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Abstract: This research points to the asymptotic instability of SIR model and its variants to 11 

predict the behavior of SARS-CoV-2 infection spreading patterns over the population and time 12 

aspects. Mainly for the “S” and “R” terms of the equation, the predictive results fail due to 13 

confounding environment of variables that sustain the virus contagion within population 14 

complex network basis of analysis. While “S” and “R” are not homologous data of analysis, 15 

thus with improper topological metrics used in many researches, these terms leads to the 16 

asymptotic feature of “I” term as the most stable point of analysis to achieve proper predictive 17 

methods. Having in its basis of formulation the policies adopted by countries, “I” therefore 18 

presents a stable fixed point orientation in order to be used as a predictive analysis of nearby 19 

future patterns of SARS-CoV-2 infection. New metrics using a Weinbull approach for “I” are 20 

presented and fixed point orientation (sensitivity of the method) are demonstrated empirically 21 

by worldwide statistical data. 22 
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1) INTRODUCTION 26 

The nonlinear dimensionality reduction scenario pointed in this research refers mainly to 27 

the unpredictability of epidemiologic framework of SIR (susceptible, infected, removed) 28 

stochastic or deterministic models and its variants to track the possible rate of infection of the 29 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among population. 30 

The starting point to the limitation of predicting future rates of transmission was 31 

importantly and deeply noticed by Manzo and Roberts et al [1,2] during the pandemic 32 

spreading, and also briefly described by Merchant and other authors [3,4,5,6]. These authors 33 

presented descripted analysis of SIR models and variants failures to achieve a good to fit 34 

predictability and sensitivity of how SARS-CoV-2 infectious spreading patterns might occurs 35 

over time (also this limitation being live verifiable by automated tools data bases available to 36 

perform it at https://projects.fivethirtyeight.com/covid-forecasts/ [7] as exemplified in “S1 37 

figure”. Many researches based on SIR models or its variants [8], just to mention very few 38 

examples [7,9-18] are confronted with barriers found mainly on the basis of S and R 39 

compartments of SIR model due to pandemic complex scenario involving societies and SARS-40 

CoV-2 distinct spreading patterns of infection where those two terms of equations are now 41 

suspended. “S2 figure” 42 

Despite new formulations based on agent-based modeling approaches [19,20] for SARS-43 

CoV-2 are being deeply described [21-23], the lack of fixed point orientation and asymptotic 44 

instability for S and R are still visible when we consider that an agent-based model can be 45 

under or overestimated by the type and duration of policy making worldwide [24-33] having 46 

this feature as the main attractive network interactions. This confounding environment of 47 

study presents itself for COVID-19 pandemic as an impossible methodology to be used in terms 48 

of prediction since embedded components between policies and individual behavior are 49 

presented and act as a limiting factors for the machine learning analytics for S and R as well as 50 
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the pre assumptions of a global homomorphism basis for the individual scale of infected 51 

person and SARS-CoV-2 behavior to population behavior.  52 

Recent researches have been pointing to the robust analysis of convergence orientation 53 

within policies adoption by countries (non-pharmaceutical interventions (NPIs)) [24-33], 54 

therefore, remaining these efforts to the conclusion of component I of model as the best 55 

predictable pattern formation to be used for epidemics analytical behavior. Considering all 56 

countries epidemic behavior in convergence to the policies adopted, I component present a 57 

good performance of indicator of analysis behavior to infer with numerical results the noise [1-58 

7] caused by some compartment components of SIR models approaches of predictability. 59 

