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One Sentence Summary: EU coordination in easing restrictions is key to preventing 
resurgent COVID-19 outbreaks and stopping community transmission. 

Abstract: As rates of new COVID-19 cases decline across Europe due to non-pharmaceutical 
interventions such as social distancing policies and lockdown measures, countries require 
guidance on how to ease restrictions while minimizing the risk of resurgent outbreaks. Here, 
we use mobility and case data to quantify how coordinated exit strategies could delay 
continental resurgence and limit community transmission of COVID-19. We find that a 
resurgent continental epidemic could occur as many as 5 weeks earlier when well-connected 
countries with stringent existing interventions end their interventions prematurely. Further, 
we found that appropriate coordination can greatly improve the likelihood of eliminating 
community transmission throughout Europe. In particular, synchronizing intermittent 
lockdowns across Europe meant half as many lockdown periods were required to end 
community transmission continent-wide. 
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The ongoing COVID-19 pandemic rapidly spread across Europe throughout February 
and March 2020, making it the largest cluster of cases worldwide (1). In response, most of 
Europe implemented strict lockdown measures to control disease spread, which have been 
shown to be effective at reducing transmission (2–4). As rates of new cases decline, countries 
are now implementing various exit strategies to relax restrictions (5). Long-term success of 
any potential exit strategy hinges on what happens regionally, as international importation 
could overwhelm efforts to prevent resurgence through testing and contact tracing (6, 7). To 
account for this, the European Commission recommended that governments provide advance 
warning of plans to relax non-pharmaceutical interventions (NPIs) (8), and in particular, has 
focused on coordinated easing of travel restrictions (9). To better inform the importance and 
nature of an internationally coordinated exit strategy, governments require an evidence base 
for understanding importation and the consequences of easing interventions in an 
uncoordinated way. 

Data from mobile phones can help address this by informing connectivity patterns, 
contact rates, and the effect of various NPIs on mobility. In other settings, they have been 
instrumental for understanding where infection occurs for various diseases (10) such as 
malaria (11, 12), predicting disease spread (13), and quantifying population mobility during 
and after catastrophic events (14).  More recently, for the COVID-19 pandemic, mobile 
phone data have been valuable in assessing NPI effectiveness (4, 15), and remain at the 
forefront of understanding whether populations are adhering to social distancing policies (16–
19). These data link well with theoretical models that provide a basis for understanding how 
heterogeneous mobility and exposure will affect disease invasion (20) in spatially structured 
populations (21), as well. 

Here we provide an evidence base for coordinated exit strategies across Europe using 
mobile phone data and a metapopulation model of COVID-19 transmission (22). Specifically, 
we quantify the progression of a second epidemic continent-wide if countries act in a 
coordinated or uncoordinated manner. We also quantify how coordination could influence 
regionally interrupted transmission of COVID-19, testing the importance of synchronized 
NPIs if countries phase them to limit economic impact. We accomplished this by 1) 
estimating pre-COVID-19 mobility using a novel anonymized and aggregated call data 
record (CDR) dataset from Vodafone and an anonymized and aggregated continental NUTS3 
(Nomenclature of Territorial Units for Statistics) mobility dataset from Google (Table S1), 2) 
measuring mobility reductions due to NPIs using a separate COVID-19 Google dataset, and 3) 
propagating these reductions in an epidemiological model (see Fig S1 for data flow). All 
analyses were undertaken at the NUTS3 administrative unit level, which are administrative 
boundaries regulated by the European Union (EU) for use within EU member states (35), 
with spatial extents defined by population thresholds ranging between 150,000 to 800,000 
residents.  

First, we predicted the baseline probability of moving between NUTS3 regions across 
Europe using the Vodafone data in Spain and Italy and the continental Google NUTS3 
dataset (Fig 1).  
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Fig. 1. Predicted baseline mobility patterns for Jan 28 – Feb 18, 2020. (Left) Probability of 
people moving between NUTS3 administrative units per 8 hours.  (Right) Individual 
probability of moving between top 20 European countries with the greatest outward mobility. 
For example, an individual in Germany (DE) is roughly twice as likely to travel 
internationally as compared to an individual in Austria (AT). Colors shown in the left panel 
correspond to the source country, and country codes shown are from Eurostat (46). 
 

