
1 

 

Impact of Daily Weather on COVID-19 outbreak in India  1 

Amitesh Gupta1*, Biswajeet Pradhan2,3 2 

Email: amitesh13gupta14@gmail.com, Biswajeet.Pradhan@uts.edu.au  3 

1Remote Sensing and GIS Department, JIS University, Agarpara, Kolkata, India.  4 

2
 Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of 5 

Engineering & IT, University of Technology Sydney, Australia 6 

3Department of Energy and Mineral Resources Engineering, Sejong University, Choongmu-7 

gwan, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea 8 

 9 

*For Correspondence  10 

Email: amitesh13gupta14@gmail.com 11 

Mobile: +91 72781 42538 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.15.20131490doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.06.15.20131490


2 

 

Abstract 21 

The COVID-19 pandemic has outspread obstreperously in India. As of June 04, 2020, more 22 

than 2 lakh cases have been confirmed with a death rate of 2.81%. It has been noticed that, 23 

out of each 1000 tests, 53 result positively infected. In order to investigate the impact of 24 

weather conditions on daily transmission occurring in India, daily data of Maximum (TMax), 25 

Minimum (TMin), Mean (TMean) and Dew Point Temperature (TDew), Diurnal Temperature 26 

range (TRange), Average Relative Humidity, Range in Relative Humidity, and Wind Speed 27 

(WS) over 9 most affected cities are analysed in several time frames: weather of that day, 7, 28 

10, 12, 14, 16 days before transmission. Spearman’s rank correlation (r) shows significant but 29 

low correlation with most of the weather parameters, however, comparatively better 30 

association exists on 14 days lag. Diurnal range in Temperature and Relative Humidity shows 31 

non-significant correlation. Analysis shows, COVID-19 cases likely to be increased with 32 

increasing air temperature, however role of humidity is not clear. Among weather parameters, 33 

Minimum Temperature was relatively better correlate than other. 80% of the total confirmed 34 

cases were registered when TMax, TMean, TMin, TRange, TDew, and WS on 12-16 days ago vary 35 

within a range of 33.6-41.3° C, 29.8-36.5° C, 24.8-30.4° C, 7.5-15.2° C, 18.7-23.6° C, and 36 

4.2-5.75 m/s respectively, hence, it gives an idea of susceptible weather conditions for such 37 

transmission in India. Using Support Vector Machine based regression, the daily cases are 38 

profoundly estimated with more than 80% accuracy, which indicate that coronavirus 39 

transmission can’t be well linearly correlated with any single weather parameters, rather 40 

multivariate non-linear approach must be employed. Accounting lag of 12-16 days, the 41 

association found to be excellent, thus depict that there is an incubation period of 14 ± 02 42 

days for coronavirus transmission in Indian scenario.  43 
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1. Introduction 46 

In human history, it is apparent that pathogens have caused devastating consequences in 47 

social  wellbeing and economy (Briz-Redón and Serrano-Aroca, 2020). The recent novel 48 

coronavirus disease (COVID-19) is one of the prominent example of such a disastrous event 49 

that has grasped the world. The earliest outbreak of COVID-19 caused by Severe Acute 50 

Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) happened in Wuhan, Hubei Province, 51 

China during the late December, 2019, (Guan et al., 2020b; Wu and McGoogan, 2020; Zhu et 52 

al., 2020; Zu et al., 2020). Because of human-to-human transmissibility of the virus (Wang et 53 

al., 2020a; 2020b), the circumstances become progressively unpredictable and vulnerable in 54 

terms of transmission of this disease. Considering the rapid turnaround, the World Health 55 

Organization (WHO) declared an international public health emergency on January 30, 2020, 56 

and later on March 11, 2020, WHO declared this disease as global pandemic due to speedy 57 

blowout of infections. Till June 04, 2020, a total of 6,709,724 cases have been affirmed with 58 