Even with high variance produced by other variables for S and R that influence the final 60 

solutions of the phenomenon, these fixed point stable parameters of I can create a confident 61 

region of statistical analysis [24-33] in terms of observation of the exponential growth of virus 62 

along days and therefore it could be more conclusive to many mathematical infectious disease 63 

models (SIR stochastic or deterministic approaches) that were created since the beginning of 64 

epidemics and later pandemics spreading. 65 

Many variables that affect virus transmission rates [34], such as the type and duration of 66 

health policies adopted by each country (NPIs), health infrastructure, population genetics, 67 

human variance in terms of biological resistance (symptomatic, pre and asymptomatic cases), 68 

epidemic outbreak, infodemics worldwide (individual, community, government and media 69 

scale), globalization aspects, COVID-19 testing availability, reliability and time for results 70 

outcomes, virus mutation, and citizen adherence to social isolation and social distancing 71 

present a strong influence on the S and R behavior patterns. These confounding outcomes in 72 

each country pose a challenge to identify exact design and results of S and R patterns, 73 

therefore influencing on I compartment. However these inputs of data can create a 74 

confounding environment of study, where the mathematical simulation of SIR model finds 75 

limitations due to these non-homologous data [1-7] and consequently heteroscedasticity form 76 
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for data results; in this sense, it is justifiable the analysis policies adopted by countries as the 77 

most reliable, at the moment [24-33], form of reducing COVID-19 cases while no vaccine or 78 

drugs present consistent and effective use for treating the disease or stop virus propagation, 79 

that could influence directly the S and R components, thus, performing a robust prediction 80 

analysis. 81 

 82 

2) METHODOLOGY 83 

 2.1 The S and R constraints 84 

In many phenomena, the level of randomness of a system assumes extreme asymptotic 85 

instability characteristics for variables convergence aspects as it is observed in this pandemic 86 

patterns [7]. The confounding environment of variables involved in the pandemic spreading 87 

patterns assume distinct values for the exponential behavior of infection over time not only for 88 

the same sample of analysis (country) [7], but samples compared to each other [35,36]. 89 

In order to extract fixed point orientation with not homologous data involved in the 90 

epidemics cases, concerning the system global homomorphism over time, no stability pattern 91 

was found for S and R in recent researches [7-23] except for I [24-33]. This stability feature for 92 

S and R is not commonly observed in the empirical terms of the analysis for short time periods 93 

of observation while these data presented time-varying empirical data and unresolved partial 94 

differential equations on the basis of epidemics evolution and this still applies for long time 95 

periods as well [1,2,7,37]. While S and R periodic fixed point that could uncover a stability 96 

pattern formation needed for a deterministic SIR modeling are not obtained 97 

(vaccines/drugs/immunization), results, nowadays [7-23] generates probabilistic distributions 98 

permeating the system for short time lengths (local homomorphism) and long time lengths 99 

(global homomorphism) generating distinct distributions shapes and scales for each country. 100 

These set of variables that make up the system assumes different behaviors over time periods 101 

and it is not possible to determine universally that the system have a persistent not 102 
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embedding behavior in the way it was constantly observed in many researches using SIR and 103 

its variants models [7-23], having in the data sets the main limiting factor of analysis. 104 

Now consider this premise that confounding or even spurious environment (not 105 

homologous) of variables presented by S and R compartments of SIR equation basis present 106 

high instability properties in terms of expressing convergent orientation of the global 107 

homomorphism for the infection spreading patterns, while I compartment of SIR model is 108 

asymptotic stable to the policies adopted by countries. For this point, the evolution of the 109 

disease spreading patterns need to be evaluated by the policies adopted by countries that 110 

present nowadays the most stable pattern of convergence [24-33] and therefore, most reliable 111 

and sensitive data can be used as tool for predictive analysis. 112 

By excluding S and R compartments of equation and using only I variable as an indicator of 113 

infection spreading pattern, it exclude as well the limiting factors of SIR model of predictive 114 

analysis and therefore, the confounding environment of research. The compartment I 115 

resemble the growth of infection over days that depending on the policies adopted by a 116 

country it express higher or lower exponential growth behavior. If considering the exponential 117 

growth as how efficient are the policies adopted in order to reduce transmission patterns, 118 

then, we have an indicator of analysis that is pre assumed on fixed point orientation of 119 

infection spreading patterns, and hence, a valid indicator of countermeasures , monitoring 120 