We then analyzed the Google COVID-19 dataset to quantify reductions in mobility 
and contact rates from January 2020 through the end of March 2020 in response to the 
COVID-19 pandemic (Fig 2). In our simulations, we used observed reductions in mobility in 
each NUTS3 area to proportionally reduce outgoing flows, incoming flows, and local contact 
rates for that area.  
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Fig. 2. Reduction in mobility observed in NUTS3 areas from Feb 11 to Apr 6, 2020. (Left) 
Reduction in mobility observed in each NUTS3 administrative unit across Europe for the 
week of Mar 21-28, 2020 compared to Jan-Feb 2020. Movement data were not available for 
countries in grey. (Right) Weekly average change in mobility across all NUTS3 areas. Dark 
blue shows reductions observed in the Google COVID-19 dataset, light blue shows 
extrapolation of reductions by one week. Black line shows mean change compared to 
baseline. When implementing NPIs in various NUTS3 areas, we used the movement 
reduction estimates for the end of this period, Apr 6 2020. 
 

Using these baseline mobility patterns and reductions in mobility, we simulated the 
spread of COVID-19 over 6 months starting April 4, 2020 while making various assumptions 
about where and when NPIs would be relaxed or reinstated. Across all simulations, we started 
transmission on March 20, 2020 because this predates large reductions in mobility (Fig 2; 
right), allowing the disease to spread initially in a data-driven way that can help account for 
spatial biases in reporting and testing. We parameterized initial numbers of people infected 
using a repository maintained by the Johns Hopkins University CSSE (23). Because the case 
data from this repository were country-level, we distributed cases across NUTS3 area 
proportionally based on population size (Fig S10).  

To simulate different exit strategies and the overall impact of different NPIs enacted, 
we reduced mobility one week past March 28 (for March 29 – April 4) based on the observed 
change between March 15 – 21 to March 22 – 28 to account for changes caused by further 
uptake of existing NPIs (Fig 2). On average, this represented an overall mean 65% reduction 
in mobility compared to January 28 – February 18, agreeing with recent studies on contact 
rate reductions in the UK (24), which observed a 73% reduction in daily contacts. When 
simulating active lockdowns on dates past April 4, we used the predicted mobility reduction 
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for each NUTS3 area from March 29 – April 4. When we simulated countries lifting their 
NPIs entirely, we used the relative mobility patterns observed during March 1 – 7. 

First, we compared secondary epidemic timing when all countries coordinated their 
exit strategies with simulations where one country ended their interventions early. We 
iteratively tested the impact of each country in Europe easing lockdowns starting April 15, 
while all other countries extended their NPIs for 4, 8, and 12 weeks, depending on simulation 
run. For the country that lifted their NPIs early, we assumed people in each NUTS3 area 
would voluntarily reduce their average contact rate by 20% compared to the January – 
February baseline, or slightly less than the reduction in mobility observed on March 23, 
because countries that have lifted NPIs have observed sustained limited mobility reductions 
beyond the relaxing of various restrictions (17). 

  If a country lifted their NPIs early, we found a second epidemic could occur much 
earlier (Fig 3; left). The right panel of Figure 3 measures the earlier timing to 25% of people 
across Europe having had COVID-19 (infected + recovered + exposed; see Fig S13 for plot 
showing this explicitly). This measure captures when uncontrolled widespread transmission 
occurred while accounting for multiple peaks and varying peak heights in Fig 3L. Time to 25% 
infected was particularly sensitive to well-connected countries that implemented strong NPIs, 
such as France and Italy (Fig 3; right). France lifting their NPIs early led to the earliest 
second epidemic, 35 days earlier than if all countries lifted their NPIs simultaneously 
(interquartile range from 32.3 to 36.8 days). Despite having experienced relatively low 
reductions in mobility through March 28, Germany remains important to continental 
resurgence, due to high connectivity with neighboring countries (Fig 1; right). When 
exploring the epidemic curves through time when different countries lifted their NPIs early, 
we found that different types of mobility initiated continental epidemics. While France lifting 
their NPIs early led to resurgence in major population centers continent-wide, Germany 
lifting NPIs early led to resurgence in neighboring countries first (Fig S15). Further, certain 
areas keeping � slightly over 1 under NPIs also led to an initial peak in some simulations, 
and maintained the threat of resurgence even after 12 weeks of NPIs continent-wide (Fig 3, 
left; see SI section “Exploring spatiotemporal dynamics of spread” for more detail).  
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Fig. 3. Epidemic spread if all countries but one maintain existing NPIs. When lifting NPIs 
early, countries reverted to baseline mobility on April 15. (Left) Epidemic curves, with 
varying numbers of weeks that NPIs are implemented. Curves indicate numbers of active 
cases at any given time, rather than numbers of new cases per day. Red lines indicate 
epidemic curves where all countries maintain NPIs for the denoted number of weeks. Blue 
lines indicate epidemic curves if one country ends intervention policies early (each line 
represents one randomly chosen country that ends its policies early); France, Germany, and 
Italy are highlighted. (Right) For the 4 weeks of NPI scenario, the number of days earlier that 
an uncontrolled second epidemic occurs continent-wide if each country ends NPIs early, 
measured as the time to 25% of the population of Europe having had COVID-19. Movement 
data were not available for countries in grey. 

