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Abstract Non-Pharmaceutical Interventions (NPI) are currently the only mechanism8

governments can use to mitigate the impact of the COVID-19 epidemic. Similarly to the actual9

spread of the disease, the dynamics of the contention patterns emerging from the application of10

NPIs are complex and depend on interactions between people within a specific region as well as11

other stochastic factors associated to demographic, geographic, political and economical12

conditions. Agent-based models simulate microscopic rules of simultaneous spatial interactions13

between multiple agents within a population, in an attempt to reproduce the complex dynamics14

of the effect of the contention measures. In this way, it is possible to design individual behaviours15

along with NPI scenarios, measuring how the simulation dynamics is affected and therefore,16

yielding rapid insights to perform a broad assessment of the potential of composite interventions17

at different stages of the epidemic. In this paper we describe a model and a tool to experiment18

with such kind of analysis applied to a conceptual city, considering a number of widely-applied19

NPIs such as social distancing, case isolation, home quarantine, total lockdown, sentinel testing,20

mask wearing and a distinctive “zonal” enforcement measure, requiring these interventions to be21

applied gradually to separated enclosed districts (zones). We find that the model is able to22

capture emerging dynamics associated to these NPIs; besides, the zonal contention strategy23

yields an improvement on the mitigation impact across all scenarios of combination with24

individual NPIs. The model and tool are open to extensions to account for omitted or newer25

factors affecting the planning and design of NPIs intended to counter the late stages or26

forthcoming waves of the COVID-19 crisis.27

28

Introduction29

In viewof the absence of approveddrugs or vaccines for COVID-19 (up to this day), Non-Pharmaceutical30

Interventions (NPI) are the mechanisms that public health offices around the world are using in an31

attempt to mitigate the impact of its epidemic (Lai et al., 2020; Ferguson et al., 2020). Similarly32

to the actual spread of the disease, the dynamics of the contention patterns obtained as a result33

of application of NPIs are complex and may depend not only on interactions (contacts) between34

people according to their individual behaviour, but many other stochastic factors associated to35

demographic, geographic, political and economical conditions.36

One way of getting insights about the progression of the epidemics so as to allow researchers37

and policy-makers to take actions to control its spread, are simulationmodels. In this respect, there38

are two main approaches. The best-known approach uses macroscopic models that represent39

population level dynamics with causality analysis or through transition between discrete events40
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that affect the state of the system (System Dynamics, Discrete Event Simulation). These sort of41

models are intended to describe the average infection dynamics and have been used in the past42

to study the spread of influenza pandemics (Ferguson et al., 2006), and more recently to COVID-43

19 (Ferguson et al., 2020). They are build on the basis of the classical epidemic SIR compartment44

model (Susceptible, Infectious, Recovered) or variations of the same, where the entire population is45

split in such compartments and the dynamic of the epidemics is explained by how disease evolves46

in each compartment rather than at the individual level. Model parameters such as compartment47

transition rates are calibrated with available data, whilst others such as reproduction number or48

NPI settings are assumed in order to simulate hypothetical scenarios, see e.g. Fanelli and Piazza49

(2020); Wilson et al. (2020); Kantner (2020); Giordano et al. (2020); Ansumali and Prakash (2020);50

Ferguson et al. (2020); Lai et al. (2020).51

The other approach resorts tomicroscopicmodelling of interactions simulated at the individual52

level, also known as microsimulation; here the global phenomena are observed as an emergent53

property of collective dynamics. Commonly referred as Individual-Based Models or IBM, this ap-54

proach assumes an inherent network structure within the population, yielding contagions depen-55

dent on the interaction (or links) between individuals, whereas onset of symptoms and disease56

progress are modelled with probability distributions conditioned on age structures. A number57

of models of this kind have been also proposed recently to study the spread and contention of58

COVID-19 (Bock et al., 2020; Tuomisto et al., 2020; Gomez et al., 2020).59

The lattermicrosimulation approach is also knownas Agent-basedModelling or ABM (Railsback60

and Grimm, 2019). Some advantages of the ABM approach to study the epidemic include their abil-61

ity to model deterministic and non-deterministic decisions made by the individuals affected by62

interactions with other agents within a spatial vicinity, enabling a more intuitive and closely resem-63

bling the real system being simulated. In this way, uncertainty or variance arises inherently in a64

ABM, enabling the model to obtain non-deterministic emergencies without input parameter varia-65

tion (Ahmed et al., 2012). The randomness of the spatial patterns followed by the free movement66

of agents, allows a broader representation of epidemiological relevant heterogeneity in the popu-67

lation. In addition, the ability to define particular individual traits, as well as behaviour and disease68

progression per individual, are useful features to study hownon-deterministic effects emerge from69

the application of a diverse combination of NPIs.70

In this paper we propose an ABMmodel of the COVID-19 epidemic, incorporating a number of71

NPIs such as social distancing, case isolation, home quarantine, total lockdown, sentinel testing,72

mask protection and a distinctive “zonal” restriction where these interventions can be applied to73

separated districts or zones of a hypothetical city. The effect of these strategies are measured in74

terms of morbidity, mortality, lethality -infection fatality rate (IFR) and case fatality rate (CFR)-, dou-75

bling time, reproduction number and plots of infection, recovery and deaths occurring during the76

simulation timeline. The main purpose of the tool is to let modellers see which NPIs or combina-77

tion of NPIs can help flattening the curve of spread (mitigate) of the disease, in addition to assess78

the emergencies in the corresponding epidemics indicators. The details of the contemplated NPIs,79

model features and the developed tool are given in the following sections, along with the results80

of several simulation scenarios.81

Non-Pharmaceutical Interventions82

NPIs are health policies intended to mitigate the effects of the spread of a new virus when vac-83

cines or medicines are not yet available. They consist of actions recommended to the public or in84

some cases, enforced by the government, that affect their daily life habits. During the COVID-1985

pandemic, many of these action plans have been designed and deployed at a global scale. Here86

we describe those that are currently incorporated into our model.87
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Social Distancing88