aspects and expected results in a wide domain of policies to be adopted. 121 

To achieve this indicator’s numerical results, we need to understand time periods of 122 

infection based on cumulative cases time series data limited to the exponential behavior of 123 

infection in its mean per population samples. The mean reflects the sensitivity needed to 124 

observe the phenomenon evolution over time and how stability patterns are occurring. For 125 

this point of observation, exponential growth mean resembles exactly how the infection 126 

spreading patterns have encountered adequate policy measures or inadequate fixed point 127 

orientation of the type of policy adopted as it will be explained in the next subsection 2.2. 128 
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2.2 “I” of SIR model as the most reliable and sensitive indicator 129 

For this analysis, it was considered the observed infected population samples   130 

          of the general definition of the exponential behavior of infection as        131 

      where the samples are taken from zero cases until the observed maximum exponential 132 

growth reached per population amount for each country [35-36] under the    (new infection 133 

spreading patterns under policy measures influence) designed region of analysis. 134 

In the shape behavior     or     of exponential irregular distributions of SARS-CoV-135 

2 infection defined in the original form as 
  

  
  

  

 
   , generically and instable [7-23] it can 136 

understood as   (
 

 
)
 

 (1), where the infected   is influenced by unpredictable scale of 137 

infection   ( ) with inconsistent behavior of variables transition rate (   ) defined as  , and 138 

is not assumed for    in the original form of R, that there are a normal distribution output for 139 

this virus spreading patterns, therefore it was used an unpredictable shape  , mainly defined 140 

those as components S and R of SIR model and its variants. This equation represents the 141 

presence of confounding variables environment   with unknown predictive scale of      or 142 

maximum likelihood estimator for   due to nonlinear inputs for S and R, and therefore 143 

generating nonlinear outputs   (asymptotic instability) [38] by the virus infection   over   144 

(population). The outputs with heteroscedasticity form for   and   are removed of occurring 145 

as far as the     Weibull parameterization aspect [39] of distribution be elected as the most 146 

reliable region of analysis (attractive orientation), thus modifying the first equation (1) to 147 

  (
 

 
)

 

 
    

 (
 

 
)
 

 (2), hence with the new SIR model proposition as         , where 148 

  is asymptotic to   . This is a mandatory redesign since many scientific breakthroughs are 149 

pointing to policies as the best approaches to reduce COVID-19 nowadays [24-33]. 150 

This mean   indicated at (2) is found as a persistence diagram existence [40] by mapping 151 

each adjacent pair to the point (         ) minimum and maximum observations, resulting in 152 

critical points of   function over time   in not adjacent form, thus expressing random critical 153 
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values defined by   (
 

 
)
 

 in the original form of observation of the event. But since we need 154 

to filter           unstable critical points (oscillatory instability of S and R) to an attractive 155 

minimum behavior for the distribution functions   for S and R towards I, as                156 

   
              , therefore, the redefinition of mean   over time is a necessary condition. 157 

At this point, by rejecting the persistence diagram unstable critical points generated, a 158 

local minimum of the event as an average mean can be obtained by having   with the higher 159 

number of samples   that finds a condition roughly described in the nonlinear oscillations 160 

within the exponential growth epidemic behavior of event as limited between local maximum 161 

growth defined by   by its half curvature oscillations 
 

 
 as a local minimum being non periodic 162 

(  ) due to    . Therefore   assumes the desired oscillations samples and region condition 163 

like 
 

 
     where persistent homology can be found for       to be situated in the 164 

oscillations pairing region of           and           for   desired coordinates 165 

            of stability with     as       ∫  ∑         
 
 

 

  , thus assuming the shape 166 

and limit to    . Then concerning time lengths of samples, it is designed as        167 