We also tested how cycling NPIs in a synchronized or unsynchronized way affected 
the continent-wide epidemic. Cycled NPIs meant countries switched between being under 
interventions for several weeks and under no interventions for the same number of weeks 
over a number of cycles. Synchronized NPIs meant all countries implemented lockdowns at 
the same time, while unsynchronized NPIs meant half of all countries (randomly chosen for 
each simulation run) were under lockdown at any time. Cycling NPIs reflects the intermittent 
lockdowns that could occur if countries reinstate interventions after surpassing threshold 
numbers of new cases (25, 26). Therefore, this test helps predict what may happen if 
countries do not coordinate the easing and reinstating of NPIs based on regional rates of new 
cases. 

Across 1200 simulations, we found that synchronized cycles of NPIs were always 
more likely to end community transmission over 6 months, and generally lowered 
transmission further than if NPIs were unsynchronized (Fig 4). In the most striking example, 
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four synchronized cycles were enough to eliminate local COVID-19 cases in 90% of 
simulations, while four unsynchronized cycles only led to elimination 5% of the time. Two 
synchronized cycles of four-week NPIs were also sufficient to end community transmission, 
whereas four unsynchronized cycles of four-week NPIs were necessary to end community 
transmission (Fig 4, right). The only simulations where unsynchronized NPIs had fewer cases 
than synchronized NPIs at the end of simulation was with 2 cycles of 3 week-long NPIs (Fig 
4, top left), which occurred because enough people were infected under unsynchronized NPIs 
that herd immunity reduced transmission. 

 

Fig. 4. Cases over time, when NPIs are synchronized and unsynchronized across all European 
countries. Rows vary the number of on-off cycles that occur, and columns indicate the 
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number of on-off cycles implemented. Red: Cases when European countries do not 
synchronize NPI timing. Blue: Cases when European countries are all synchronized in NPI 
timing. Shaded areas indicate intervals in which 95% of simulations fell within, over 200 
simulations.  
 

Intergovernmental organizations such as the World Health Organization have stressed 
the importance of international solidarity in terms of sharing resources and expertise in 
combating COVID-19 (1). Our results reiterate this, as one country ending NPIs before others 
could mean disease resurgence across Europe as many as 5 weeks earlier, reducing the time 
available to expand test-and-treat and to develop new therapeutics or vaccines (Fig 3). 
Heterogeneities in mobility reduction (Fig 2), baseline mobility patterns (Fig 1), and 
population sizes mean that certain countries are particularly important to continental 
resurgence, such as France, Germany, Italy, and Poland (Fig 3).  

These key countries varied in how local cases led to continental resurgence, implying 
different key interventions for each. For example, while spread out of Germany led to 
epidemics in neighboring countries initially, spread out of France led to epidemics in 
population centers continent-wide (Fig S12). This suggests that continued airport closures 
could be key for preventing spread from France to other countries across Europe, while in 
Germany, limiting local travel may be more effective.  

Further, we found that small pockets of community transmission under NPIs could 
assure a second epidemic wave continent-wide. In our study, this occurred due to central 
Turkey experiencing limited mobility reductions (Fig 2) and exhibiting a high starting 
reproductive number (Fig S2) that kept local � slightly above 1 when under NPIs. This had 
dramatic effect across many simulations, as in simulations where small countries lifted their 
NPIs early, we found that resurgence was largely driven by importation from central Turkey 
and exhibited epidemic curves very similar to the case where all countries maintained NPIs 
(Fig 3). While the actual mobility reduction in central Turkey is uncertain and has likely 
changed since late March 2020, this highlights the importance of countries ensuring that � 
stays below 1 during lockdown periods, and the importance of effective screening of 
international travelers from areas with sustained transmission well into the future. 