This intervention consists of maintaining a minimum physical distance between people so as to89

reduce the number of close interactions between infected and healthy individuals, slowing down90

the speed of transmission and eventual deaths. In the model, this intervention can be set on or91

off, and the actual amount of people willing to comply with the intervention can be defined with a92

parameter between 0 and 100%.93

Case Isolation94

This intervention consists of confining in an enclosed facility (home) either positive tested people95

or sufficiently symptomatic patients that self-isolate, until they recover from the disease. In the96

model, this intervention can be set on or off.97

Home Quarantine98

This intervention consists of confinement of relatives or housemates living in the same household99

of isolated cases, during their recovery. It is assumed that quarantined healthy people in the house-100

hold must observe strict safety protocols to avoid contagion from the isolated case. In the model,101

this intervention can be set on or off.102

Total Lockdown103

This intervention enforces a stay-at-home policy due to partial shutdown of economy. Only some104

people are authorised to move around to fulfil basic needs or to support essential services. In the105

model, this intervention can be set on or off with a parameter of percentage of mobility permits106

between 5 and 95%.107

Sentinel Testing108

This intervention consists of running health campaigns performing mass testing at random loca-109

tions in order to detect not isolated or unconfirmed cases of either symptomatic or asymptomatic110

carriers. Persons whose test result positive are isolated immediately. In the model, this interven-111

tion can be set on or off, with an option to deploy the campaigns widely or restricted to zones. The112

stock of tests available is a parameter of themodel defined as a fraction of the population between113

10 and 100%. Once the campaigns run out of tests, it is possible to replenished them with a new114

equal supply.115

Zonal Enforcement116

This intervention assumes that the hypothetical city can be divided in different districts (or zones),117

and then recommends to restrict movement of residents to their respective zones only. In other118

words, it enforces border closures between districts. The other NPIs can be applied localised to119

each zone. In addition, the model enables applying a novel NPI consisting of a total lockdown to120

the entire city with the option of gradually lifting of the curfew by individual zones. In the model,121

this intervention can be set on or off; besides, it features a command to unlock one zone at a time.122

Mask Protection123

This intervention consists of the use of face masks as personal protective equipment to avoid124

spreading, or breathing in, airborne virus particles. In the model, this intervention is currently125

simulated as a population habit controlled by a combination of two parameters: carriers (infected126

people) wearing masks or not, and susceptibles (healthy people) wearing masks or not. A partic-127

ular combination will have incidence in the chance of contagion when two people encounter: 3%128

if both are wearing masks, 8% if carrier wears masks but susceptible do not, 50% if susceptible129

wears masks but carrier do not, and 90% if none wear masks.130
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Figure 1. Schematic of the SIRE+CARDS state model.

The Agent-based Model131

Epidemics model132

We build upon the compartmental SIRE epidemic model (Susceptible-Infectious-Recovered-Extinct),133

but we regarded the Infectious compartment as an extended-state (Lano, 2009) consisting of a num-134

ber of conditions that we believe explain better the dynamics of the infection. These conditions135

are the following: Confirmed or not (indicating the patient will remain isolated), Risky or not (mean-136

ing predisposition to develop severe or critical disease), Asymptomatic or not (meaning patient is137

unaware of being a virus carrier), Severe or not (meaning it requires to be hospitalised to prevent138

death), and Deadly or not (indicating the patient requires Intensive Care Unit -ICU- assistance to139

prevent death). The schematics of the resulting extended model, that we termed SIRE+CARDS, is140

shown in Figure 1. Notice that not all of these conditions are mutually-exclusive, as they represent141

incremental stages of the I state, evolving in a manner that is explained below.142

Accordingly, we designed three types of agents: a healthy agent associated to the S and R143

states (the latter marked with an immunity condition), a sick agent associated to the I extended144

state tagged with the CARDS conditions, and a dead agent associated to the E state. In contrast to145

population-dynamic simulation, instead of using transition rates between states, our model uses146

transition events. A transition event is a set of decision rules evaluated on the conditions of each147

state. It is in this sense our proposal differs fromother related ABM approaches where these condi-148

tions are regarded as additional compartments of modified SIR models, e.g. SIDHARTE (Giordano149

et al., 2020), REINA (Tuomisto et al., 2020) or INFEKTA (Gomez et al., 2020).150

Therefore, we consider the following transition events:151

• S : I (infection). A healthy individual may become infected (with a probability p-contagion) if152

contact with another infectious individual occurs. When transmission happens, the new case153

is initially characterised as not confirmed, not tested, not severe, not deadly, not hospitalised154

and not ICU-admitted. Besides, a recovery (or illness) period in days is assigned as a random155

variate with a Gaussian distribution centered at the avg-durationmodel parameter.156

• I + Confirmed. This condition characterises an agent as a positive case. Thismay happen in any157

of the followingmoments: when the patient is tested for the virus and the test results positive;158

when the agent has not been previously diagnosed as positive at themoment of admission to159

hospital, or admission to ICU bed or death; or when the patient feels sufficiently symptomatic160

so as to self-isolate. On the other hand, if the Case Isolation NPI (see above) is lifted after161

having been enforced during the course of the simulation, then the confirmed condition of162

agents who have not been tested positive, is reversed (i.e those who self-isolated).163

