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Abstract 

Background: 

We developed two unique machine learning (ML) models that predict risk of: 1) a major COVID-19 

outbreak in the service county of a local HD population within following week, and 2) a hemodialysis 

(HD) patient having an undetected SARS-CoV-2 infection that is identified after following 3 or more days. 

Methods: 

We used county-level data from United States population (March 2020) and HD patient data from a 

network of clinics (February-May 2020) to develop two ML models. First was a county-level model that 

used data from general and HD populations (21 variables); outcome of a COVID-19 outbreak in a dialysis 

service area was defined as a clinic being located in one of the national counties with the highest growth 

in COVID-19 positive cases (number and people per million (ppm)) in general population during 22-28 

Mar 2020. Second was a patient-level model that used HD patient data (82 variables) to predict an 

individual having an undetected SARS-CoV-2 infection that is identified in subsequent ≥3 days. 

Results: 

Among 1682 counties with dialysis clinics, 82 (4.9%) had a COVID-19 outbreak during 22-28 Mar 2020. 

Area under the receiver operating characteristic curve (AUROC) for the county-level model was 0.86 in 

testing dataset. Top predictor of a county experiencing an outbreak was the COVID-19 positive ppm in 

the general population in the prior week. In a select group (n=11,664) used to build the patient-level 

model, 28% of patients had COVID-19; prevalence was by design 10% in the testing dataset. AUROC for 

the patient-level model was 0.71 in the testing dataset. Top predictor of an HD patient having a SARS-

CoV-2 infection was mean pre-HD body temperature in the prior week. 
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Conclusions: 

Developed ML models appear suitable for predicting counties at risk of a COVID-19 outbreak and HD 

patients at risk of having an undetected SARS-CoV-2 infection. 

Key Words: Coronavirus, COVID-19, SARS-CoV-2, Artificial Intelligence, Machine Learning, End Stage 

Kidney Disease, Dialysis 
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Introduction: 

The 2019 coronavirus disease (COVID-19) pandemic is challenging the world’s healthcare systems, 

including bringing complexities to maintenance of dialysis in people with end stage kidney disease 

(ESKD) (1-5). In the United States, most ESKD patients are treated by outpatient hemodialysis (HD) 

where social distancing can be difficult and heightened infection control measures are required (e.g. 

temperature screenings, double-masking, isolation treatments/shifts/clinics) (1-5). ESKD patients are 

typically older and have multiple comorbidities, placing the population at higher risks for requiring 

intensive care and dying if affected by COVID-19 (6-12). 

Early reports from the United States show an 11% COVID-19 mortality in ESKD (13), which is higher than 

the 3.2% COVID-19 mortality in the national population (14). This is not unexpected with reports from 

China and Europe suggesting a 16% and 23% COVID-19 mortality in ESKD (15, 16). Albeit the high 

mortality rate, an impaired immune response may render dialysis patients more frequently 

asymptomatic when infected by SARS-CoV-2 (15, 16). In both the general and EKSD populations, the 

most prevalent symptoms of COVID-19 at presentation are fever (11%-66% dialysis & 82% general 

population) and cough (57% dialysis & 62% general population) (15, 17, 18). The less frequent 

occurrence of signs and symptoms indicative of COVID-19 in dialysis patients could be making the 

outbreak even more challenging to manage. 

Dialysis providers routinely capture patient/clinical data during care. The robust data collected during 

HD treatments (generally thrice weekly) provide unique opportunities to leverage artificial intelligence 

(AI) in predicting COVID-19 outcomes. AI modeling helped identify onset of the outbreak in China (19, 

20) and is currently being used to help with early detection of areas/individuals in the general 

population at risk of being affected by COVID-19 (21-23). 
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As part of an healthcare operations effort in response to the COVID-19 outbreak, an integrated kidney 

disease healthcare company aimed to develop two unique machine learning (ML) prediction models 

that identify risk of: 1) a major COVID-19 outbreak in a dialysis service county, and 2) a HD patient 

having an undetected severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. We 

analyzed the performance of these models to determine their possible utility for testing in the HD 

population. 

Materials and Methods: 

General: 

An integrated kidney disease healthcare company (Fresenius Medical Care, Waltham, MA, United 

States) used COVID-19 data on the general United States population and HD patient data from a 

national network of dialysis clinics (Fresenius Kidney Care, Waltham, MA, United States) to develop two 

unique ML models that predict risk of: 1) a major COVID-19 outbreak in the county of dialysis clinic(s) 

servicing a local HD population in the following week (7 days), and 2) an adult HD patient having an 

undetected SARS-CoV-2 infection that is identified after the following ≥3 days. 