 We also found that the nature of coordination was key to reducing resurgence risk. 
When cycling NPIs between weeks, synchronized interventions across all countries meant 
that cases could be driven down more quickly (Fig 4). Fewer cases at the end of the 
synchronized lockdowns led to much higher likelihoods of reaching zero cases locally, due to 
a higher chance of stochastic recovery processes leading to interrupted transmission. In real 
terms, the synchronized scenario approximates what could happen if countries set case 
thresholds for lifting NPIs regionally, while the unsynchronized scenario simulates what 
could happen if countries only consider case numbers within their boundaries. 

 This study has several limitations that influence the direct applicability of our case 
number predictions across Europe. First, we use observed mobility reductions as a proxy for 
reductions in contact rate, which may not reflect reality, though the contact rate reduction 
estimates from this process accord with those observed in other studies (24). Secondly, 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 19, 2020. ; https://doi.org/10.1101/2020.06.16.20132688doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.16.20132688
http://creativecommons.org/licenses/by-nc/4.0/


COVID-19 is known to exhibit age-dependent severity, and contact rates are strongly age-
dependent (27, 28), which could introduce heterogeneities that we did not incorporate into 
our simulations. We believe our results should be robust to these limitations, however, 
because we ran our simulations over different values of � and varying the serial interval. In 
these sensitivity analyses, we found that the existence of key countries and the importance of 
coordinated NPIs were robust to these changes (see SI), though varying the serial interval 
could extend or shrink the second epidemic timings and epidemic peaks observed in Fig 3. 
Additionally, we reduced mobility for each NUTS3 area uniformly. In reality, long-distance 
movement reduced much more than short-distance movement due to country-level travel 
restrictions and other NPIs (Fig S8). This likely provides a continental protective effect 
against early resurgence compared to our results, particularly if quarantining measures are put 
in place for long-distance travelers. 

Our mobility estimates may also be biased due to the populations included in the 
Google and Vodafone data. Google’s consumer Location History feature is only available 
from smartphone users, is turned off by default, and is viewed through the lens of differential 
privacy algorithms designed to protect user privacy and obscure fine detail. Vodafone’s 
anonymized and aggregated data were based on network data from customers who had full 
control over their privacy settings, potentially introducing biases as well. This work makes a step 
towards using multiple datasets to capture population-level patterns that go beyond any one 
service or system. Further, because both the Google and Vodafone data are aggregate datasets, 
we could not account for individual-level correlation in mobility patterns in our model (i.e. 
individuals who travel elsewhere but return home shortly thereafter). This likely means our 
model will overestimate spread and resurgence in general, as infectious people will end up 
less likely to return home. 

 Coordination will be key to an effective, equitable response to COVID-19. This 
means not just sharing resources, but also ensuring that exit strategies account for 
neighboring countries and regions. While coordinating exit strategies across an entire 
continent may prove politically difficult, the presence of key countries and community 
structure offer possible coordination groups that do not require engagement from all countries 
(see SI, community detection). Further, coordinated exit strategies that account for real-time 
case data will likely improve outcomes compared to our predictions, as we simulated 
intermittent NPIs that were lifted regardless of actual transmission context. A multifaceted, 
reactive approach to lifting NPIs will be necessary to minimize resurgence risk. This means 
beyond international cooperation, robust test-and-treat (30) and household quarantine (31) 
measures should be in place. Future work will further inform the role mobility, NPIs, and 
international coordination can play in slowing COVID-19 resurgence, building on existing 
work (29) examining invasion, re-invasion, and disease extinction (32) in spatially structured 
populations. 

The implications of our study extend well beyond Europe and COVID-19, broadly 
demonstrating the importance of communities coordinating easing of various NPIs for any 
potential pandemic. In the United States, NPIs have been generally implemented at the state-
level, and because states will be strongly interconnected, our results emphasize national 
coordination of pandemic prepararedness efforts moving forward. Elsewhere, relatively 
porous national borders between many lower and middle income countries mean without 
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coordination, these countries may have to deal with significant international importation after 
controlling local transmission (33). COVID-19 transmission and transmission of any 
infectious disease will ignore national and provincial borders; preventing resurgence and 
spread will mean ensuring that pockets of transmission do not persist in areas with limited 
interventions at the expense of later epidemics in others.  
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