The distinction between confirmed and non-confirmed cases is used to identify individuals164

that need to stay isolated so as to prevent his capability to spread the virus. Besides, this165

distinction is also useful to examine thediscrepancy between “official” confirmed fatality rates166

and the actual case fatality rate (which is computed with the totality of cases, not only the167

confirmed ones).168

• I + Asymptomatic. This condition characterises an agent as not showing symptoms for the169

disease. The condition is activated upon acquiring the infection, with a probability defined as170
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a model parameter (%-asymptomatic). In the simulation tool, this condition is indicated with171

the colour of the agent (yellow for asymptomatic, red for symptomatic).172

• I + Risky. This condition characterises an agent as being in a high-risk population group. Cur-173

rently the model does not consider neither risk stratification of co-morbidities nor age struc-174

ture of the population. Therefore all these risk factors (obesity, diabetes, cardiovascular dis-175

ease or medium to old age) are encompassed in this single condition which is activated upon176

acquiring the infection, with a probability defined as a model parameter (%-high risk).177

• I + Severity. This condition indicates progression of the disease to a severe state, which in turn178

represents a higher threat of death, as it is defined in the I : E transition. This event occurs179

according to the following parameters (see Tuomisto et al. (2020)):180

181 Conditions Value
P(Severe | Symptomatic, Risky) 0.25
P(Severe | Symptomatic, no Risky) 0.05
P(Severe | Asymptomatic) 0.0

We model the day in which the severity event is triggered with a uniform distribution during182

the illness period:183

P(day) = CDF-Uniform(x < day),
and the occurrence of severity in a given day as follows:184

P(Severe | day) = P(day) P(Severe | Conditions).
• I + Deadliness. This condition indicates progression of the disease to a critical state, which in185

turn represents an even higher threat of death, as it is defined in the I : E transition. The186

event occurs according to the following parameters (see Tuomisto et al. (2020)):187

188 Conditions Value
P(Deadly | Severe) 0.25
P(Deadly | no Severe) 0.05

Similarly, we model the day in which the deadliness event is triggered uniformly distributed189

within the illness period:190

P(day) = CDF-Uniform(x < day).
So the occurrence of deadliness in a given day is:191

P(Deadly | day) = P(day) P(Deadly | Conditions).
• I + Hospitalised. This event indicates proper care for the severity condition is taking place;192

hence it lowers the chance of death, as it is defined in the I : E transition. The occurrence of193

this event depends on the availability of hospital-beds (defined as a model parameter). Basi-194

cally, as soon as a bed is emptied, it is assigned to an agent with severe condition in waiting (if195

any), until the maximum capacity is reached. When a patient is admitted, its state is switched196

to hospitalised, tested and confirmed (the latter two in case it was not previously diagnosed).197

Occupation and demand of these beds are updated on a daily basis; notice that beds are198

released when infectious agents recover or are translated to ICU treatment or die.199

• I + ICU-admitted. Similar to the previous event, this one refers to proper treatment for the200

critical condition is being given, hence lowering the chance of death, as it is defined in the I :201

E transition. The assignment, discharge and availability of ICU beds is performed analogous202

to hospital beds, on a daily basis but considering patients with a deadly condition instead.203

Here, ICU beds are released when agents recover or die.204
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• I : E (extinction). An infected individual may become extinct with a probability that depends205

on his conditions according to the following parameters (see Tuomisto et al. (2020)):206

207 Conditions Value
P(Extinct | Deadly, no ICU-admitted) 1.0
P(Extinct | Deadly, ICU-admitted) 0.5
P(Extinct | Severe, no Hospitalised) 0.2
P(Extinct | Severe, Hospitalised) 0.05
P(Extinct | Symptomatic) 0.005

Since deadmay occur in any day during the illness period, wemodelled the chance of the day208

of fatality as a triangular distribution with peak in the middle of such individual’s particular209

recovery period (half-recover-period). In other words, we assume:210

P(day) = CDF-Triangular(x < day | half-recovery-period),
where CDF stands for cumulative distributed function. As a result, we compute the actual211

probability of death in a given day as follows:212

P(Extinct | day) = P(day) P(Extinct | Conditions).
• I : R (recovery). An infected individual gets cured when he reaches the end of his recovery213

period. If this happens, ourmodel assumes the individual acquires immunity to the virus and214

cannot be re-infected. In the simulation view, agents with this condition are coloured white.215

Agent design and behaviour216

Figure 2. Simulation flow chart.

We designed agents to represent individual people resid-217

ing in a hypothetical city, whose attributes include: spatial218

location, household location and zone or district of resi-219

dence. The simulation traces an individual disease path for220

every agent, from susceptible to recovery or death, accord-221

ing to the SIRE+CARDS epidemic model described above.222

Each agent is assigned a daily routine consisting of going223

outdoors and returning home with a commuting distance224

range randomly chosen from 25, 50, 100, 200 unit steps;225

the actual route the agent follows varies slightly due to ran-226

dom fluctuations in his orientation. In addition the length227

of each step can be set as a global parameter between 0.1228

and 1 units. Similarly, the day length can be defined with a229

given number of ticks in the range between 600 and 2400.230

Individuals interact by random contacts they make231

within his/her household or during their daily routines out-232

doors. Virus transmission occurs when proximity within a233

spatial radius of 0.5 units of an infectious individual with234

other susceptible individuals; the chance of contagion de-235

pends on what mask protection intervention is applied, as236

it was explained before. Besides, our model does not con-237

sider incubation periods; infectiousness is assumed to start as soon as contagion occurs, with no238

difference in infectivity between symptomatic and asymptomatic carriers, or variable infectious-239

ness between individuals. On recovery from the disease, individuals are assumed to acquire im-240

munity to the virus so they cannot be re-infected. In this model all deaths are considered to be241

caused by COVID-19. No births are taken into consideration during the timeline of the simulation.242

A high-level depiction of the flow of events that is applied in each iteration of the simulation is243

shown in Figure 2. Next, we provide a brief description of each of these events.244
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• lifestyle: simulates the daily routine of agents, which currently encompasses moving the245

agent ahead towards its current destination, or head it backwards home if he has reached246

his range limit. In any case, confirmed patients are not allowed to move around.247

