43)	0.317
Leukopenia	20 (14)	10 (11)	10 (17)	0.369
Leukocytosis	12 (8)	12 (14)	0 (0)	0.004
Supplemental oxygenation	80 (54)	55 (63)	25 (42)	0.010
Infectious labs ordered				
None	22 (15)	4 (5)	18 (30)	<0.0001

Influenza/RSV	39 (27)	33 (38)	6 (10)	0.00016
Respiratory viral panel ^a	36 (24)	30 (34)	6 (10)	0.00069
Legionella urine antigen	51 (35)	41 (47)	10 (17)	0.00014
Respiratory culture	47 (32)	36 (41)	11 (18)	0.0032
Blood culture	112 (76)	77 (89)	35 (58)	< 0.0001
Urine culture	45 (31)	31 (36)	14 (23)	0.112
MRSA nares screen	19 (13)	18 (21)	1 (2)	0.00073
Community-acquired bacterial respiratory infection	0 (0)	0 (0)	0 (0)	••
Concurrent bacterial infection from non-respiratory source	10 (7)	10 (11)	0 (0)	0.0056
Tuberculosis	1 (1)	1 (1)	0 (0)	1.00
Mechanical ventilation at anytime – n/total $n(\%)^{+}$	29/141 (21)	23/81 (28)	6/60 (10)	0.0138
CRRT at anytime- n/total n(%) [†]	5/141 (4)	4/81 (5)	1/60 (2)	0.394
Vasopressor support at anytime– n/total n(%)+	22/141 (16)	18/81 (22)	4/60 (7)	0.0175
LOS > 7	64 (44)	45 (52)	19 (32)	0.025
CDI	0 (0)	0 (0)	0 (0)	
In-hospital Mortality – n/total n(%) [†]	13/141 (9)	9/81 (11)	4/60 (6)	0.398

Data presented as n (%) or mean (SD) unless otherwise specified

Abbreviations: CDI, *Clostridioides difficile* infection; ESRD, end stage renal disease; HIV, human immunodeficiency virus; LOS, length of stay

^aRespiratory viral panel tests for Adenovirus, Coronavirus 229E, Coronavirus HKU1, Coronavirus NL63, Coronavirus OC43, Influenza A, Influenza A/H3, Influenza A/2009-H1, Influenza B, Human Metapneumovirus, Human Rhinovirus/Enterovirus, Parainfluenza 1-4, RSV, *Bordetella pertussis*, *Chlamydophila pneumoniae*, and *Mycoplasma pneumoniae*

⁺As of June 1st, 2020, 6 patients remain admitted in the hospital, leaving 141 patients able to be assessed for mortality

Table 2. Indications for Empirically Prescribed Antibiotics

Empirically Selected Indication	Number of Patients (%) ^a
Community acquired pneumonia	76 (90)
Urinary Tract Infection	5 (6)
Skin and Soft Tissue Infection	2 (2)
Neutropenic Fever	1 (1)
Meningitis	1 (1)
Central Line-associated Bloodstream Infection	1 (1)
Chorioamnionitis	1 (1)
Colitis	1 (1)
Spontaneous Bacterial Peritonitis	1 (1)

^aPatients could have more than one indication

Table 3. Empiric Antibiotics Prescribed

Antibiotic	Number of Prescriptions
Ceftriaxone	68
Azithromycin	57
Vancomycin	22
Doxycycline	17
Piperacillin/tazobactam	16
Cefepime	4
Moxifloxacin	3
Ampicillin	3
Gentamicin	2
Clindamycin	2
Amoxicillin	1
Metronidazole	1
Trimethoprim/sulfamethoxazole	1
Ciprofloxacin	1
Amoxicillin/clavulanate	1

Table 4. Concurrent Bacterial Infections From a Non-Respiratory Source

Concurrent Bacterial Infection	Patients (N=10)		
Urinary tract infection	5 (3)		
Skin and soft tissue infection	2 (1)		
Bacteremia	1 (1)		
Otitis media	1 (1)		
Chorioaminionitis	1 (1)		

Data presented as n (%)

Figure 1. Average Duration of Therapy Based on Patient Admission Date; , date of implementation of inhouse SARS-CoV-2 PCR testing