This analysis was performed in adherence with the Declaration of Helsinki under a protocol reviewed by 

New England Independent Review Board (NEIRB). This retrospective analysis was determined to be 

exempt and did not require consent (Needham Heights, MA, United States; NEIRB#1-17-1302368-1). 

Populations and Outcomes: 

County Population and COVID-19 Outbreak: 
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For construction of a model to predict a major COVID-19 outbreak in the county for a local HD 

population, we obtained data on daily COVID-19 positive (COVID-19+) cases in each United States 

county during 14-28 Mar 2020 from The New York Times COVID-19 dataset (The New York Times 

Company, New York City, United States) (24). We also captured data on the total United States county 

population (25). We used retrospective county-level data from local HD populations at the national 

network of clinics from 08-28 Mar 2020. 

We used data from all counties with ≥1 dialysis clinic and >5 HD patients. The outcome of a major 

COVID-19 outbreak in a dialysis service area (county) was defined was defined by  a clinic being located 

in one of the top 300 national counties that had a combination of the highest (a) growth rate in COVID-

19+ cases (number and people per million (ppm)) in the general population, and (b) highest number of 

COVID-19+ cases ppm in the last week of the observation period (22-28 Mar 2020). 

Patient Population and SARS-CoV-2 Infection: 

For the construction of a model to predict individuals with an undetected SARS-CoV-2 infection, we 

considered data from adult (age ≥18 years) HD patients treated in the national network. Positive arm 

included data from patients who had ≥1 laboratory (rRT-PCR) confirmed COVID-19+ test as of the end of 

the observation period (27 Feb 2020 through 04 May 2020). Negative arm included data from patients 

who: 1) resided in counties with no reported COVID-19 cases as of 12 April 2020, and/or 2) had been 

laboratory tested and were found COVID-19 negative. 

We defined the index date of a HD patient having a SARS-CoV-2 infection as the date of the first 

recorded suspicion that led to a COVID-19+ test, or the date of the COVID-19+ test in patients without 

an earlier recorded suspicion. In control patients with a negative COVID-19 test result, the test date was 

used as the index date. In controls without a test (patients living in counties with no reported cases), the 
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index date was randomly sampled from the positive cases’ index dates occurring before 30 March 2020. 

This cutoff was chosen to minimize the possibility that control patients were infected but not tested (or 

reported) until after the date defining negative counties of 12 April 2020. We included data from 

patients with 1) ≥1 laboratory (of any kind) collected both 1-14 days and 31-60 days before the 

individual’s prediction date (3 days prior to index date, further defined below), and 2) ≥1 HD treatment 

both 1-7 days and 31-60 days preceding the prediction date. We excluded data from patients suspected 

to have COVID-19 and/or pending laboratory testing. 

AI Model Development: 

Software: 

We used Python version 3.7.7 (Python Software Foundation, Delaware, United States) to build two ML 

models utilizing the XGBoost package (26). 

County-Level COVID-19 Outbreak Prediction Model: 

In the county-level model, we considered county-wide data in the general population for 4 variables and 

county-wide data on each local HD population based on the county of the dialysis clinic(s) for 17 a priori 

selected variables detailed in Table 1 and Figure 1A. The ML model was trained, validated, and tested 

using a random 60:20:20% split of the dataset. 

Patient-Level SARS-CoV-2 Infection Prediction Model: 

In the patient-level model, we used 82 a priori selected treatment/laboratory variables (Tables 3 and 4; 

Figure 1B) up to the individually defined prediction date (3 days prior to the index date defined above) 

to predict the risk of a SARS-CoV-2 infection being identified in the following ≥3 days. This is intended to 
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yield individual predictions at least 3 days in advance of symptoms that warranted testing. We used a 

60:20:20% randomized split of COVID-19+ samples for the training, validation, and testing datasets, and 

added the same number of COVID-19 negative patients to only the training and validation datasets. The 

testing dataset used to evaluate final model performance had a higher number of COVID-19 negative 

samples added to more closely match the prevalence observed in the overall national HD population. 

Statistical Methods: 

Descriptive Statistics: 

Descriptive statistics were tabulated for demographics and variables before the predicted COVID-19 

outbreak in a county or HD patient SARS-CoV-2 infection. 

Analysis of ML Model Feature Importance: 

Shapley values (27, 28) were calculated using the SHAP python package to determine the influence of 

each variable on model predictions (29, 30). SHAP value is calculated for each variable and each 

observation, representing a measure of impact (positive or negative) of the observed value’s 

contribution to each individual prediction. Overall feature importances for each model were calculated 

using the mean absolute values for each variable across all measures. 