If zonal enforcement is on, the movement is restricted only within the periphery of the zone248

where the agent is resident. In the simulation view, residents of different zones are identified249

with different shapes and colours (the latter coincides with the colour of their zone’s ground).250

• epidemic: here the spread of the epidemic is simulated, with transmissions occurring in251

proportion to proximity between infectious and susceptibles and probability of contagion. If252

a transmission happens, the new case is initially characterised as not confirmed, not tested,253

not severe and not deadly. The condition of asymptomatic and/or risky of a new case is254

defined according to the corresponding probabilities set as model parameters. Lastly, the255

agent’s recovery period in days is assigned as a random variate with a Gaussian distribution256

centred at the avg-durationmodel parameter.257

• isolation: when the Case Isolation NPI (CI) is enforced, those symptomatic cases that have258

not been tested yet are sent to their households and are tagged as confirmed cases so they259

have to stay isolated (their movement is restricted). If CI is lifted during the simulation, the260

confined cases are tagged back as not confirmed and therefore, are set free to leave its iso-261

lation.262

• quarantine: when the Home Quarantine NPI (HQ) is enforced, housemates of confirmed263

cases are sent home and their movement is restricted; they will stay quarantined unless HQ264

is lifted during the simulation.265

• distancing: when the Social Distancing NPI (SD) is enabled, every agent stays away of any266

other agent within a radius of the minimal distance model parameter. For this purpose the267

agent chooses the closest agent in its vicinity and heads into the opposite direction.268

• sentinel: when the Sentinel Testing NPI (ST) is enforced, ambulances move around the en-269

tire region performing mass-testing of any agent found on their ways. Therefore each ambu-270

lance looks around its vicinity for agents that has not been tested before, perform the test on271

them, mark these persons as tested, and for those with positive result, sent them to isolation272

marked as confirmed cases. Each ambulance is supplied with a stock of tests defined as a273

model parameter (%-tests); however if they run out of tests during the simulation it is possible274

to replenish them with a new supply of stock. We remark that this NPI can be applied locally275

within each zone if the zonal? parameter is enabled. Lastly, notice that once a healthy agent276

is tested it will not be tested again in the future, unless it gets infected in which case his tested277

condition is reset, as it was previously explained in the epidemic event.278

• lockdown: when the Total LockdownNPI (TL) is enforced, all the agents are confined at home,279

except for a few with movement permits. The latter is intended to represent people going280

out for food or medicines or workers of essential jobs; they are chosen randomly every day281

according to a proportion of the population defined with themodel parameter%-permits. Be-282

cause our model considers zonal divisions, hence it is possible to lift the restriction in one or283

many zones while keeping the remainder locked down (this can be done tapping the unlock284

zone button in the simulation panel). If TL is disabled during the simulation, all the agents are285

unlocked so they can move freely, unless of course, they are confirmed cases. TL enforce-286

ment or lifting have effect from midnight on the next day of simulation, after having been287

applied.288

• illness: in this step, progress of illness for the entire population of infectious agents is sim-289

ulated according to the transition events of the SIRE+CARDS model described earlier. The290

sequence of application of these events is the following: I : R, I : E, I + Severity, I + Deadliness,291

I + Hospitalised, and lastly, I + ICU-admitted.292

• clock: this event updates the day and hour counters which depends on the number of ticks293

(or iterations) that are needed to complete a simulated day, as defined by the corresponding294

model parameter.295
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• indicators: here the simulations statistics and epidemic indicators are computed, including296

the following:297

1. History of the number of infected people per day during the timeline of the simulation.298

2. Two estimates of the reproduction number. The first one uses a population-level ap-
proach that takes cumulative incidence data at a given day, namely the attack rate (Oba-
dia et al., 2012); here R0 is computed as the inverse of the proportion of susceptibles
after the last day of simulation of the epidemic (Dietz, 1993):

R0 =
lnS0 − lnSt

S0 − St

where S0 is the initial amount of susceptibles at the time of introduction of the first299

infected, and St the susceptibles at time t.300

The second estimate is computed with a individual-based approach, computed directly
by tracing agents, contacts and contagions individually throughout the epidemic time-
line, and then taking the average:

R̄0 =
1

|C t
|

∑

k
C t

k

here C t
k is the number of contagions made by agent k up to time t, and |Ct| is the count301

of agents that have actually made a contagion up to that point. In this sense, instead302

of making assumptions about the value of reproduction number, we measure it as an303

emergent property of the epidemic dynamics. Both indicators, R0 and R̄0 usually follow304

similar trends, although in some scenarios they may differ amply, as it has been previ-305

ously reported (Breban et al., 2007), as it can be also verified in the corresponding plot306

output section of the simulation tool.307

3. The doubling time computed as (Bakir, 2016):308

DT = ln 2
lnN t

I − lnN t−1
I

where N t
I is the number of infected agents at time t.309

4. Additionally, the following statistics are recorded or obtained: total amount of healthy310

agents (susceptible or recovered), total amount of deaths, total amount of infected agents,311

amount of infected and confirmed agents today, new cases today, number of positive312

tested, and herd immunity percentage. Lethality is reported as infection fatality rate (IFR)313

and case fatality rate (CFR) which are computed each day as the cumulative number of314

deaths per cumulative number of total infections or confirmed cases, respectively.315

5. Lastly, since these indicators vary with respect to time along the duration of the simula-316

tion, we keep record of a number of plots showing the dynamics of the epidemics: SIRE317

plot (Susceptibles, Infectious, Recovered, Extinct), I+CARDS plot (Infectious, Confirmed,318

Asymptomatic, Risky, Severe, Deadly), Hospital and ICU demand plot, and R0 and Dou-319

bling Time plots.320

Simulation Tool321

The simulator was developed in the NetLogo language v.6.1 (May 13, 2019). It is available as free322

software and can be accesed via the ModelingCommons web server in the following URL: http:323