5.85% deaths worldwide (https://www.worldometers.info/coronavirus). Despite the fact India 59 

has registered its first case on January 29, 2020, the outbreak occurred March 2, 2020 60 

onwards and as of June 04, 2020, a total of 226,722 cases have been confirmed; however, the 61 

death rate (2.81%) is quite lower than the worldwide situation.  62 

Clinical investigations on COVID-19 identified respiratory droplets as the most common 63 

agent of this infection (Ge et al., 2013; Huang et al., 2020). The reported symptoms are also 64 

quite analogous to the other coronavirus diseases such as MERS and SARS, e.g. moderate to 65 

high fever with dry cough, and difficulty in breathing attributable to respiratory disorder in 66 

early stage, while it causes kidney failure, pneumonia in severe phase (Holshue et al., 2020; 67 

Perlman, 2020; Tan et al., 2005; Wang et al., 2020c).  68 
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Environmental factors, such as daily weather and long term climatic conditions may affect 69 

the epidemiological dynamics of this type of infectious disease (Dalziel et al., 2018; Yuan et 70 

al., 2006). Daily air temperature and relative humidity may impact on the transmissions of 71 

coronavirus by affecting the persistence of the viral infections within its transmission routes 72 

(Casanova et al., 2010). A few studies accounting climate and weather conditions found that 73 

these factors considerably affect the spatial distribution along with its incubation period 74 

(Bedford et al., 2015; Lemaitre et al., 2019; Sooryanarain and Elankumaran, 2015). At the 75 

earliest, Bull (1980) reported that the mortality rate of pneumonia is profoundly associated 76 

with the changes in weather condition. Studies have revealed that among different climatic 77 

variables the air temperature affects the influenza epidemics mostly in tropical regions 78 

(Tamerius et al., 2013) whereas the mid-latitudinal temperate regions experience the 79 

influenza diseases epidemics mostly during winter months (Bedford et al., 2015; 80 

Sooryanarain and Elankumaran, 2015). Nevertheless, the response to weather pattern on 81 

COVID-19 transmission found quite debatable, since, the studies carried out in different 82 

countries in the world suggested an existing correlation between weather and COVID-19 83 

pandemic likewise that it occurs with other influenza infections (Ficetola and Rubolini, 2020; 84 

Liu et al., 2020; Ma et al., 2020; Oliveiros et al., 2020; Qi et al., 2020; Tosepu et al., 2020). 85 

Contradictorily, few studies have reported that meteorological observations are not correlated 86 

with outbreak pattern (Jamil et al., 2020; Mollalo et al., 2020; Shi et al., 2020; Xie and Zhu, 87 

2020). Studies carried out by Wang et al., 2020a; Wang et al., 2020b suggested that the 88 

spread of disease supposed to be decreased with an increase in temperature. Gupta et al. 89 

(2020a) also predicted lowering of transmission in warmer conditions in India. However, in 90 

view of the long term climate record, Gupta et al., 2020b found, comparatively hot areas in 91 

India are possibly going to be more affected by this disease. Besides, the incubation period of 92 

COVID-19 also may vary spatially. The WHO reported an incubation period of 2-10 days for 93 
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COVID-19 based on worldwide observation (Novel Coronavirus(2019-nCoV) Situation 94 

Report - 7, 2020) while the National Health Commission in China had initially estimated an 95 

incubation period of 10-14 days for China (https://www.aljazeera.com/news/2020/01/chinas-96 

national-health-commission-news-conference-coronavirus-200126105935024.html) and the 97 

