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An interpretable mortality prediction model for COVID-19
patients — alternative approach

Peter Gemmar

Abstract The pandemic spread of coronavirus leads to increased burden on healthcare ser-
vices worldwide. Experience shows that required medical treatment can reach limits at local
clinics and fast and secure clinical assessment of the disease severity becomes vital. In [1]
a model is presented for predicting the mortality of COVID-19 patients from their biomark-
ers. Three biomarkers have been selected by ranking with a supervised Multi-tree XGBoost
classifier. The prediction model is built up as a binary decision tree with depth three and
achieves AUC scores of up to 97.84 +0.37 and 95.06 £2.21 for training and external test
data sets, resp.

In human assessment and decision making influencing parameters usually aren’t consid-
ered as sharp numbers but rather as Fuzzy terms [2], and inferencing primarily yields Fuzzy
terms or continuous grades rather than binary decisions. Therefore, I examined a Sugeno-
type Fuzzy classifier [3] for disease assessment and decision support. In addition, I used an
artificial neural network (SOM, [4]) for selecting the biomarkers. Modelling and validation
was done with the identical data base provided by [1]. With the complete training and test
data sets, the Fuzzy prediction model achieves improved AUC scores of up to 98.59 or 95.12
The improvements with the Fuzzy classifier obviously become clear as physicians can inter-
pret output grades to belong to positive or negative class more or less strongly. An extension
of the Fuzzy model, which takes into account the trend in key features over time, provides
excellent results with the training data, which, however, could not be finally verified due
to the lack of suitable test data. The generation and training of the Fuzzy models was fully
automatic and without additional adjustment with the help of ANFIS from Matlabo.
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1 Introduction

In [1] the outbreak of COVID-19 pandemic causing severe health concerns and conse-
quences for health care services worldwide has been described in a catchy way. It is stressed
that the severity of cases is putting medical services under great pressure. Furthermore, the
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importance of distinguishing patients that require immediate medical attention is described
and that there is a lack of capacity to identify cases at imminent risk of death. So far, no
prognostic biomarkers have been available to estimate the patients risks.

Consequently, the research group in [1] analysed blood samples of 485 patients from
the region of Wuhan, China. Then, a state of the art machine learning algorithm was used
to identify the most discriminative biomarkers. Most crucial biomarkers have been revealed
through optimization of a supervised XGBoost classifier [5]. Three key features have been
derived: lactic dehydrogenase (LDH), lymphocytes and high-sensitivity c-reactive protein
(hs-CRP). A clinically operable decision tree (decTree) was developed and the decision
rules with the three key features and their thresholds were devised recursively by supervised
learning.

There are many other possibilities for building a classification or prediction model. I
tried two of them with very little effort for creation: 1st a support vector machine (SVM) and
2nd a Sugeno-type [3] Fuzzy classifier (FIS). Both classifiers are transparent in explaining a
specific input transformation to a specific classification output. The classifier SVM delivered
binary predictions at least as accurate as the classifier recTree. The classifier FIS is different
from the two others (decTree, SVM) as its output esteems the grade about how much the
input belongs to one of two classes (positive, neagtive) specified as patient outcome in the
data samples. This may be an advantageous property when predicting the patients risk value.
In the following I shall describe the development and evaluation of the Fuzzy classifier.

There are also many possibilities for feature analysis and selection. In my approach I
put emphasis on finding those features that show signatures similar to the patient outcome
and that are little to not correlated. Artificial neural networks of type Kohonen can be used
to map the distribution of features in the feature space into 2D component planes (maps)
revealing the signature of the according feature (Self Organizing Maps SOM [6]) . These
maps can be compared visually and those maps similar to the map of patient outcome can
be identified for feature selection. In addition, correlation analysis about the features can
be used to determine the minimum feature set covering the feature space in an efficient
way, e.g. in terms of a minimum dominant set (MDS). The key features selected in [1] have
been confirmed this way. Furthermore, two other features (Albumin, International Standard
Ratio) have been proposed and than used with the FIS classifier in an extended analysis.

If one looks at the determined biomarker values in the data base created by [1], one will
of course notice a change in the biomarkers from the day of admission to the discharge from
the hospital. It is therefore obvious to consider the trend of the biomarkers over time to the
last value in the risk assessment. This is successfully examined here with an expansion of
the Fuzzy model.

2 Data resources

Basically, all data for feature analysis as well as for training and testing the classifiers (SVM,
FIS) have been taken from the original data base provided by [1]. This data base contains
two files with sample data taken from patients: 1) time_series_375 _prerpocess_en.xlsx (in
the following: train_data) and 2) external test data time_series_test_110_preprocess_en.xlsx
(in the following: fest_data). train_data collects 74 biomarkers (features) together with age,
gender, data sample time, admission time, discharge time, and class of patient outcome
(alive, deceased) for 375 patients. test_data collects three biomarkers (key features) together
with data sample time, admission time, discharge time, and class of patient outcome for 110
patients.
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In [1] only data of the final feature samples per patient is used for training and test-
ing of the rule decision classifier decTree. There are also some patients with incomplete
measurements for at least one of the selected key features leaving 351 patients in data
base train_data, and 110 patients in data base fest_data. The distribution of patient outcome
(classes alive = negative, deceased = positive) over the key feature space are depicted in
Figure 1 and Figure 2, resp.