Analysis of ML Model Performance: 

Performance of ML models was measured by the area under the receiver operating characteristic curve 

(AUROC) in the training, validation, and testing datasets, as well as, the recall, precision, and lift in the 

testing datasets (Refer to Supplementary Methods for further details). AUROC, recall, and precision 

metrics yield scores on a scale of 0 (lowest) to 1 (highest). Lift metric yields an estimate of how many 
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times more/less effective the model is at predicting the outcome versus not using a model. Cutoff 

thresholds for classifying predictions were selected to optimize recall, precision, and lift. 

Results: 

Prediction of Counties with a COVID-19 Outbreak: 

County Characteristics: 

Among all counties with dialysis clinic(s) servicing local HD populations, 4.9% (n=82) of counties had a 

major COVID-19 outbreak during the week of 22-28 Mar 2020 (Supplementary Table 1), as defined as 

being in the top 300 United States counties with the highest growth in COVID-19+ people (number and 

ppm) in the general population (Table 1). Counties with a COVID-19 outbreak had a 30% higher 

population density compared to counties without an outbreak. 

On average, the proportion of patients residing at an assisted living facility did not remarkably differ for 

local HD populations among counties with a major COVID-19 outbreak or not (Table 1). The proportion 

of HD treatments with high body temperatures (>100 F) in the 14 days before a COVID-19 outbreak was 

<1 percentage point different between county groups. The percent change in the 14-day county-wide 

mean value for clinical, treatment, and laboratory parameters during the prior 28 days before a COVID 

outbreak was small in local HD populations and unremarkable in all cases. 

County-Level Prediction Model Feature Importance: 

Assessment of variable feature importance with SHAP values showed the top predictors of counties 

experiencing an outbreak were the COVID-19+ ppm in the general population during prior 7 days, 
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number of deaths per COVID-19+ case in the general population during prior 7 days, and the change in 

14-day mean pre-HD body temperature among local HD patients in prior 28 days (Figure 2A). 

SHAP value plot in Figure 2B further shows the degree of positive or negative impact of each individual 

measurement on the prediction. For example, individual counties with a higher number of COVID-19+ 

ppm in the general population during prior 7 days (warmer colors) were associated with a higher SHAP 

value, and this was typically vice versa for individual counties with a lower number of COVID-19+ ppm 

(cooler colors). 

County-Level Prediction Model Performance: 

The ML model had good performance in prediction of the 7-day risk for counties experiencing a COVID-

19 outbreak. The AUROC for the model was 0.988, 0.799, and 0.857 in the training, validation, and 

testing datasets respectively (Figure 3). 

A threshold of 0.85 provided the best performance for the model within goals of limiting false positives. 

In the testing dataset, the recall was 0.35 showing the model correctly predicted true positives for a 

COVID-19 outbreak in 35% of positive counties. The precision was 0.40 showing 40% of counties 

predicted to have an outbreak physically experienced a COVID-19 outbreak. The lift was 7.9 in the 

testing dataset, suggesting model use is 7.9 times more effective in predicting a COVID-19 outbreak in a 

county compared to not using a model. 

Prediction of HD Patients with a SARS-CoV-2 Infection: 

Patient Characteristics: 
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We identified data from 11,664 HD patients meeting eligibility criteria (3,249 COVID-19+ cases and 8,415 

unaffected (control) patients). The prevalence of COVID-19+ cases (about 28% COVID-19+) in the 

training and validation datasets was consistent within the cohort. For the testing dataset used to 

evaluate final model performance, there was a 10% prevalence of COVID-19+ cases based on the 

designed data split. 

In the cohort, there was a higher proportion of HD patients with a SARS-CoV-2 infection of black race, 

Hispanic ethnicity, and with diabetes (Table 2). Mean values for treatment and laboratory variables 

before a SARS-CoV-2 infection being identified in the subsequent ≥3 days (or concurrent index date in 

controls) are shown in Tables 3 & 4. 

HD patients who contracted COVID-19 had only subtle, clinically unremarkable distinctions in 

treatment/laboratory characteristics before being suspected to have a SARS-CoV-2 infection compared 

to unaffected patients. Mean pre-/post-HD body temperatures (Table 3) and inflammatory markers 

(white blood cell (WBC) count and differential) (Table 4) before a SARS-CoV-2 infection being identified 

did not did not show a clinically relevant difference differ between groups. HD patients who had a SARS-

CoV-2 infection identified in the following 3 days did have higher ferritin levels compared to unaffected 

patients. 