Centres for Disease Control and Prevention in United States of America estimate this 98 

incubation period of 2-14 days (https://www.cdc.gov/coronavirus/2019-ncov/symptoms-99 

testing/symptoms.html). On other hand, Bai et al., 2020; Guan et al., 2020a reported 100 

incubation period of around 20days. Since no such study has investigated the impact of daily 101 

weather on COVID-19 transmission in Indian context as well as the incubation period of this 102 

disease in India is not mentioned anywhere to date, there is a need of comprehensive study 103 

for Indian scenario. Thus, the present study is aimed to understand the trends, abrupt changes 104 

and influence of daily weather conditions in COVID-19 transmission in India. We have also 105 

investigated the incubation period of this disease based on five timeframes, specifically on 106 

the day of the case, within 7, 10, 12, 14, and 16 days of the case.  107 

2. Data and Methodology 108 

2.1 Data collection 109 

India, the largest country in South Asia, extended from 6° N to 38° N and 68° E to 98° E, 110 

comprising a land area of 3.287 million sq. km. with a total population of more than 1.2 111 

billion (Census, 2011). The data of daily COVID-19 cases were collected from the official 112 

website of the Ministry of Health of India (https://www.mohfw.gov.in). Among 725 districts 113 

in India, more than 85% has reported multiple confirmed cases. Several studies have reported 114 

that the disease spread at a higher rate in the cities where population is very high (Ahmadi et 115 

al., 2020; Bonasera and Zhang, 2020; Casanova et al., 2010; Kang et al., 2020; Rocklöv and 116 

Sjödin, 2020). Thus, among 53 ‘million cities’ (where the total population is more than one 117 

million) in India, 9 cities have been selected for this study (Fig. 1), from where more than 118 
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79% of total cases in India have been reported till June 4, 2020. The trend of confirmed cases 119 

over those cities along with comparison of trend of daily transmission in entire country is 120 

highly increasing (Fig. 2). The weather data were collected from 121 

https://www.wunderground.com. Fig. 3 shows the prevailing weather conditions in terms of 122 

Maximum, Minimum and Mean Temperature, Diurnal Range in Temperature, Dew Point 123 

Temperature, Average Relative Humidity, Diurnal Range in Relative Humidity and Wind 124 

Speed in those cities. It exhibits that there were variations in weather conditions in different 125 

cities, hence, this study will signify how spatially varying weather conditions influence the 126 

pattern of COVID-19 transmission in India. 127 

2.2 Spearman's correlation test 128 

Spearman's rank correlation coefficient (rs) is implemented to define the association between 129 

a number of daily new cases and weather parameters. It summarizes how well the association 130 

between daily transmission and weather parameters can be demarcated. The coefficient can 131 

be calculated via the following equation –  132 

�� � 1 � 6
∑ ��

�

�������
               (9) 133 

where, n represents the number of alternatives, and di is the difference between the ranks of 134 

two parameters. 135 

2.3 Support Vector Machine 136 

Support Vector Machine (SVM) is an extensively utilized machine learning technique. It is 137 

performed on the basis of statistical auto-adaptation and structural risk minimization principle 138 

(Tien Bui et al., 2012). By creating hyper-plane, the nonlinearity in the input dataset is 139 

reshaped into the linearity (Jebur et al., 2014). Here, kernel function is the key factor behind 140 

this data transformation. Using the assigned training dataset, SVM put the original input into 141 
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a higher dimensional feature space, then finds the supreme fringe of separation among the 142 

observations and constructs a hyper-plane at the centre of that extreme margin (Marjanović et 143 

al., 2011). Support vectors are nothing but the nearest training points to the produced hyper 144 

plane. Thus, this model adapt itself by input observations and create hyper-plane and identify 145 

the support vectors and thereafter acted on the input variables of testing dataset to estimate 146 

the predicted variable. Further insights about the mathematical computations and procedures 147 

work in SVM can be found in several literature such as Pradhan, 2013; Tehrany et al., 2015, 148 

2014; Tien Bui et al., 2012. However, the accuracy of estimation depends on the kernel type 149 

selected during the training of the model (Yao et al., 2008). The Radial basis function (RBF) 150 

kernel produce preferred exactness than linear, polynomial and sigmoid kernels due to its 151 

higher capability in interpolation (Song et al., 2011).  152 

Early observation by Gupta et al. (2020c) noted that transmission in India is likely to be 153 

higher over those area which are located in lower altitudes and having higher population. 154 