     ∑            starting from                 results in the desired data distribution 168 

with a conditional shape of Weibull parameterization     for the analysis, therefore 169 

rejecting any critical value beyond           and under          .  170 

In this simple and overall form, redefining the mean shape for the infection spreading 171 

patterns of     approximately as     ⁄  under    , the numerical representation of the 172 

scale considering a global homomorphism of the persistent homology [40] observed can be 173 

limited by the highest number of scales that fitted best by the observed exponential mean   174 

scale of    until it reaches a desired form like    . 175 

This modeling is represented at figure 1 for United States analysis on 02, Jun, 2020 [35]. 176 

At this point the days counting forward this condition will be rejected to extract the 177 

exponential infection spreading rate in the formula            ⁄  and     only in the 178 
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desired event expression. This approach can be more sensitive in terms of time overview of 179 

the disease and its potential to infect as time passes. This sensitivity is much more confident 180 

for predictions due to the exponential behavior of infections at community phases of infection 181 

spreading patterns.  182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 

Figure. 1. Exponential infection spreading rate for United States.     analysis obtained for 02 Jun, 2020. Note that 190 

persistent homology is now showed in the figure. However it can be induced by hypotenuse angle proximity. Data 191 

source: Worldometer. 192 

 193 

Now considering the critical points of   found per population   margins that infection has 194 

reached, it is counted as    the positive exponential growth in the mean   found at the region 195 

limited to 
 

 
     for first, second or other waves of infection, counting for this second or 196 

other period with cumulative time since outbreak (but not cumulative population ratio found 197 

for the first wave of infection or the previous ones). 198 

At Table 1, for the second column, it presents the growth of infection (minimum values) 199 

per amount of population   observed for a given sample (country) by the empirical 200 

observations, therefore, in the proposition         , it gives the values of the 201 

exponential growth mean reached in the    shape in average days peaks of infection since the 202 

outbreak until the condition     and therefore not counting as a mean   higher values than 203 

the ones found at       . The third column “ ” presents how much days the infection 204 
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presented an exponential growth with a mean reached. And finally the fourth column     205 

approach have similarities with SIR models, but it is based on distinct aspects of analysis of 206 

variables S and R by removing these variables from the formula and focusing mainly in the I 207 

variable defined by Weibull parameterizations and exponential desired distributions. This 208 

design of analysis is very relevant due to instability aspects of SIR analysis taken since outbreak 209 

of disease, mainly existing in the S and R variables due infodemics, type of analysis conducted 210 

for this research (the apparent lack of overall topological homology of data) and other 211 

nonlinear aspects of the new coronavirus 2 disease. For this reason, the proposed method of 212 

analysis considers only the infectious disease aspect of evolution of cases rather than pre 213 

assuming full immunity or deterministic models for population behavior that is in this case one 214 

of the most influencing forms of keeping the virus active in its propagation. 215 

 216 

Table 1. COVID-19 exponential growing patterns per population and time period by country/region. 217 

Country       on 01 May 

Worldwide 60.000 99 606,06↓ 

Europe 30.000 91 329,67↓ 

Italy 4.000 51 78,43= 

South Korea 250 20 12,5= 

China 1.500 28 53,57= 

Iran 2.000 46 43,47= 

Spain 5.000 55 90,90↓ 

France 4.000 45 88,88↓ 

United States 30.000 53 566,03↑ 

Brazil 5.000 51 98,03↑ 

Germany 4.000 41 97,56↓ 

Russia 5.000 46 108,69↑ 

United Kingdom 5.000 58 86,20↑ 

Singapore 500 57 8,77↑ 

Portugal 500 49 10,20↓ 

India 1.000 58 17,24↑ 

Canada 1.500 48 31,25↑ 

Japan 500 67 7,46↑ 

Sweden 500 58 8,62↑ 

Argentina 100 57 1,75↓ 

Chile 500 52 9,61↑ 

Saudi Arabia 1.000 54 18,51↑ 

United Arab Emirates 400 70 5,71↓ 

Egypt 200 62 3,22↑ 

Pakistan 500 53 9,43↑ 

The   and   data are retrieved for 01 May, 2020. Data source: Worldometer. 218 
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What are the main frontiers to achieve a stability behavior concerning data science 219 

and big data in order to build a robust performance for predictive and behavior analytics of 220 

complex events of COVID-19 spreading patterns of infection? Based on this introductory 221 

statement we have the following points to address: 222 

 223 

a. Micro-processes under a given assumed stability; 224 

That in this case assumes a monotonically increasing exponential behavior for I 225 

component even with the not homologous data presented in the complex event as S and 226 