//modelingcommons.org/browse/one_model/6374. To experiment with the tool, choose the “Run in324

NetLogo Web” tab. NetLogo is a widely popular software platform for ABMs, which further to the325

simulation language, also integrates a graphical view area and a test-bed for experimental design326

(Wilensky and Rand, 2015).327

The developed tool implements the NPIs, epidemic SIRE+CARDS model and agent behaviour328

rules described previously. A snapshot of the simulation view area is shown in Figure 3. In there,329
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Figure 3. View area of the simulation tool. Agents are identified by a different shape and colour per zone;additionally, the epidemic state of agents is indicated by red (sysmptomatic), yellow (asymptomatic) or white(recovered, immune); deaths are shown by black cross marks (×). Besides, households and sentinels(ambulances) can also be seen.

agents are represented with different shapes according to the zone where they reside. The colour330

of the agent also represents its extended state (healthy: same colour as zone ground; immune:331

white; sick: red, or yellow if asymptomatic; dead: black ×). Special-purpose agents designed to im-332

plement some of the NPIs such as households for home-quarantine and ambulances for sentinel-333

testing can also be seen.334

The control panel is organised in sections related to general, city and COVID-19 settings, mon-335

itors of epidemic indicators, parameters, action commands to execute the simulation, and a ded-336

icated section for NPI activation with their corresponding parameters. A snapshot of the panel is337

shown in Figure 4. Besides, the tool also includes another panel with plot outputs showing the338

dynamics of the simulation, as it was mentioned in the previous section. An example of the plots339

obtained in a particular execution of the model is shown in Figure 5.340

Hypothetical Scenarios and Results341

In this section we describe a number of scenarios conceived to illustrate how to perform a rapid342

assessment of the effect of NPIs, or combination of NPIs, to contain the spread of the epidemics343

in the population of agents. We start with a baseline scenario where no measure is taken (Do344

Nothing). Then we simulate scenarios where the individual NPIs are applied. Finally, we simulate345

scenarios where these NPIs are combined with the zonal enforcement strategy in order to verify346

its potential impact. The description of these scenarios is given in Table 1. General, city and COVID-347

19 parameters used in all simulations are defined in Figure 2. For each scenario, the epidemic is348

assumed to begin with a “patient zero” seeded randomly in any zone of the city at 0d:12h after the349

start of the simulation. The application of the configured NPI policies begins at 04d:00h.350

For each scenario we performed an experiment consisting of 30 repetitions of execution of351

the simulation model for a timeline of 60 days. We collected the results of the count of healthy352

agents, deaths and immunity rate, as well as some epidemic indicators obtained at the end of the353

simulation time. Average results are reported in Table 3 and Table 4.354

9 of 18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.13.20130542doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.13.20130542
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Control panel of the simulation tool. Figure 5. Plot area of the simulation tool.

Scenario Description
DN Baseline scenario. Patient zero is seeded at 00d:12h, epidemics unfoldswith no interventions.SD Baseline plus social distancing activated with 50% of population willing to comply (%-willings).CI Baseline plus case isolation activated with no home quarantine (HQ) of relatives was applied.TL Baseline plus total lockdown with 10% of people allowed to leave households (%-permits).ST Baseline plus sentinel testingwith no zonal limitation. A sufficient stock of tests is guaranteed.ZE Baseline plus zone enforcement or mobility restriction within each of nine zones.MP Baseline plus mask protection (either everybody wearing masks, sicks only or healthy only)SD+ZE Same as SD with zone enforcing activated.CI+ZE Same as CI with zone enforcing activated.TL+ZE Same as TL with zone enforcing activated.ST+ZE Same as ST with zone enforcing activated.MP+ZE Same as MP everybody with zone enforcing activated.

Table 1. Description of the simulated scenarios.

Parameter Description Value
pop-size Total number of simulated people (agents) 400zones Number of residential zones 9days Period of observation days (simulation length) 60 days% high-risk % of population with co-morbidities 30%hospital-beds Total number of hospital beds available 12ICU-beds Total number of ICU beds available 2ambulances-zone Number of ambulances (sentinels) per zone 1avg-duration Average day period to recover from illness 18 days% asymptomatic % of patients showing no or mild symptoms 50%

Table 2. Settings used in all simulated scenarios.
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Scenario Survivor Death Immune Immune (%)
DN 334.9 ± 8.7 65.1 ± 8.7 334.8 ± 8.8 1.00 ± 0.00SD 338.8 ± 7.6 58.2 ± 7.3 329.9 ± 8.2 0.97 ± 0.01CI 344.0 ± 20.0 55.9 ± 20.0 302.7 ± 102.5 0.90 ± 0.30TL 344.6 ± 25.0 26.8 ± 14.4 162.1 ± 82.4 0.47 ± 0.24ST 380.8 ± 13.0 18.8 ± 12.6 125.4 ± 77.7 0.34 ± 0.21MP sicks 329.0 ± 38.1 49.9 ± 20.9 265.2 ± 109.2 0.83 ± 0.33MP healthy 334.0 ± 6.6 66.0 ± 6.6 334.0 ± 6.6 1.00 ± 0.00MP everyone 361.2 ± 43.7 6.3 ± 9.1 35.0 ± 45.2 0.11 ± 0.15

DN+ZE 339.1 ± 49.2 36.5 ± 18.2 ** 211.0 ± 104.8 0.65 ± 0.33SD+ZE 356.1 ± 29.3 * 17.9 ± 8.8 ** 105.9 ± 48.8 0.31 ± 0.16CI+ZE 375.0 ± 39.5 ** 10.4 ± 8.2 ** 64.0 ± 55.6 0.18 ± 0.16TL+ZE 394.0 ± 3.4 ** 6.0 ± 3.4 ** 35.3 ± 19.7 0.09 ± 0.05ST+ZE 394.8 ± 4.6 ** 5.2 ± 4.6 ** 34.6 ± 26.4 0.09 ± 0.07MP everyone +ZE 388.8 ± 12.6 * 5.3 ± 3.9 28.4 ± 20.4 0.07 ± 0.05
Table 3. Survivor, death and immune count in each scenario starting with a single infection. Statisticalsignificant differences in counts of survivors and deaths between the single NPI scenarios compared to theircorresponding combined NPI+ZE scenarios, are marked as * (p<0.01) and ** (p<0.001).