Thus, we also incorporate elevation and population of those selected cities along with the 155 

daily weather and estimate the log-transformed value of daily COVID-19 cases (Eq. 10).  156 

ln�	
� �  	
� �  	�� � 	
� �  �
�� �  �� �  ���� � ��
�� �  �� � ��� � ���  157 

(10)  158 

where, 	
 is the number of New Confirmed Case, 	
�  is Maximum Air Temperature (° C), 159 

	�� is Minimum Air Temperature (° C), 	
� is Mean Air Temperature (° C), �
��  is 160 

Temperature Range (° C), �� is Dew point Temperature (° C), ���� is Average Relative 161 

Humidity (%), ���� is Range of Relative Humidity (%), �� is Wind Speed, ��� is Elevation 162 

(m), ��� is total Population. 163 
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70% of the total observation was used as training dataset and rest used for testing. The 164 

accuracy of estimation was evaluated in terms of R2, Root Mean Square Error (RMSE) and 165 

Mean Bias (MB).  166 

3. Results and discussion 167 

The Spearman's correlation analysis (Table 1) shows that there were mostly significant but 168 

considerably low correlation lies between the number of daily new case and weather 169 

condition. Among weather parameters, only Trange and Hrange are negatively correlated with 170 

the daily transmission, however, correlation for Trange is non-significant in all time span. 171 

Hence, the diurnal range of temperature is not significantly associated with COVID-19 172 

transmission in India. Havg is significant on the day of transmission up to 10 days ago of 173 

transmission, while Hrange is significant 12-16 days ago of transmission; it suggest that the 174 

role of humidity is quite complex and needed to be investigated further in depth. On other 175 

hand, the analysis indicate that the Tmax, Tmin, Tmean, TDew on the day of the transmission has 176 

the lowest correlation and it improves at its best with a time lag of 14 days. In other words, 177 

the maximum, minimum, mean and dew point temperature on 14 days ago of transmission is 178 

closely related with a number of infections. Interestingly, Tmin is found better related than 179 

Tmean Tmax TDew. Therefore, places with higher minimum temperature are more susceptible for 180 

COVID-19 transmission in India. WS also found to be positively correlated with daily 181 

transmission, which may infer that virus might be able to transmigrate with high wind. Since, 182 

most  of the weather parameters including WS, are better correlate with the daily confirmed 183 

cases with a time lag of 14 days, it indicate an approximate incubation period of around 14 184 

days for this disease in the Indian scenario.  185 

Fig. 4 shows the validation of estimated daily confirmed cases for all time spans using non-186 

linear multivariate Support Vector Regression Model with RBF kernel. The model 187 
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performance in terms of R2, RMSE, MB are represented in Table 2. It depicts that SVM 188 

based regression model is very efficient to establish the complex relationship among different 189 

weather parameters with the daily transmission of COVID-19, however, it exhibits an 190 

underestimation for very high values (>1200 cases). Hence, it make us understood that any 191 

single weather parameter is not enough to linearly correlate the daily transmission, rather than 192 

that, the non-linear multivariate approach is efficient to estimate the daily transmission in 193 

India with high accuracy. Correlation analysis has evidently stipulated a relatively higher 194 

degree of association for daily new cases with most of the parameters only when the time lag 195 

of 14 days is taken in to consideration. The SVM based regression model also performs 196 

remarkably well with a time lag of more than 12 days. These together suggest a conspicuous 197 

incubation period of 12-16 (14 ± 02) days for this transmission in India. In order to better 198 

understand the influence of varying weather conditions, the response curve of significant 199 

parameters to cumulative confirmed cases was framed (Fig. 5), which reveal that there is an 200 

acute range in weather parameters for which the transmission is highly susceptible. 80% of 201 

the total confirmed cases were registered when TMax, TMean, TMin, TRange, TDew, and WS on 12-202 