R and therefore the indicator is limited directly to the policies adopted by countries as the 227 

main stability point of analysis for    . At this point, the micro-processes for S and R are 228 

the main constraint for the SIR model traditional application in the case of SARS-CoV-2 229 

modeling equation. 230 

 231 

b. Time and machine learning/mathematical simulations experience; 232 

Defined as a local homomorphism of solutions for S and R, the SIR predictions 233 

performed until now fail to assume a global homomorphism for all epidemics duration 234 

and its behavior for each sample (country) analyzed. This is caused mainly due to 235 

observations of short time lengths of the infection event in which possibly the 236 

confounding variable’s environment of S and R aren’t the kind of data in empirical terms 237 

that gives origin to recurrent plots or defined phases spaces, and also not being possible 238 

to apply this same results to other sample in terms of size, time and spreading patterns. 239 

Considering I as the unique feature, stable analysis and phase space can be extracted 240 

among samples and mainly having all those comparisons based on the same root of 241 

observation parameters, a feature that makes the analysis robust and predictive as far as 242 

observations are taken from empirical data at specific shape and scale distribution of the 243 

event. 244 
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c. Empirical observations and data constraint (the lack of persistent homology); 245 

To perform a reliable analysis on such set of data for S and R one would have to correct 246 

for multiple factors for each country, such as phase of the epidemic, time from the virus 247 

introduction into population to start of mass testing campaigns, case definition, number 248 

of tests performed per million population, sensitivity of tests used, testing criteria, 249 

population compliance, testing availability in different regions of a country, estimated 250 

ratio of detected and undetected cases, etc. This confounding environment of analysis for 251 

each country assume high dimensional order and nonlinear oscillations together with 252 

item 1, 2 and 4 due to complex scenario each country has in its social, economic, political, 253 

scientific and cultural aspects and are considered as the main cause for S and R failures 254 

rates of predictive analysis of SARS-CoV-2 with SIR deterministic or stochastic models 255 

variants. 256 

 257 

d. Privacy and internet of things. 258 

Concerning mobile apps and person-to-person surveys to detect SARS-CoV-2 features, 259 

many statistical results present possibly false information, subjectivity of data and limited 260 

scope of analysis due to ethical or policies implications. For these limiting points the data 261 

sets used to estimate values for S and R can challenge serious flaws and inconsistency. 262 

These factors sum up to the item 3 constraints and it was not addressed further in this 263 

research, however this was considered as a consistent point of constraint  for S and R data 264 

retrieved worldwide [41,42]. 265 

 266 

Based on a local homomorphism existent for     shape based on       ⁄  scale of 267 

distribution, a consistent fixed point orientation can be observed in these results section, 268 

therefore confirming the use of the indicator as a predictive tool designed for policies 269 

measures adopted to reduce COVID-19 infection spreading patterns. 270 
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3) RESULTS 271 