Patient-Level Prediction Model Feature Importance: 

Calculation of variable feature importance with SHAP values found the top three predictors of HD 

patients having a SARS-CoV-2 infection were the patient’s mean pre-HD body temperature, blood urea 

nitrogen (BUN), and albumin (Figure 4A). 

The SHAP value plot is shown in (Figure 4B). For the top predictor of mean pre-HD body temperature 

before a SARS-CoV-2 infection, higher body temperatures (warmer colors) were mostly associated with 
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a positive SHAP value, while lower body temperatures (cooler colors) were always associated with a 

negative SHAP value. 

Patient-Level Prediction Model Performance: 

The HD patient-level model had adequate performance in prediction of the 3-day risk of a SARS-CoV-2 

infection. The ML model had an AUROC of 0.88, 0.69, and 0.71 in the training, validation, and testing 

datasets respectively (Figure 5). 

Setting the threshold for classifying observations as positive or negative at 0.85 to minimize false 

positives, precision for the ML model in the testing dataset was 0.42 showing 42% of patients predicted 

to have a SARS-CoV-2 infection actually had symptoms in the subsequent ≥3 days and were confirmed to 

have COVID-19. The lift was 4.2, suggesting model use is 4.2 times more effective in predicting a HD 

patient who contracts COVID-19, as compared to not having a model. However, given the high 

threshold, recall was 0.04 showing the model correctly predicted true positives for a SARS-CoV-2 

infection in 4% of positive HD patients. 

Discussion: 

We successfully developed two ML prediction models using retrospective data that appear to have 

suitable performance in identifying counties at risk of a major COVID-19 outbreak in the following week 

and HD patients at risk of having a SARS-CoV-2 infection in the following ≥3 days. The top predictor of a 

COVID-19 outbreak in a county was the COVID-19+ ppm in the general population during prior week. 

The top predictor of a SARS-CoV-2 infection was the individual patient’s mean weekly body 

temperature. 
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Albeit top predictors are not surprising, the observed distinctions were subtle. Without insights from the 

models considering an array of variables, it would not be clear where one should classify a higher/lower 

risk for a county or patient that is meaningful. For instance, an increase of 0.2°F (0.1°C) observed in 

weekly pre-HD body temperature alone may not be considered actionable. The average pre-HD body 

temperature was 97.5°F (36.4°C) (primarily oral measurements) in our analysis and has been previously 

reported as 98.2°F (36.7°C) (31). Given 98.6°F (37°C) is the expected average in healthy populations, the 

lower body temperature of HD patients is of importance with the rather low incidence of fever 

presenting in dialysis patients with COVID-19 (11%-to-66% with fever (15, 17)). 

Prospective testing appears warranted and we anticipate combination of the county- and patient-level 

models may yield the greatest early insights on where and when providers can focus additional resource 

allocations to combat COVID-19, and what otherwise asymptomatic HD patients might be most 

appropriate for COVID-19 testing and triage to an isolation shift/clinic. These models have potential to 

provide a data-driven way for dialysis providers/clinicians to predict local transmission rates of COVID-19 

and individuals with undetected infections. As more data is captured in the COVID-19 outbreak, further 

prediction models that can classify the risk of morbid/mortal outcomes in dialysis patients need to be 

developed. 

The potential applications of AI for COVID-19 have been previously detailed (32); the first priority was 

suggested as “early detection and diagnosis of the infection”. In the United States, county-level 

surveillance models have been developed to estimate dynamics of COVID-19 on hospital resource 

capacities (33) and relative risk of an emerging COVID-19 outbreak (34). Our model expands upon 

surveillance efforts by using advanced ML techniques to identify the risks of a COVID-19 outbreak in 

counties considering predictor variables specific to the HD population. The robustness of data and an a 

priori selection of variables to be included in both the county- and patient-level ML models bring value 
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through assessment of feature importance; this allows for interpretation of meaningfulness of 

predictors, albeit it does not determine causality. 

A systematic review identified several models developed using data from China for early detection of 

COVID-19 in suspected individuals (23). None were designed for chronic disease populations. One is an 

externally validated ML model that predicts COVID-19 in suspected asymptomatic patients (AUROC 

validation=0.872) (35). Another effort used a prediction model (AUROC validation=0.966) to develop 

logic for an 8 variable COVID-19 risk chart (36). A further model with an AUROC of 0.938 was created to 

detect COVID-19 pneumonia in patients admitting to a fever clinic (37). Other models use 

genomic/computed tomography data to diagnose COVID-19 (23). Consistent variables used across 

models included age, body temperature, and flu-like illness symptoms (23). Although these models were 

all reported to have suitable performance, all were subject to bias due to non-generalizable sampling of 

controls without COVID-19 and possible overfitting. We cannot rule out that our ML models may have 

similar bias, although they included large samples and the testing dataset for the patient-level model 

had relatively generalizable sampling for the dialysis population with respect to positives/negatives (13). 

