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Abstract

We report here on results obtained using the SIR epidemic model to study the
spring 2020 COVID-19 epidemic in New York City (NYC). An approximate solution
is derived for this non-linear system which is then used to derive an expression for the
time to maximum infection. Additionally, expressions are obtained for estimating the
transmission and recovery parameters using data collected in the first ten days of the
epidemic. Values for these parameters are then generated using data reported for the
spring 2020 NYC COVID-19 epidemic which are then used to estimate the time to
maximum infection and the maximum number of infected. Complete details are given
so that the method can be used in the event of future epidemics. An additional result
of this study is that we are able to suggest a unique mitigation strategy.
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1 Introduction

Mathematical analysis of the spread of pathogens in the environment, whether amongst
plants, animals or humans, has been an active area of research since the seminal paper of
Kermack and McKendrik in 1927 [1, 2]. In this work they provide a general description for
an epidemic via a system of differential equations. They go on to use these to study an early
twentieth century plague epidemic. More recently, similar kinetic models have been used to
study other infectious outbreaks in human and animal populations including cholera [3, 4],
anthrax [5, 6], SARS [7], H1N1 [8] and chlamydia [9] to name a few.

The Kermack-McKendrik, or so called, SIR model, relates the number of susceptible
individuals S, number of infected persons I, with the number of recovered R through a
system of three differential equations:

dS

dt
= −βIS (1)

dI

dt
= βIS − γI (2)

dR

dt
= γI . (3)

Here t represents time, β is the specific transmission coefficient and γ the recovery coefficient.
In this work both β and γ are assumed to remain constant. Eq. (2) results from the fact
that

N = S(t) +R(t) + I(t) , (4)

where N is the total number of persons in the single-compartment, homogeneous set.
Even though, with β and γ held constant, the SIR model is one of the more simple

epidemic models this non-linear system has defied closed-form analytical solution and is thus
routinely solved numerically. Recently, an exact solution in parametric form was reported
by Harko et al. [10]. Given initial values for S, R and I, and values for the parameters β and
γ, the result of Harko et al. is shown to equivalent to the numerical one. However, values for
β and γ before the onset or during the early stages of an epidemic are not always available
especially in the case of a novel pathogen as with COVID-19 in the spring of 2020.

In this report we present results from using the Kermack-McKendrick model to study the
2020 spring COVID-19 outbreak in NYC. A scheme is given for estimating β and γ using
testing data from the early stage of an epidemic. An approximate solution for the entire
system of Eqs. (1) through (3) leads to an estimate for the time to maximum infection, tp, in
terms of β, γ and So where So is the number of susceptible people at t = 0. It is then shown
how these parameters can be used within expressions previously reported [7, 11, 12] for the
maximum number of infected persons, Ip, and the final number of susceptible though not
infected individuals S∞, to compute estimates for these quantities. Finally, the estimated
values for β and γ are used to assemble the curves for S(t), I(t) and R(t), both numerically
and using the approximate solution, for the case of the spring 2020 COVID-19 epidemic
in NYC. The approach is general and may be used to estimate β and γ for other similar
epidemics in the future.
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The effects of mitigation are studied by viewing a three-dimensional plot of I vs. β and
time. This plot reveals how flattening the curve in two-dimensions is equivalent to bending
the ridge in three. The result being that as β is decreased through mitigation the peak
of the ridge, Ip, is lowered but the epidemic takes a path through finite I(t) that becomes
longer in time eventually becoming infinite. It is further suggested here that by using a
particular mitigation approach, and thus taking a particular route through I(β, t) space,
that the intensity and time span of the epidemic may be lessened.

2 Estimating β and γ using early time data

In this section we derive approximate expressions for the parameters β and γ that are given
solely in terms of time dependent data for I taken early in the course of the epidemic. We
have the initial conditions S(0) = So, R(0) = 0 and I(0) = Io.

We consider only the situation where βSo > γ. At the earliest times in the epidemic we
claim that Eq. (2) will be dominated by the first term on the right so that we can write the
following approximation for ∆I/∆t:

∆I

∆t
≈ βImSo . (5)

Here Im is the mean value for I over the time interval ∆t. Solving this for β we get the
formula used to estimate this parameter

β =

(
1

ImSo

)
∆I

∆t
. (6)

Now, consider some time interval ∆t1 later in the I vs. t data but still relatively early
in the epidemic, say within the first 10 days. Then the slope of ∆I/∆t1 over this interval
can be approximated using Eq. (5) using the value for β estimated with the earlier time
interval ∆t. However, this would over estimate ∆I/∆t1 as the second term in Eq. (2) can
not be ignored at this later time. We conjecture then that a better estimate for the slope
over ∆I/∆t1 be given by