3.1 A predictive tool for policy measures 272 

How can governments precisely state “let’s keep the policies as they are or let’s adopt 273 

new ones or change the old ones scope or criteria?”. This answer also addresses to the 274 

question: how much sensitive of data retrieved and fixed point orientation have the policies 275 

adopted among countries for predictive analysis? 276 

Now after explaining the methodology used, Table 2 presents, from the epidemics 277 

outbreaks until days considered as 7 and 13 April, 7 days were the amount of time is taken and 278 

the behavior of infection obtained for prediction and sensitivity, indicated by arrows, can be 279 

with high confidence in order to make predictions as it can be observed by differences in the 280 

nearby future. In the 25 samples analyzed, 12 presented (orange color) different behavior of 281 

infection spreading patterns while 13 expressed a constant evolution of infection that 282 

indicates also a positive analysis for predictive statistics even with low amount of time 283 

considered (7 days sensitivity and prediction). 284 

 285 

Table 2. Sensitivity of time and exponential spreading patterns confronted with policy measures adopted by 286 

countries. 287 

Country   on 7 April   on 13 April 

Worldwide 675,67↑ 886,07↑ 

Europe 410,95↑ 379,74↓ 

Italy 90,90↓ 78,43↓ 

South Korea 12,5↓ 12,5= 

China 53,57↓ 53,57= 

Iran 44,44↑ 43,47↓ 

Spain 131,57↑ 121,95↓ 

France 138,88↑ 100↓ 

United States 625↑ 540,54↓ 

Brazil 25↑ 28,57↑ 

Germany 105,26↑ 100↓ 

Russia 15,62↑ 27,02↑ 

United Kingdom 64,51↑ 69,64↑ 

Singapore 0,96↑ 1,75↑ 

Portugal 15,15↑ 13,15↓ 

India 8,33↑ 9,43↑ 

Canada 27,77↑ 24,39↓ 

Japan 3,92↑ 7,14↑ 

Sweden 5,71↑ 0,65↓ 

Argentina 1,51↑ 2,56↑ 

Chile 10↑ 8,33↓ 
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Saudi Arabia 3↑ 4,16↑ 

United Arab Emirates 4,34↑ 5,76↑ 

Egypt 1,31↑ 2,27↑ 

Pakistan 3,44↑ 5,71↑ 

Data source: Worldometer. 288 

 289 

While in 7 days of predicting analysis, several countries implemented new policies [43,44] 290 

measures to reduce SARS-CoV-2 spreading patterns and prediction was affected highly by this 291 

measures. Note that no specification of policy measures was provided. The objective of this 292 

research is not to determine which measure gives the best result, but just to provide the 293 

observation that policies do have influence on the COVID-19 spreading patterns. For further 294 

interests on the type, duration and efficacy of measures adopted by countries, refer to [24-33]. 295 

Table 3 presents, from the epidemics outbreaks until days considered as 13 April to 01 296 

May, counting for higher time period of analysis. Only 7 days more were added on 13 April 297 

results since 07 April when policy measures were vastly started or in course among countries. 298 

For this new predictive results based on policies influences adopted, for 19 days in future, the 299 

behavior of infection obtained for prediction on 13 May, indicated by arrows, were modified 300 

on 01 May. In this period, the same as happen before, new policies measures were adopted or 301 

in course by countries [43,44], thus influencing the predictive/sensitivity analysis. In the 25 302 

samples analyzed, 9 presented (orange color) different behavior of infection spreading 303 

patterns while 16 expressed a constant evolution of infection that indicates also a positive 304 

analysis for predictive statistics even with low amount of time considered (19 days sensitivity 305 

and prediction). 306 

 307 

Table 3. Sensitivity of time and exponential spreading patterns confronted with policy measures adopted by 308 

countries. 309 

Country   on 13 April   on 01 May 

Worldwide 886,07↑ 606,06↓ 

Europe 379,74↓ 329,67↓ 

Italy 78,43↓ 78,43= 

South Korea 12,5= 12,5= 

China 53,57= 53,57= 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.12.20127498doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.12.20127498
http://creativecommons.org/licenses/by-nc/4.0/