Our patient-level model is unique in its ability to identify the risk of SARS-CoV-2 infection in patients 

without any suspicion of being affected with the disease. 

These developed models hold promise to help providers with the COVID-19 pandemic and any 

subsequent wave(s) of outbreak (38, 39). Nonetheless, AI modeling is never 100% accurate and model 

risk classifications need to be interpreted within the extent of the model’s performance. 

Conclusions: 

The developed AI models showed suitable performance in prediction of dialysis service areas at risk of 

becoming a COVID-19 hotspot and individual HD patients at risk of having an undetected SARS-CoV-2 
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infection. Prospective testing is needed, and these models should provide key insights for consideration 

by healthcare providers. 
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Tables: 

Table 1: Characteristics of Dialysis Service Areas (Counties) with and without a Major COVID-19 
Outbreak in the Subsequent 7 Days 

Variable 
Counties without 
Major Outbreak 

N (%) or Mean±SD 

Counties with Major 
COVID-19 Outbreak 
N (%) or Mean±SD 

County Characteristics of General Population   

Number of Counties 1600 82 

COVID-19+ ppm in Prior Week† 23 87 

Deaths per COVID-19+ Case in Prior Week† 0.016884 0.021824 

Change in COVID-19+ ppm in Prior 2 Weeks† 5.90 15.43 

Population Density (Per Square Mile)† 355 1196 

County Characteristics of Local HD Population   

Number of HD Patients 158070 20531 

Residing in Assisted Living Facility† 10% 11% 

HD Nonadherence in the Prior 2 Weeks† 5.2% 4.9% 

% Treatments with Pre/Post-HD Body Temperature(s) 
>100°F in Prior 2 Weeks† 

0.79% 0.83% 

Change in 2 Week Mean Number of HD Treatments in 
Prior 4 Weeks† 

0.9% 1.1% 

Change in 2 Week Mean % HD Nonadherence in Prior 4 
Weeks† 

-0.8% -0.4% 

Change in 2 Week Mean % Treatments with Body 
Temperature(s) >100°F in Prior 4 Weeks† 

0.3% 0.4% 

Change in 2 Week Mean HD Treatment Time in Prior 4 
Weeks† 

0.04% 0.01% 

Change in 2 Week Mean Pre-HD DBP in Prior 4 Weeks† -0.12% -0.14% 

Change in 2 Week Mean Pre-HD Body Temperature in 
Prior 4 Weeks† 

0.07% 0.10% 

Change in 2 Week Mean Pre-HD Weight in Prior 4 
Weeks† 

0.01% -0.13% 

Change in 2 Week Mean IDWG in Prior 4 Weeks† 0.9% 1.2% 

Change in 2 Week Mean LDH in Prior 4 Weeks† 4.16% 1.31% 

Change in 2 Week Mean Platelets in Prior 4 Weeks† 0.76% -1.19% 

Change in 2 Week Mean Lymphocytes in Prior 4 Weeks† 5.08% 4.05% 

Change in 2 Week Mean Neutrophils in Prior 4 Weeks † -0.32% -0.41% 

Change in 2 Week Mean Monocytes in Prior 4 Weeks† 2.18% 3.97% 

Change in 2 Week Mean Hgb in Prior 4 Weeks† 0.12% 0.39% 

† County-wide variables included in the ML prediction model to classify the 7-day risk of a COVID-19 
outbreak in a county with dialysis clinics servicing a local HD population. 
HD: hemodialysis; CHF: congestive heart failure; BMI: body mass index; IDWG: interdialytic weight 
gain; Hgb: hemoglobin; N: patient count; SD: standard deviation. 1 mile = 1.6 kilometer. (100°F − 32) × 
5/9 = 37.8°C. 
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Table 2: Demographics and Comorbidities of HD Patients with and without SARS-CoV-2 
Infection Identified in the Subsequent ≥3 Days 

 