∆I

∆t1
= βImSo − γIp . (7)

where Ip is the peak value for I. Solving for γ yields

γ =
βImSo − ∆I

∆t1

Ip
. (8)

Since Ip will be unknown we use the approximation that Ip ≈ So. It will be demonstrated
in a later section how Eqs. (6) and (8) can be used along with early time data for I vs. time
from a real epidemic to estimate β and γ.
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3 Approximate Solution for the Kermack-McKendrick

Equations

In this work we consider the epidemic, modeled by Eqs. (1) through (3), where βSo/γ > 1.
From a theorem due to Hethcote [7,11] this implies several things. First, that I(t) will have
a positive maximum which is labeled Ip and then I → 0 as t → ∞. Secondly, Ip can be
given by

Ip = So + Io +
γ

β

[
ln

(
γ

βSo

)
− 1

]
. (9)

Additionally, the remaining number of susceptible people not infected at the end of the
epidemic, S∞, is given by

ln

(
S∞
So

)
=
β

γ
[S∞ − (So + Io)] . (10)

A useful approximate solution for Eqs. (1) through (3) can be arrived at starting with
the integrated version of Eq. (3)

R = γ

∫
Idt . (11)

Eqs. (1) and (3) can be used to derive

S(t) = So exp [−(β/γ)R(t)] . (12)

Using Eq. (11) in Eq. (12) we have

S = So exp

[
−β
∫
Idt

]
. (13)

Using Eqs. (11) and (13) in Eq. (4) gives

So exp

[
−β
∫
Idt

]
+ I + γ

∫
Idt = So + Io . (14)

Operating on both sides of eq. (14) with d/dt yields

dI

dt
− βSo

∫
dI exp

[
−β
∫
Idt

]
+ γ

∫
dI = 0 . (15)

We let
∫
dI = I + c1, where c1 is some constant, and the above becomes

dI

dt
− (βSo exp

[
−β
∫
Idt

]
− γ)(I + c1) = 0 (16)

∫
Idt is some function of time, that is, R(t). We speculate that during the period of time

over which I is significant R can be modeled as being quadratic with respect to time so we
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let
∫
Idt = kt2 where k is some yet to be determined parameter. With these replacements

in Eq. (16) we have the separable situation:

dI

I + c1

= (βSo exp
[
−βkt2

]
− γ)dt . (17)

Integrating both sides of Eq. (17) and solving for I we get

I = (Io + c1) exp

[
So
√
πβ erf[

√
kβt]

2
√
k

− γt
]
− c1 , (18)

where erf denotes the error function. There is the final condition that I → 0 as t→∞ so it
must be that c1 = 0. The final expression for I is then given by

I = Io exp

[
So
√
πβ erf[

√
kβt]

2
√
k

− γt
]
. (19)

More can be learned about k by considering the time of maximum I which we label as
tp. We conclude that I will be a maximum when the argument of the exponential function
in Eq. (19) is a maximum. Computing the first time derivative of this yields

d

dt

(
So
√
πβ erf[

√
kβt]

2
√
k

− γt
)

= Soβe−kβt
2 − γ . (20)

Setting this equal to zero we solve for the time to maximum infection, tp:

tp =

√
− 1

kβ
ln

(
γ

Soβ

)
. (21)

Therefore, it must be that γ < Soβ. Using Eq. (21) in eq. (19) we are lead to an approximate
expression for Ip:

Ip = Io exp

So
√
πβ erf

(√
− ln γ

Soβ

)
2
√
k

− γ

√
− 1

kβ
ln

(
γ

Soβ

) . (22)

This is equated to the true expression for Ip given by Eq. (9):

Io + So +
γ

β

[
ln

(
γ

βSo

)
− 1

]
= Io exp

So
√
πβ erf

(√
− ln γ

Soβ

)
2
√
k

− γ

√
− 1

kβ
ln

(
γ

Soβ

) .

(23)
Solving the above for k we get

k =


So
√
πβ erf(

√
− ln γ

Soβ
)

2
− γ
√
− 1
β

ln
(

γ
Soβ

)
ln

(
Io+So+

γ
β [ln( γ

βSo
)−1]

Io

)


2

(24)
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With values for β, γ, So and Io, Ip and k can be computed and thus tp estimated. Also, the
approximate curve for I(t) can be generated and plotted.