14 
 

Iran 43,47↓ 43,47= 

Spain 121,95↓ 90,90↓ 

France 100↓ 88,88↓ 

United States 540,54↓ 566,03↑ 

Brazil 28,57↑ 98,03↑ 

Germany 100↓ 97,56↓ 

Russia 27,02↑ 108,69↑ 

United Kingdom 69,64↑ 86,20↑ 

Singapore 1,75↑ 8,77↑ 

Portugal 13,15↓ 10,20↓ 

India 9,43↑ 17,24↑ 

Canada 24,39↓ 31,25↑ 

Japan 7,14↑ 7,46↑ 

Sweden 0,65↓ 8,62↑ 

Argentina 2,56↑ 1,75↓ 

Chile 8,33↓ 9,61↑ 

Saudi Arabia 4,16↑ 18,51↑ 

United Arab Emirates 5,76↑ 5,71↓ 

Egypt 2,27↑ 3,22↑ 

Pakistan 5,71↑ 9,43↑ 

Data source: Worldometer. 310 

 311 

It is possible to observe that countries who didn’t change its policies measures [43,44] 312 

didn’t express modifications obtained by this predictive method. This happened even for 313 

countries who already understood its data as a good fit to reduce SARS-CoV-2 spreading 314 

patterns as well as countries that didn’t make any modification due to countries personal 315 

reasons. 316 

Now from epidemics outbreaks until 02 June that gives 33 more days of the event 317 

evolution at Table 4 having as parameter the data of 01 May, even with oscillatory dynamics of 318 

policies adopted, one might assume that as far as policies don’t change anymore, the 319 

predictive method will point to a very confident method to predict nearby future analysis of 320 

infection spreading patterns. For this concern, since sensitivity is very connected to policies, 321 

the predictive power can be evaluated for any given future time of analysis by it. In this form, 322 

this research states that no matter how S and R will affect the event, the convergent attraction 323 

of policies can provide robust analysis of infection spreading patterns in terms of prediction 324 

and sensitivity. 325 

 326 
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Table 4. Sensitivity of time and exponential spreading patterns confronted with policy measures adopted by 327 

countries. 328 

Country   on 01 May   on 02 June 

Worldwide 606,06↓ 572,51↓ 
Europe 329,67↓ 162,6↓ 

Italy 78,43= 78,43= 

South Korea 12,5= 0,09↓ 
China 53,57= 53,57= 

Iran 43,47= 25,64↓ 

Spain 90,90↓ 90,90= 

France 88,88↓ 3,89↓ 
United States 566,03↑ 235,29↓ 

Brazil 98,03↑ 180,72↑ 

Germany 97,56↓ 2,73↓ 
Russia 108,69↑ 96,15↓ 

United Kingdom 86,20↑ 22,22↓ 

Singapore 8,77↑ 5,61↓ 

Portugal 10,20↓ 1,85↓ 
India 17,24↑ 64,44↑ 

Canada 31,25↑ 9,37↓ 

Japan 7,46↑ 0,30↓ 
Sweden 8,62↑ 6,66↓ 

Argentina 1,75↓ 6,17↑ 

Chile 9,61↑ 41,66↑ 

Saudi Arabia 18,51↑ 17,44↓ 
United Arab Emirates 5,71↓ 5,39↓ 

Egypt 3,22↑ 7,44↑ 

Pakistan 9,43↑ 23,52↑ 
Data source: Worldometer. 329 

 330 

Now from 01 May to 02 June, in the 25 samples analyzed, 11 presented different behavior 331 

(orange color) of infection spreading patterns while 14 expressed a constant evolution of 332 

infection that indicates also a positive analysis for predictive statistics even with high amount 333 

of time considered (33 days sensitivity and prediction). 334 

By performing these examples of analysis, it can be observed that prediction is highly 335 

associated with the policies adopted by countries, and therefore the predictive power is 336 

intrinsically associated with the sensitivity power of analysis over time. 337 

One important observation of the method proposed given by the author due to his 338 

nationality, is about Brazil COVID-19 spreading patterns where since beginning of local 339 

epidemics, each state adopted distinct measures without a federal whole pack of actions to be 340 

performed for public policies (health and economics). This initial divergence among states 341 
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provided the infection spreading patterns to be in a heteroscedasticity form for statistical 342 

descriptive data. The false feeling that some states were more infected than others and mainly 343 

empirical based methods used to start policies interventions made the exponential power of 344 

infection grow beyond any type of scientific study conducted to predict the infection spreading 345 

patterns. This was mainly caused by the observations of this research, due to S and R 346 

parameters of analysis and constraints. Also, if observing data of tables 1-4 for Brazil, you are 347 

going to see that policies used by country as a whole didn’t find any other instability aspect for 348 