Variable 
Unaffected Patients 
N (%) or Mean±SD 

COVID-19+ Patients 
N (%) or Mean±SD 

Number of HD patients 8,415 3,249 
Age (Years) 62.75±14.08 64.22±13.82 
Male 4694 (55.78%) 1878 (57.80%) 
White Race 3803 (45.19%) 1219 (37.52%) 
Black Race 2158 (25.64%) 1118 (34.41%) 
Other Race 235 (2.79%) 97 (2.99%) 
Unknown Race 2219 (26.37%) 815 (25.08%) 
Hispanic Ethnicity 562 (9.43%) 402 (16.81%) 
BMI (kg/m2) 29.60±7.78 29.25±8.10 
Dialysis Vintage (Years) 3.66±4.01 3.97±4.05 
Diabetes 5588 (66.43%) 2336 (72.21%) 
CHF 2075 (24.67%) 805 (24.88%) 
Ischemic heart disease 2378 (28.27%) 810 (25.04%) 
HD: hemodialysis; CHF: congestive heart failure; BMI: body mass index; N: patient count; SD: standard 
deviation 
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Table 3: Clinical and Treatment Characteristics of HD Patients with and without SARS-CoV-2 Infection 
Identified in the Subsequent ≥3 Days 

Variable 
Unaffected Patients 
N (%) or Mean±SD 

COVID-19+ Patients 
N (%) or Mean±SD 

Pre-HD Sitting SBP (mmHg)† 8415, 149.73±23.35 3249, 145.95±23.38 

Change in Pre-HD Sitting SBP (mmHg)‡ 8415, 0.07±16.45 3249, -0.95±16.72 

Pre-HD Sitting DBP (mmHg)† 8415, 77.60±14.32 3249, 75.44±13.30 

Change in Pre-HD Sitting DBP (mmHg)‡ 8415, -0.03±9.44 3249, -0.56±9.15 
Pre-HD Weight (kg)† 8415, 86.80±24.09 3249, 85.11±25.32 

Change in Pre-HD Weight (kg)‡ 8415, -0.20±2.50 3249, -0.75±2.80 

Pre-HD Body Temperature (°F)† 8415, 97.50±0.63 3249, 97.73±0.67 

Change in Pre-HD Body Temperature (°F)‡ 8415, 0.09±0.59 3249, 0.28±0.66 

Post-HD Sitting SBP (mmHg)† 8415, 141.20±22.07 3249, 140.75±21.17 
Change in Post-HD Sitting SBP (mmHg)‡ 8415, 1.39±15.63 3249, 2.13±15.52 

Post-HD Sitting DBP (mmHg)† 8415, 73.91±12.90 3249, 73.41±12.24 

Change in Post-HD Sitting DBP (mmHg)‡ 8415, 0.80±8.83 3249, 0.99±8.78 

Post-HD Body Temperature (°F)† 8415, 97.60±0.57 3249, 97.73±0.62 

Change in Post-HD Body Temperature (°F)‡ 8415, 0.07±0.50 3249, 0.20±0.58 

Pre-HD Respirations per Minute† 8415, 17.73±1.25 3249, 17.74±1.09 
Change in Pre-HD Respirations per Minute‡ 8415, 0.01±1.02 3249, 0.02±1.01 

Pre-HD Pulse (BPM)† 8415, 79.09±12.28 3249, 78.60±11.90 

Change in Pre-HD Pulse (BPM)‡ 8415, 0.23±7.49 3249, 1.06±7.55 

Post-HD Respirations per Minute† 8415, 17.61±1.15 3249, 17.69±1.10 

Change in Post-HD Respirations per Minute‡ 8415, 0.002±0.95 3249, 0.01±0.99 
Post-HD Pulse (BPM)† 8415, 76.87±11.44 3249, 77.42±11.13 

Change in Post-HD Pulse (BPM)‡ 8415, -0.32±7.45 3249, 0.99±7.81 

IDWG (kg)† 8343, 2.23±1.28 3217, 1.90±1.23 

Change in IDWG (kg) ‡ 8321, 0.02±1.01 3201, -0.22±1.04 

Post-HD Weight Loss (kg)† 8410, -2.26±1.12 3249, -2.02±1.04 
Change in Post-HD Weight Loss (kg)‡ 8409, -0.03±0.75 3248, 0.13±0.75 

Post-HD Body Temperature Change† 8415, 0.11±0.65 3249, 0.001±0.69 

Change in Post-HD Body Temperature Change‡ 8415, -0.02±0.66 3249, -0.08±0.69 

Post-HD Respirations per Minute Change† 8415, -0.12±1.01 3249, -0.05±0.92 

Change in Post-HD Respirations per Minute Change‡ 8415, -0.01±1.07 3249, -0.01±1.03 
Post-HD Pulse Change (BPM)† 8415, -2.21±8.77 3249, -1.18±8.49 