16 days ago vary within a range of 33.6-41.3° C, 29.8-36.5° C, 24.8-30.4° C, 7.5-15.2° C, 203 

18.7-23.6° C, and 4.2-5.75 m/s respectively. Hence, it gives an idea of susceptible weather 204 

conditions for such transmission in India. In other words, the areas experiencing such weather 205 

pattern in India must have been affected by this disease.  206 

4. Conclusion 207 

Unlike most of the studies, the present study investigated the impact of daily maximum, 208 

minimum, mean, and dew point temperature, temperature range, average humidity, humidity 209 

range and wind speed on that day, as well as within 7, 10, 12, 14, and 16 days of the 210 

confirmed cases of COVID-19 in the Indian context. The analysis revealed that the count of 211 

confirmed cases significantly correlated with a certain range of weather conditions. Thus, 212 
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instead of linear correlation, SVM based regression approach efficaciously resolve this 213 

complex association and able to estimate daily cases of transmission using the weather inputs. 214 

However, the positive correlation between daily transmission and air temperature as well as 215 

wind speed designates that the daily transmission in highly populated areas in India has been 216 

responsively increased during current summer days. A prominent incubation period of 14 ± 217 

02 days has also been identified, which was a little higher than what WHO had prescribed 218 

early in March. Therefore, in the prevailing weather conditions in India, the SARS-CoV-2 219 

can be disseminated into the surrounding environment for around two weeks after being 220 

grieved from any other contaminant. This study had faced several limitations since many 221 

other major affected cities were not able to incorporate due to lack of data availability. 222 

Besides, the count of immigrants from abroad or other cities and have been quarantined were 223 

not available; these might can enhance the exactitude of the current analysis.  224 
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 479 

Fig.  1 Location of the selected cities in India along with the total population of those cities. 480 
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 487 

Fig.  2 Trend of daily confirmed cases over selected cities and all-over the country. 488 
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 491 

Fig.  3 Pattern of Daily Weather over the selected cities in India. 492 
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Fig.  4 Validation of SVM based regression model for estimating daily transmission. 503 
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 512 

Fig.  5 Influence of weather parameters on count of confirmed cases with a lag of 12-16 days. 513 
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Table 1 Result of Spearman's correlation test 521 

Parameters 

On that 

Day 

7 Days 

ago 

10 Days 

ago 

12 Days 

ago 

14 Days 

ago 

16 Days 

ago 

Maximum Temperature 0.161* 0.198* 0.231* 0.336* 0.347* 0.272* 

Minimum Temperature 0.244* 0.285* 0.319* 0.417* 0.436* 0.351* 

Mean Temperature 0.199* 0.248* 0.287* 0.409* 0.430* 0.337* 

Temperature Range -0.032 -0.043 -0.066 -0.064 -0.075 -0.054 

Dew Point Temperature 0.222* 0.235* 0.261* 0.238* 0.269* 0.238* 

Average Relative Humidity 0.128* 0.1* 0.09* 0.002 0.008 0.034 

Humidity Range -0.016 -0.024 -0.056 -0.13* -0.149* -0.095* 

Wind Speed 0.108* 0.133* 0.163* 0.221* 0.255* 0.193* 

*Significant at 0.05 significance level. 522 

 523 

Table 2 Result of Validation of SVM based regression for estimating daily transmission. 524 

R2 RMSE MB 

On that Day 0.6414 199.2929 -48.1804 

7 Days ago 0.7015 202.1743 -40.0377 

10 Days ago 0.8286 223.1949 -42.0560 

12 Days ago 0.8503 186.0126 -66.9880 

14 Days ago 0.8680 178.3891 -43.6459 

16 Days ago 0.8714 202.2428 -60.0658 
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