Scenario CFR (%) IFR (%) R0
(attack)

R̄0
(tracing)

DN 0.69 ± 0.05 0.16 ± 0.02 21.94 ± 4.33 1.97 ± 0.05SD 0.61 ± 0.05 0.15 ± 0.02 3.97 ± 0.36 1.87 ± 0.05CI 0.28 ± 0.10 0.14 ± 0.05 10.15 ± 8.77 2.57 ± 0.88TL 0.49 ± 0.15 0.11 ± 0.04 1.54 ± 0.34 2.85 ± 0.40ST 0.10 ± 0.05 0.10 ± 0.05 1.19 ± 0.44 1.72 ± 0.65MP sicks 0.65 ± 0.13 0.21 ± 0.22 3.22 ± 1.25 1.65 ± 0.58MP healthy 0.70 ± 0.04 0.17 ± 0.02 22.51 ± 3.12 1.97 ± 0.05MP everyone 0.33 ± 0.25 0.07 ± 0.08 0.84 ± 0.58 1.22 ± 0.89
DN+ZE 0.56 ± 0.08 0.13 ± 0.03 3.55 ± 5.41 1.94 ± 0.14SD+ZE 0.50 ± 0.10 0.12 ± 0.04 1.29 ± 0.19 1.93 ± 0.24CI+ZE 0.27 ± 0.23 0.17 ± 0.23 1.03 ± 0.44 2.05 ± 0.94TL+ZE 0.54 ± 0.19 0.17 ± 0.11 1.06 ± 0.03 2.59 ± 0.57ST+ZE 0.12 ± 0.07 0.12 ± 0.07 1.06 ± 0.05 1.82 ± 0.30MP everyone +ZE 0.59 ± 0.24 0.15 ± 0.15 0.96 ± 0.33 1.48 ± 0.57

Table 4. Epidemic indicators obtained in each scenario starting with a single infection.

These results hint at the effectiveness of the different NPI strategies. Across all the scenarios,355

the deaths count varies from 65.1 to 5.3, whereas immunity rate ranges from 100% to 7%. Re-356

garding individual NPI scenarios, that Sentinel Testing reaches the highest count of healthy people357

(381± 13 in average), of which about 34% acquired immunity to the disease, while also achieving358

the lowest rates of mortality of approximately 4% (19±13 deaths); hence, ST seems to be the sin-359

gle NPI yielding the major impact in the epidemics outcome. Should authorities need to prioritise360

application of interventions, these assessment suggests ST should be given top priority.361

Now regarding the count of healthy survivors, Mask Protection for everyone achieves the sec-362

ond best result (361±43) followed by Total Lockdown (345±25). This is an interesting result, taking363

into account that financial cost of providing population with masks can be negligible compared364

to the economic and social costs of maintaining lengthy lockdowns. On the other hand it is also365

interesting to notice that Social Distancing when 50% of population willing to comply, yields a very366

low impact (survivors: 339±8, deaths: 58±7, immunity: 97%), only comparable with the Do Nothing367

scenario (survivors: 335±9, deaths: 65.1±8.7, immunity: 100%). The latter suggests that more than368

half of the population should embrace distancing habits if one expect this NPI to produce any miti-369

gation impact, maybe by reinforcing awareness through extensive coverage education campaigns.370

We observe that Mask Protection of healthy people only, also obtains similar figures to DN, yielding371

a low impact NPI. MP of sicks, in contrast, is more effective in reducing the mortality rate.372
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Another interesting finding related to R0, shows that Mask Protection-everyone obtained the373

best result (0.84), followed by Sentinel Testing (1.19), and then by Total Lockdown (1.54). On the374

other hand, the R̄0 number that is computed directly by tracing the contacts of agents, yielded a375

best result with Mask Protection-everyone again (1.22), then Sentinel Testing (1.72), followed by376

Social Distancing (1.87). The latter corroborates the observation regarding the prioritisation that377

should be given to ST orMP interventions, plus education campaigns. Moreover, the two estimates378

of reproduction number can differ amply, particularly in the DN scenario (R0 = 21,94, R̄0 = 1.97), as379

it has been noted elsewhere (Breban et al., 2007)). In view of these results, we believe the tracing380

approach R̄0 is a more realistic estimate for epidemics ABM simulations.381

On the other hand, we found that the Zone Enforcement NPI exhibits interesting indicators382

suggesting its potential benefit for mitigation impact. Compared to the Do Nothing scenario, ZE383

improves death rate (from 65±9 to 37±18), CFR (from 69±5% to 56±8%) and IFR (from 16±2% to384

13±3%). Since this is one of the distinctive features of our model, we thus decided to assess the385

effect of combining every individual NPI with the ZE restriction.386

Interestingly enough, across all scenarios of NPIs combined with ZE, more effective mitigation387

indicators were obtained. For example, survivor and death count is better than any other sce-388

nario: TL+ZE (survivors: 394±3, death: 6±3), ST+ZE (survivors: 395±5, deaths: 5±5) and MP every-389

one+ZE (survivors: 389±13, deaths: 5±4). SD+ZE achieves herd immunity rate of 31%, whichmay be390

favourable for protection against a subsequent second wave of virus spread, taking into account391

that this scenario assumes that only 50% of population respects distancing. Regarding case fatality392

rate (CFR) these zone-restricted NPIs obtained ranges between 12% and 59%, whilst the infected393

fatality rate (IFR) obtained more optimistic values between 12% and 17%, a result that confirms394

the overestimation phenomenon when only official confirmed cases are accounted rather than395

actual contagions (Verity et al., 2020). Another observation concerning herd immunity is that fol-396

lowing Social Distancing then comes Case Isolation (deaths: 56±20, immunity: 90±30%) and Mask397