Change in Post-HD Pulse Change (BPM) ‡ 8415, -0.54±7.85 3249, -0.08±4.86 

% HD Treatments with Nasal Oxygen Administered† 8415, 0.06±0.20 3249, 0.06±0.18 

Change in % HD Treatments with Nasal Oxygen 
Administered‡ 

8415, 0.006±0.15 3249, 0.007±0.14 

All variables were included in the ML prediction model to classify the risk of an individual HD patient having a 
SARS-CoV-2 infection being identified in the following ≥3 days. 
† Mean values of HD treatment variables 1-7 days before the prediction date (i.e. 3 days before suspicion of 
SARS-CoV-2 infection in standard clinical practice). 
‡ Mean values of the difference in HD treatment variables 31-60 days to 1-7 days before the prediction date. 
HD: hemodialysis; SBP: systolic blood pressure; DBP: diastolic blood pressure; IDWG: interdialytic weight gain; 
Post-HD Weight Loss: post-HD minus pre-HD weight (kg); N: patient count; SD: standard deviation. (100°F − 32) 
× 5/9 = 37.8°C 
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Table 4: Laboratory Characteristics of HD Patients with and without SARS-CoV-2 Infection Identified in the 
Subsequent ≥3 Days 

Variable 
Unaffected Patients 
N (%) or Mean±SD 

COVID-19+ Patients 
N (%) or Mean±SD 

Albumin (g/dL)† 4995, 3.7±0.4 1486, 3.7±0.5 

Change in Albumin (g/dL)‡ 4655, -0.01±0.25 1432, -0.02±0.3 

Creatinine (mg/dL)† 4968, 7.9±2.9 1487, 8.2±3.0 

Change in Creatinine (mg/dL)‡ 4615, 0.04±1.4 1423, 0.1±1.4 
Bicarbonate (mmol/L)† 4991, 24.2±3.1 1496, 24.3±3.1 

Change in Bicarbonate (mmol/L)‡ 4613, -0.1±3.1 1435, -0.2±3.0 

BUN (mg/dL)† 5097, 53.8±18.1 1654, 55.1±18.5 

Change in BUN (mg/dL)‡ 4835, -0.1±16.2 1614, -0.3±16.1 

URR† 4852, 74.9±6.4 1569, 74.9±6.1 
Change in URR‡ 4511, 0.06±5.9 1507, 0.05±5.7 

Sodium (mmol/L)† 4855, 137.5±3.4 1465, 137.3±3.5 

Change in Sodium (mmol/L)‡ 4488, -0.07±2.9 1404, -0.4±3.2 

Potassium (mmol/L)† 5595, 4.8±0.7 1790, 4.8±0.7 

Change in Potassium (mmol/L)‡ 5278, 0.01±0.6 1746, 0.01±0.6 

Phosphate (mg/dL)† 5357, 5.5±1.8 1686, 5.2±1.7 
Change in Phosphate (mg/dL)‡ 5054, 0.02±1.5 1646, -0.02±1.4 

Calcium (mg/dL)† 5397, 8.8±0.7 1725, 8.9±0.7 

Change in Calcium (mg/dL)‡ 5100, -0.003±0.6 1680, -0.02±0.6 

Corrected Calcium (mg/dL)† 4783, 9.0±0.7 1410, 9.1±0.7 

Change in Corrected Calcium (mg/dL)‡ 4365, 0.007±0.5 1347, 0.005±0.6 
iPTH (pg/mL)† 3428, 481.3±423.6 1178, 494.8±484.6 

Change in iPTH (pg/mL)‡ 2445, -26.4±303.8 855, -30.2±294.5 

Ferritin (ng/mL)† 2827, 1036.8±553.9 1020, 1213.5±981.1 

Change in Ferritin (ng/mL)‡ 1509, 29.7±516.4 540, 166.9±761.1 

TSAT (%)† 4870, 32.1±14.2 1446, 30.3±14.4 
Change in TSAT (%)‡ 4460, -0.1±15.1 1375, -2.0±15.7 

Hgb (g/dL)† 8415, 10.6±1.3 3249, 10.6±1.3 

Change in Hgb (g/dL)‡ 8415, 0.03±1.1 3249, 0.1±1.2 

Platelet Count (x 109/L)† 3891, 199.6±75.0 1298, 195.2±79.4 

Change in Platelet Count (x 109/L)‡ 3501, -1.3±52.3 1208, -9.5±56.9 
WBC Count (x 109/L)† 4696, 7.1±2.5 1463, 6.6±2.4 