Patient outcom

350

§ 300
[
Q
2 20 * + * + negative cases: +
§ 200 £ * positive cases: +
8 & + i
. ++ 4+
b +
o 150 + ctich g i
£ 3 T +
2 400 i + + L ++
: P oaetds
2 + +4+
2 T M. T A5 1*3 g +
+ ¥ RV i 4
++

1
0 o (%)lymphocyte

Lactate dehydrogenase

Fig. 1 Patient outcome in train_set
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Fig. 2 Patient outcome in fest_set
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3 Feature analysis

In [1] feature analysis resulted in determination of three key features (lactic dehydroge-
nase, lymphocytes, and high-sensitivity c-reactive protein) out of 10 most promising fea-
tures found with optimal XGBoost classifier output. Here, feature analysis is carried out in
two steps: 1) a Kohonen neural network (SOM) is used for transforming the feature data into
component planes CP, and 2) a Greedy algorithm is used for finding the minimum dominant
set MDS of features based on their mutual correlation. Both, CP and MDS can be rendered
and visually inspected. Figure 3 shows the component maps of 10 features selected by [1]
after training SOM with 344 complete data samples in train_data. The map size of SOM
was 8 -3 = 24 neurons.
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Fig. 3 Component planes CP (map size [8,3]) of 10 features and (patient) outcom created by training SOM
network with train_data

The component planes represent the weights of the respective feature in each neuron
(hexagon) of the SOM map. Each map position (hexagon) represents the weight value in
color, and together with its neighbours around it corresponds with similar feature vectors of
the training set. A good approach for analyzing is to look for boundaries and color changes
in a component plane and similar situations in other planes (colors must not be similar).
In this way we recognize good matches in Figure 3 between patient outcome, Lactate de-
hydrogenase, %lymphozyte, hypersensitive c-reactive protein, and with some restrictions
also albumin, and International standard ratio. The first three features correspond to the key
features selected for decTree and replicate the results of XGBoost classifier.

The second step of our feature analysis is to find the minimum dominant set MDS of
features. For this, the mutual correlation of feature elements are evaluated and a greedy
algorithm searches MDS after determination a threshold for mutual feature correlation [7].
Figure 4 shows the resulting correlation graph. We see the key features cover very well the
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Fig. 4 Correlation graph (lines show mutual correlation with threshold = 0.95)

MDS when we restrict it to the features with good matches with patient outcome. A strictly
reduced MDS would consist only of %lymphozyte and hypersensitive c-reactive protein,

4 Building a prediction model

[1] used a decision tree decTree to predict patients at the highest risk. Even if the classi-
fier performance is good enough to be used in a operable environment the binary output
of decTree conceals the grade to which a patient’s feature vector belongs to one of the
classes positive or negative. 1 assume a human decision maker would prefer to refer to
the technical estimation of risk grades when finally deciding about the risk and clinical
treatment of patients. Furthermore, the mapping of feature elements by humans likely will
rather be in terms like small, high, or something unsharp like that than in sharply defined
intervals. Fuzzy systems enable the description of models based on Fuzzy rules of type
R; : IFxy is small AND x; is large ... THEN y; is small with input vector X = (x1,x2,...)"
in the premise (/F’) part and output y; in the conclusion (7THEN) part . Building up a Fuzzy
model requires first the definition of unsharp terms like small, medium, ..., so called Fuzzy
terms, covering the input elements (fuzzyfication) and second the generation of the rule base
R={R;|i=1,2,...,N} describing the complete mapping of the input space into the output
function. Finally, the mapping of the rule’s outputs y; (accumulation and defuzzyfication)
into a sharp output value y = f(y;i: 1,...,N),y € R has to be established. Fortunately, there
are a lot of machine learning tools that can automatically generate an operable Fuzzy model
from a training data set (supervised learning).

I used a Sugeno-type Fuzzy modell (there is no need for defuzzyfication) and Matlab©
function ANFIS for generating and training of the Fuzzy model. With train_data and three
key features as input ANFIS creates a Fuzzy model FIS with three Fuzzy terms per input
(feature) element and N = 3% = 27 rules. The model is trained by ANFIS with 10 epochs
and train_data with all 351 patient’s final data samples only. Figure 5 shows prediction
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results of FIS for validation with train_data. Figure 6 shows the results of classifier FIS with
external test data test_data (patient’s final data samples only). The performance data of this
FIS classifier are also displayed in Table 1 (column FIS_3) in section 5.
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Fig. 5 Prediction results of FIS classifier validated with train_data (misclassified elements circled)
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Fig. 6 Prediction results of FIS classifier tested with rest_data (misclassified elements circled)
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5 Estimation of prediction output