Protection for sicks only (deaths: 50±21, immunity: 83±33%); then Total Lockdown (deaths: 27±14,398

immunity: 47±24%) and Sentinel Testing (deaths: 19±17, immunity: 34±21%).399

On a different note, a noticeable pattern in these experiments is the high variability of the av-400

erage results, which can be explained by two reasons. Firstly, a common theme in all these NPIs401

is that they perform isolation of cases as soon as they are discovered: CI by self-isolation of symp-402

tomatic cases, ST by immediate isolation of asymptomatic tested positive, and TL by mandatory403

confining of both symptomatic or asymptomatic (or healthy for that matter) people. Secondly,404

since the experiments were designed in a way that only one infected agent (patient zero) is ran-405

domly seeded at the beginning of the simulation, it is likely that in some repetitions, as soon as406

these NPIs take effect, patient zero can be sent by pure chance to isolation just before he or she407

can transmit virus to other agents; therefore, in those executions indicators may remain unaltered408

whilst in other repetitions the epidemics effectively unfolds fully. This kind of variability is actually409

an inherent property of ABMmodels (Ahmed et al., 2012), one that may resemble more closely the410

natural phenomena they simulate (take for example, the way the COVID-19 epidemics has evolved411

in Latin America differs amply between countries, despite sharing similar socio-economical condi-412

tions and that likewise NPIs measures have been taken by their local governments).413

In order to perform an analysis ensuring the epidemics fully develops across all repetitions, we414

embarked in another set of experiments where rather than beginning with a single infection of415

a patient zero, the simulation starts with a small outbreak of 5% of the population representing416

“imported cases”, distributed randomly in different zones of the city. Again we run 30 repetitions417

per scenario for a timeline of 60 days. The average results are reported in Table 5 and Table 6.418

The first observation in this set of outbreak experiments is that the results exhibit a smaller419

variability, confirming the fully unfolding intuition explained before. Moreover, compared to the420

patient zero experiments, the overall trend can also be identified here, except that with higher421

numbers. Let us examine for example, the death count here varies from 65.7 in the DN scenario422

to 33.2, compared to 65.1 and 5.3 in the same scenario for the patient zero experiments.423
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Scenario Survivor Death Immune Immune (%)
DN 334.27 ± 8.04 65.73 ± 8.04 334.20 ± 8.07 1.00 ± 0.00SD 336.63 ± 7.99 63.30 ± 7.99 330.70 ± 8.00 0.98 ± 0.01CI 333.57 ± 6.84 66.43 ± 6.84 332.00 ± 7.03 1.00 ± 0.00TL 335.57 ± 10.23 64.40 ± 10.27 316.77 ± 11.80 0.94 ± 0.02ST 353.23 ± 6.26 46.77 ± 6.26 260.27 ± 18.37 0.74 ± 0.05MP Sicks 340.30 ± 8.88 58.60 ± 9.23 330.27 ± 10.06 0.97 ± 0.01MP Healthy 334.63 ± 8.79 65.37 ± 8.79 334.53 ± 8.87 1.00 ± 0.00MP Everyone 332.70 ± 9.45 33.23 ± 5.03 195.17 ± 29.32 0.59 ± 0.08

DN+ZE 336.47 ± 8.30 63.43 ± 8.20 330.97 ± 12.52 0.98 ± 0.04SD+ZE 339.53 ± 11.29 56.83 ± 7.93 * 322.67 ± 20.84 0.95 ± 0.05CI+ZE 338.93 ± 7.55 * 60.13 ± 8.09 * 316.10 ± 17.31 0.93 ± 0.05TL+ZE 350.80 ± 8.66 ** 49.03 ± 8.61 ** 276.77 ± 29.89 0.79 ± 0.09ST+ZE 355.97 ± 8.99 44.03 ± 8.99 246.23 ± 21.26 0.69 ± 0.07MP Everyone+ZE 345.57 ± 13.10 ** 33.17 ± 6.35 194.13 ± 22.11 0.56 ± 0.07
Table 5. Survivor, death and immune count in each scenario starting with an outbreak of 5% population.Statistical significant differences in counts of survivors and deaths between the single NPI scenarioscompared to their corresponding combined NPI+ZE scenarios, are marked as * (p<0.01) and ** (p<0.001).

Scenario CFR (%) IFR (%) R0
(attack)

R̄0
(tracing)

DN 0.70 ± 0.04 0.16 ± 0.02 22.99 ± 4.55 1.88 ± 0.07SD 0.67 ± 0.05 0.16 ± 0.02 4.54 ± 0.44 1.87 ± 0.07CI 0.34 ± 0.03 0.17 ± 0.02 9.41 ± 7.53 2.19 ± 0.08TL 0.70 ± 0.05 0.17 ± 0.03 3.44 ± 0.48 2.54 ± 0.16ST 0.15 ± 0.02 0.15 ± 0.02 1.98 ± 0.16 1.86 ± 0.08MP Sicks 0.62 ± 0.05 0.15 ± 0.02 4.00 ± 0.36 1.81 ± 0.06MP Healthy 0.70 ± 0.05 0.16 ± 0.02 22.39 ± 5.47 1.87 ± 0.06MP Everyone 0.53 ± 0.05 0.13 ± 0.02 1.69 ± 0.14 1.66 ± 0.06
DN+ZE 0.68 ± 0.04 0.16 ± 0.02 17.03 ± 9.62 1.84 ± 0.06SD+ZE 0.63 ± 0.05 0.15 ± 0.02 3.90 ± 0.90 1.83 ± 0.06CI+ZE 0.32 ± 0.04 0.16 ± 0.02 5.56 ± 6.41 2.13 ± 0.10TL+ZE 0.64 ± 0.07 0.15 ± 0.02 2.23 ± 0.37 2.29 ± 0.15ST+ZE 0.15 ± 0.02 0.15 ± 0.02 1.86 ± 0.18 1.85 ± 0.06MP Everyone+ZE 0.53 ± 0.05 0.13 ± 0.02 1.62 ± 0.13 1.69 ± 0.05

Table 6. Epidemic indicators obtained in each scenario starting with an outbreak of 5% population.