Change in WBC Count (x 109/L)‡ 4326, 0.1±1.9 1387, -0.3±1.9 

% of Neutrophils† 3312, 66.9±9.9 1184, 67.0±10.4 

Change in % of Neutrophils‡ 3026, 0.4±7.7 1102, 0.5±8.4 

% of Lymphocytes† 3312, 19.3±8.2 1184, 19.4±8.6 

Change in % of Lymphocytes‡ 3026, -0.2±5.7 1102, -0.4±6.3 
% of Monocytes† 3312, 6.5±2.0 1184, 6.8±2.2 

Change in % of Monocytes‡ 3026, 0.03±1.7 1102, 0.3±2.1 

% of Eosinophils† 3312, 4.5±3.0 1183, 3.9±3.0 

Change in % of Eosinophils‡ 3024, -0.2±2.3 1101, -0.4±2.6 

% of Basophils† 3310, 0.7±0.5 1183, 0.6±0.4 
Change in %of Basophils‡ 3019, -0.02±0.6 1099, -0.0003±0.5 

NLR† 3312, 4.6±4.3 1184, 4.7±3.7 

Change in NLR‡ 3026, 0.1±4.5 1102, 0.4±2.8 

MLR† 3312, 0.4±0.3 1184, 0.4±0.3 

Change in MLR‡ 3026, 0.01±0.2 1102, 0.04±0.2 
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All variables were included in the ML prediction model to classify the risk of an individual HD patient having a 
SARS-CoV-2 infection being identified in the following ≥3 days. 
† Mean values of laboratory variables 1-14 days before the prediction date (i.e. 3 days before suspicion of SARS-
CoV-2 infection in standard clinical practice). 
‡ Mean values of the difference in laboratory variables 31-60 days to 1-14 days before the prediction date. 
HD: hemodialysis; Hgb: hemoglobin; WBC: white blood cell; TSAT: transferrin saturation; URR: urea reduction 
ratio; iPTH: intact parathyroid hormone; BUN: blood urea nitrogen; NLR: neutrophil to lymphocyte ratio; MLR: 
monocyte to lymphocyte ratio; N: patient count; SD: standard deviation. 
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Figure Legends: 

 

 

Figure 1: Prediction timelines for the unique county- and patient-level ML models. A) Timeline of data 

ascertainment and prediction of dialysis service areas (counties) with and without a major COVID-19 

outbreak in the subsequent 7 days. ML model used county-wide variables in local HD population († 

mean values 14 days before the index date; ‡ difference in mean values 15-28 days to 1-14 days before 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.15.20131680doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.15.20131680
http://creativecommons.org/licenses/by-nd/4.0/


25 
 

the index date) and county-wide variables in general population (◊ 1-7 days before the index date; ○ 

difference in mean values 8-14 days to 1-7 days before the index date) for prediction of major COVID-19 

outbreak in a United States county. B) Timeline of data ascertainment and prediction of HD patients 

with and without SARS-CoV-2 infection identified in the subsequent ≥3 days. ML model used HD 

treatment variables († mean values 1-7 days before the prediction date; ‡ difference in mean values 31-

60 days to 1-7 days before the prediction date) and laboratory variables (◊ mean values 1-14 days 

before the prediction date; ○ difference in mean values 31-60 days to 1-14 days before the prediction 

date) for prediction of SARS-CoV-2 infection. 
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Figure 2A 

 

Figure 2B 

 

Figure 2: SHAP value plots for the county-level COVID-19 outbreak ML model showing the extent each 

predictor contributes (positively or negatively) to each individual prediction. A) Bar plot of the mean 

absolute SHAP values for the top 10 predictors in descending order. B) SHAP value plot for the degree of 
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the positive or negative impact of each individual measurement on the prediction (x-axis), with warmer 

colors representing higher observed values for that measurement, and cooler colors indicating lower 

values for that measurement. 

 

Figure 3 

 

Figure 3: Area under the receiver operating characteristic curve (AUROC) plot for the county-level 

COVID-19 outbreak ML model showing the rate of true and false positives classified by the prediction 

model across probability thresholds. 
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Figure 4A 

 

Figure 4B 

 

Figure 4: SHAP value plots for the patient-level SARS-CoV-2 infection ML model showing the extent each 

predictor contributes (positively or negatively) to each individual prediction. A) Bar plot of the mean 

absolute SHAP values for the top 10 predictors in descending order. B) SHAP value plot for the degree of 

the positive or negative impact of each individual measurement on the prediction (x-axis), with warmer 

colors representing higher observed values for that measurement, and cooler colors indicating lower 

values for that measurement. 
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Figure 5 

 

Figure 5: Area under the receiver operating characteristic curve (AUROC) plot for the patient-level SARS-

CoV-2 infection ML model showing the rate of true and false positives classified by the prediction model 

across probability thresholds. 
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