Now, S(t) and R(t) can be estimated by using Eq. (19) in Eqs. (3) and (12). The integral
of Eq. (19) must be computed numerically. For purposes of simplification we propose the
use of the following tabulated function

B[A,B,C; t] =

∫ t

0

exp [A erf(Bτ)− Cτ ] dτ . (25)

Using this notation, along with Eq. (3), with we have that

R(t) = γIo B

[
So
2

√
πβ

k
,
√
kβ, γ; t

]
. (26)

Eq. (26) in Eq. (12) gives the approximation for S(t),

S(t) = So exp

{
−βIo B

[
So
2

√
πβ

k
,
√
kβ, γ; t

]}
. (27)

4 Analysis of Epidemic Data

Recently the NYC Department of Health released data on the NYC spring 2020 COVID-19
epidemic [13]. These data included a daily tally of the percentage of positive test results and
a daily three-day average of percentage positive tests results. We take the positive test result
as a measure of the number of the infected people per day that is, I vs. time. Additionally,
data was provided for the daily number of hospitalizations and cases during the same time
period. This data was given for an approximately 80 day period starting in early March
2020. The first positive test percentage reported was for 3 March while the first three-day
average was on 5 March. In the report on number of hospitalizations it is listed that the first
case was reported on 29 February. Therefore, 29 February will be taken as the zero point
for time in the epidemic. Here we will analyze the data on positive test results given as a
three day average, that is, reported daily for the previous three days. It is demonstrated in
this section how data from the first ten days of this data can be used to estimate values for
the constants β and γ.

We consider an example set of 1000 susceptible people. The epidemic is assumed to be
started by one individual so that Io = 1 and So = 999. That is, we assume that 0.1% of 1000
people were infected when data collection commenced. We assume that the percentage of
positive test results applies to this entire set. The first three day average of 0.09 percent was
reported on 5 March 2020. With the epidemic starting on 29 February we set ∆t = 4.0 days.
Therefore the infected persons after the first four day period must be I = (0.09)(1000) = 90
so that ∆I = 89. Im is the mean value over this time period. This data is now used in Eq.
(6) to estimate β and the result is listed in Table 1.

Now a later time period, ∆t1 is considered and Eq. (8) used to estimate γ. For three
time intervals, beyond day four, γ will be computed using Eq. (8) for each and then a mean
value determined. For day six to seven the percentage increases from 0.06 to 0.1. For day
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seven to eight the change is 0.1 to 0.12. Finally, we consider data from day eight to nine
where the percentage increased from 0.12 to 0.19. In each case ∆t1 = 1.0 day. Since Ip is not
yet known we assume that the epidemic is significant and assume that Ip ≈ So. The mean
of these three values is listed in Table 1. Additionally, a quantity often computed during
studies of this type, the so-called reproduction number Ro where Ro = βSo/γ, is computed
and listed along with the above mentioned quantities in the first row of Table 1.

Finally, our estimated values for β and γ can be used in Eq. (24) to estimate the
parameter k then Eqs. (19), (26) and (27) can be used to yield the full curves for I(t), R(t)
and S(t) for the COVID-19 spring 2020 NYC epidemic. These curves are depicted in Figures
1, 2 and 3. In Fig. 4 the numerical solution for Eqs. (1), (2) and (3) was fitted to the data
shown in Fig. 1 by adjusting the values for β and γ. Values from this fit are listed in the
second row of Table 1.

Table 1: Parameters computed in this SIR study of the spring 2020 NYC COVID-19 epidemic.
*-taken from Ref. [13]. ♣ -from the curve fit of I shown in Fig. 4 taken from the numerical solution
to Eqs. (1), (2) and (3). By Eq. (10) S∞ ≈ 0 in this case.

Ip tp (days) β (days)−1 γ (days)−1 Ro k (days)−2

695.1 28.5 4.95× 10−4 0.04419 11.2 6.0
700∗ 27.0∗ 3.85× 10−4 ♣ 0.0365 ♣ 10.53 ♣

Figure 1: I vs. time. Data points are percentage of 1000 persons testing positive based upon
data from Ref. [13]. Solid curve as estimated by Eq. (19). β and γ from the first row of Table 1,
generated using the prediction scheme outlined in this report, were used.
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Figure 2: R vs. time. Solid curve as estimated by Eq. (26). Dashed curve is the numerical solution
from of Eqs. (1), (2) and (3). In both cases β and γ from the first row of Table 1 were used.

Figure 3: S vs. time. Solid curve as estimated by Eq. (27). Dashed curve is the numerical solution
from of Eqs. (1), (2) and (3). In both cases β and γ from the first row of Table 1 were used.
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Figure 4: I vs. time. Dashed curve is the numerical solution from of Eqs. (1), (2) and (3). β and
γ from the second row of Table 1 were used.