The latter increase is caused of course, by the larger amount of carriers at the beginning of the424

simulation (20 individuals or 5%) yielding a higher burden on the hospital facilities at the peak of425

the epidemics. On the contrary, immunisation also rises in the MP everyone+ZE scenario to a 56%,426

from a 7% in the earlier experiment. The higher levels of immunity achieved in all the scenarios are427

beneficial to effectively suppress the contagion or prevent it in a forthcoming second wave of the428

epidemics. Similar trends can be identified when comparing the other indicators with the earlier429

patient zero experiments.430

The main finding however, in our opinion, is that simultaneous application of the Zone Enforc-431

ing intervention with the other NPIs, again yields an improvement on the mitigation impact com-432

pared to the single NPI scenarios (more survivors, fewer deaths). Significant differences between433

the single and their corresponding +ZE scenarios (p-value < 0.01) are highlighted in the tables. To434

further illustrate the effect of the application of Zone Enforcing, in the Appendix we included a435

comparison of the epidemic dynamics between arbitrary executions of the simulation for each436

pair of scenarios (single vs its corresponding combination with ZE). Particularly, the “flatenning” of437

the infectious curve can be seen in the +ZE plots, both as a lower height of the infectious peak and438

in some cases as a longer tail shifted towards a later time in hours, with respect to the start of the439

simulation.440
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Conclusion441

Given the complex nature of human behavior and virus infection, attempting tomodel everymech-442

anism of the COVID-19 epidemic may prove difficult; necessary assumptions have to be made to443

simplify the representation of the agents and their interactions. Our aim was to focus on find-444

ing emergencies in the dynamic of this disease, considering a broad set of traits for the agents;445

in real life of course, there are many properties of interest that may impact the growing of the446

epidemics. Here we omitted detailed structures such as age, gender, profession, health status,447

or family, school and work clusters, transportation, job shifts or economic impacts. Clearly, those448

properties can be examined as extensions of themodel, in the hope of capturing additional hidden449

patterns that may yield a better assessment of the effects NPIs can have taking additional mecha-450

nisms into consideration. Nonetheless, the results obtained indicate that the proposed model can451

be a useful tool in relation to a rapid assessment of the potential impact of combinations of NPIs452

at different stages of the contagion.453

Overall, our findings suggest three relevant recommendations. In general, mass-testing (ST as454

we denote it in our model) is the one intervention that authorities should give priority to mitigate455

the impact of COVID-19, providing for this purpose with sufficient stock of tests to medical units456

performing random testing campaigns. Besides, Mask Protection for everyone, is even a cheaper457

strategy authorities should strengthen as an alternative to declaring costly lengthy total lockdowns.458

In addition, the proposed zonal enforcing NPI proved to be useful to boost the mitigation im-459

pact of combination of other individual NPIs. Although this seems an appealing finding, practical460

application of said zonal enforcing may require logistic, residential and economical adjustments,461

since people usually reside and work in different districts of a city. Therefore the feasibility of462

limiting mobility of people within districts will depend on the urban planning and development463

of sufficient decentralised infrastructure, such as industrial, residential, technological, commercial464

and financial hubs distributed in a way that motivate people to reside and work within the same465

district. This may not be feasible to achieve for the current COVID-19 pandemic, particularly in466

cities in Latin America where proper urban zonal planning is unsatisfactory, but it is an alluring467

idea to start exploring as a preventive measure to counter new epidemics that may come in the468

forthcoming future.469

Finally, interesting gaps remain to be addressed in future work. Some of the ideas we are con-470

sidering are: expanding the model to include more realistic attributes regarding patients and epi-471

demic dynamics, such as differentiated infectiousness taking into account symptomatic structures472

associated with age and gender; also considering incubation periods, co-morbidity risk stratifica-473

tion with age windows, inclusion of conglomeration centres (that is, mass transportation, schools,474

cinemas, hospitals), as well as the estimation of indicators of economic impacts and the study of475

the importance of educational aspects in the habits of collective social intelligence that may be476

beneficial for the mitigation power of NPIs.477
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Appendix521

Here we report plots of example executions of simulated scenarios with an outbreak infecting 5%522

of the population. For each scenario in Table 1, we include the individual NPIs outcome (left-hand523

side) and the corresponding NPIs plus zonal enforcement outcome (right-hand side).524
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Figure 6. Plots of a single run of DN simulation. Figure 7. Plots of a single run of ZE simulation.

Figure 8. Plots of a single run of SD simulation. Figure 9. Plots of a single run of SD+ZE simulation.
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Figure 10. Plots of a single run of CI simulation. Figure 11. Plots of a single run of CI+ZE simulation.

Figure 12. Plots of a single run of ST simulation. Figure 13. Plots of a single run of ST+ZE simulation.
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Figure 14. Plots of a single run of TL simulation. Figure 15. Plots of a single run of TL+ZE simulation.

Figure 16. Plots of a single run of MP simulation. Figure 17. Plots of a single run of MP+ZE simulation.
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