There are various possibilities for improvement of the FIS classifier. In general, a Fuzzy sys-
tem enables to create any nonlinear function or mapping of the input space. From a system
perspective one can increase the number of Fuzzy terms for the input and/or output variables
thus enlarging the rule base and getting a more detailed function approximation, but at the
risk of model overfitting. From a problem perspective one can consider an increased number
of input variables - if not already optimally chosen by feature analysis. In the latter perspec-
tive I analysed two approaches: 1) additional features (biomarkes) in the input vector, and 2)
trend of key features over time. For evaluation of the classifier results the following perfor-
mances measures have been considered based on [1]: total number of classification errors
E, AUC score of ROC curve, precision Pre = TP/(TP+ FP), recall Rec =TP/(TP+FN),
and accuracy Acc = (TP+TN)/(TP+ TN+ FP+ FN); TP, TN, FP and FN stand for true
positive, true negative, false positive and false negative rates, respectively.

As mentioned in section 3 there are two other features with good resemblance to pa-
tient outcome: albumin and International standard ratio. I trained a FIS classifier with now
five feature elements. train_data contains in total 344 complete final data samples with the
selected five features. Validation results with this FIS classifier are displayed in column
FIS_5 in Table 1. We see a slight improvement in all performance measures. Unfortunately
test_data doesn’t contain these additional features and therefore a test with the external test
data was not possible.

Even as a medical layperson, it can be assumed that the patient’s physiological state and
the health risk can also be judged by the development of the biomarkers and not only by their
last value. Therefore, I tried to include the biomarkers’ trend in time into the model for risk
assessment. However, it is now the case here that the blood samples and thus the biomarkers
in the data records were not systematically recorded over time. Thus, it is only possible to
determine the temporal trend here as an example. To do this, I simply chose the difference
between the last and penultimate data sample as a measure for the trend over time. The FIS
model FIS_3 with the three key features is used as the model basis and the input vector is
expanded with the features’ trend values.Validation and test results with this FIS classifier
are displayed in column FIS_trend in Table 1. These results were achieved regardless of
whether the trend of one, two or all three key features was used in the FIS model FIS_trend.
Since the blood values were obviously not systematically recorded, only 195 trend values
could be determined in train_data for training and validation, and only 79 in test_data for
testing the classifier. And thus the results are not similarly representative like those of the
other models FIS_3 and FIS_5.

FIS model FIS_ 3 FIS_5 FIS_trend
validation / train_data  train_data / 10-fold  test_data | train_data | train_data  test_data
test data cross validation

final samples 351 315/35 110 344 195 79
errors E 5 2.6+23 3 4 0 4
AUC 0.986 0.92+ 0.002 0.951 0.988 1 0.868
precision Pre 0.981 0.946 £ 0.008 0.857 0.987 1 0.9
recall Rec 0.987 0.887 £+ 0.003 0.923 0.987 1 0.75
accuracy Acc 0.986 0.926 + 0.002 0.973 0.988 1 0.949

Table 1 Performances of FIS classifiers for validation with train_data and testing with test_data
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6 Discussion

This study shows the potential of Fuzzy models for the risk assessment of COVID-19 pa-
tients in several ways. First of all, the results in [1] could be replicated and at the same time
an improvement of the risk assessment could be achieved. The consideration of the temporal
development of the biomarkers in the models had a decisive influence on the model perfor-
mance. However, this could not be tested in detail because the training and external test
data contained too few examples and in particular the blood samples had not been recorded
systematically over time.

In addition, a non-binary risk assessment has been introduced. This supports an inter-
pretation of the model output by medical professionals. If one looks at the real risk values
that model FIS_3 calculates for the external test data, one can see that the wrongly classi-
fied items in most cases are very close to the decision limit 0.5 for binarization. Figures 7
and 8 show the statistical values of the risk assessment with the training and test data using
boxplots. After assigning the incorrectly classified examples (FN = 2, FP = 1 in Figure 8),
the associated boxplot shows that the real output values are close to the decision value 0.5
and can therefore be better assessed by a medical expert than the wrong binary decision.
The continuous model output enables further opportunities for technical support for medical
experts in COVID-19 risk assessment.
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Fig. 7 Statistical distributuion of risk assessment (real model outputs) with FIS_3 Fuzzy model and training
data train_data, boxplots with 25, 75 percentil (blue), median and outliers (red)

7 Conclusion

In summary, this study introduces a Fuzzy logic based prediction system for COVID-19 risk
assessment with improved performance compared with other approaches in literature ([1]).
This provides a good basis for the development of a transparent and operational system for
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data test_data, boxplots with 25, 75 percentil (blue), median and outliers (red)

risk assessment of COVID-19 patients. In addition to the selection and consideration of the
final biomarker or feature elements, a model extension is also successfully tested that takes
their changes over time into account. The model output is non-binary and is therefore par-
ticularly suitable for a decisive interpretation by medical experts. A further investigation of
the time horizon of the risk assessment was initially not carried out since the blood samples
were not recorded systematically in the currently available training and test data.
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