5 Discussion

In this report it was shown how early-time epidemic data can be used to predict two im-
portant parameters used in the SIR model. Using daily percentage testing positive data
reported for the spring 2020 COVID-19 epidemic in NYC as an example, the scheme is em-
ployed to predict the number of infected persons at the peak of infection and the time from
the start of the epidemic until peak infection. Further, the general SIR curves for I(t), R(t)
and S(t) are approximated and shown to be a reasonable match to data or the curves from
the numerical result.

From the data in Table 1 it is seen that the model using the values for β and γ generated
using early-time data, predicts a value for the number of maximum infected people to within
about 1.0 % of the reported value. The predicted time to peak infection is within about 6% of
the reported time. These errors could be considered significant for a theoretical model being
used to describe some physical phenomena or system. However, for the purpose of predicting
the time dependent nature of numbers of infected, recovered and susceptible people during
an epidemic, these errors should not preclude such a model from being significantly useful
to the forecaster.

The value for β and Ro determined in this study are indicative of a pathogen that spreads
relatively quickly and efficiently. Some caution is warranted when quoting this value however.
Though it is expected that the COVID-19 virus is in fact more easily transferable than the
common flu, we have assumed here the group that was tested was typical of the entire
population, an assumption that may or may not be accurate. Additionally, the reproduction
number in this model is sensitive to the choice of value for the ratio Io/(So + Io). In this
work we selected 1/1000 for this ratio, that is to say that the epidemic started by having
one infected person per 1000 susceptible people, or at least, that was the situation when
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data collection commenced. Interestingly, as this ratio decreases, the reproduction number
increases thus indicating that there were likely more than 0.1% infected at the time the NYC
data collection commenced as COVID-19 reproduction numbers are speculated to be in the
neighborhood of 4.0 [2].

Of course if Ro < 1 the infection never spreads and the epidemic dies out. Kermack and
McKendrick consider this in terms of a so called population density given by γ/β, [1]. If the
population density is less than γ/β the epidemic dies out whereas it spreads and reaches a
maximum I for cases where the population density exceeds γ/β. Using β and γ from the
first row of Table 1 we get γ/β ≈ 89 thus indicating that for these values of β and γ at least
89 persons are required for the epidemic to develop. This would in fact be the minimum
required population for any case where the ratio Io/(So + Io) = 1/1000 as Io ≥ 1.

Much has been said recently about the effect of mitigation on the shape of the curve
for I(t). It has been assumed that by the adoption of aggressive mitigation techniques and
practices the transfer rate β can be lowered. This has the effect of lowering the peak value
for I and spreading the epidemic out over a longer time period. This change is referred to as
flattening the curve [14]. It is interesting to observe the effect on I of varying β through a
3D plot of I vs. t and β at constant γ. Using the predicted value for γ from the first row of
Table 1, along with Eqs. (24) and (19), a plot for I(β, t) is generated over a range of values
for β that includes those found in this study for the NYC epidemic. This plot is shown in
Fig. 4.

Figure 5: I vs. β and time at constant γ. Here γ from the first row of Table 1 was used. The
surface is given by using Eq. (24) in (19). β has units of days−1 per 1000 people.

It is seen from this figure that as β is decreased the peak for I lessens and shifts towards
later times. This change is seen as a flattening of the curve in 2D but becomes a bending of
the ridge in 3D. This effect is seen more clearly via a top view as depicted in Fig. 5.
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Figure 6: Top view of Fig. 5. Here the dashed line shows the estimated path of I(t) for the spring
2020 COVID-19 NYC epidemic through I(β, t) space. The lower path depicts a suggested route
through which the intensity and time of the epidemic is shortened. β has units of days−1 per 1000
people.

Here the estimated path of I(t), using the value for β from the first row of Table 1 for
the 2020 NYC epidemic, is shown by a dashed line. An interesting feature of this figure is
that it can be seen that as the ridge bends for decreasing β the peak value for I is lowered
but for a constant β path the epidemic is spread over a longer time period. That is, as β is
lowered the constant β paths for I(t) begin to take a sideways and much longer route over
the ridge.

This result suggests another possible approach to managing the epidemic. If β were to
be decreased by aggressive mitigation then one might approach the ridge at a location where
it is bent to the right in time. This level of mitigation is held in place until the ridge is
near then if given a sudden increase in β, over a short time period, the epidemic will cross
the ridge almost vertically in Fig. 7 at a point where it is greatly reduced in height. Once
across, the epidemic is then completed at the newly increased constant value for β. A path
of this sort is sketched in the lower section of Fig. 7. Therefore, within the framework of
this model, a path of this nature greatly lessens the intensity and shortens the time period
for the infected phase of the epidemic.
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