COVID-19 reduction. These results for the country Brazil, resembles exactly what happened 349 

here along the time: no default policies for the whole country, several changes in policies 350 

adopted by states individually (trying to find what gives the best results), no use or belief in 351 

scientific data and very poor population compliance/confidence to measures randomly taken. 352 

That’s the author analysis of his country of origin based on political scenario of country 353 

and indicator metrics obtained. 354 

 355 

4) DISCUSSION 356 

It is not needed that all countries present the same date of implementing measures to 357 

prove the article findings since distinct phases of epidemics among countries and regarding 358 

policies measures starting date are not a deterministic model in real life, but both data present 359 

high asymptotic stability, therefore, being predictable and observable by the proposed 360 

mathematical modeling. 361 

Another point for removing S and R terms of SIR model equation is related to table’s data 362 

and random dates that refer to different epidemic phases of data collection for each country. 363 

These distinct phases are important to be considered together in any sample collection due to 364 

need of a methodology that can extract behavior of the disease in the not optimal evolution 365 

(SIR deterministic approaches) of the virus infection and policies adopted by countries, hence, 366 

revealing in the complex scenario the disease dynamics under a confounding environment of 367 
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data with more sensitivity and possible rapid response of countries policies. The homology line 368 

of research conducted here applies only for the first exponential maximum increase of the 369 

phenomena and it can be tracked topologically by the policies adopted by each country over 370 

time, even excluding any other confounding variable existent in the event, since it will not 371 

affect the overall convergence of the phenomena. 372 

All the variables that influence COVID-19 spreading patterns is exactly what this article 373 

points to be observed as they are confounding and it is needed to extract an indicator that can 374 

point to the high asymptotic effect of the phenomena, that is in this case the policies adopted. 375 

The empirical results from China and South Korea are the main evidence on it. Considering it 376 

there is not reason to correct these confounding factors with numerical results in the 377 

topological field by now since we have strong indicative that all this random data influence can 378 

be asymptotically unstable (not convergent) to the policy measures. 379 

Following these statements, and by these data being not homologous, the analysis for this 380 

relations lead to high degree of heteroscedasticity that can be observed not in terms of 381 

variance analysis or linear regression analysis but a general overview of distribution shapes 382 

and scales with Weibull parameterization in order to analyze only the exponential behavior 383 

related to the formation of normal distributions phase or tendencies at marginal measures. In 384 

this way, both homologous and not homologous topologies are pre assumed qualitatively 385 

(QDE) for a preexistence of fixed point orientation of the event. In this way, the method 386 

proposed reveals patterns of homology formation in the invisible condition of detecting each 387 

variable’s coupling behavior effects. 388 

The homology is obtained by considering as stated in the Weibull approach by excluding 389 

any data related to the minimum value of the exponential curve before a second wave is 390 

observed. One other advantage of the method is that there is no need to describe the event in 391 

its full behavior (very long time lengths) as well as wait for longer time series to be able to 392 

make predictions about how policies influence the event. This was not proven by numerical 393 
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results on the algebraic topology field, but it was presented by the numerical results towards 394 

the probabilistic distributions observed in the data that reflects, among other countries, based 395 

on China and South Korea margins, the exact point of homology among the confounding 396 

variables from the beginning of the outbreak until the mean point of the exponential behavior 397 

of the event over time. 398 

 399 

5) CONCLUSION 400 

A method to be used as qualitative indicator of epidemics spreading patterns is offered 401 

and it is based on how policy measures influence the growing of exponential curve. Formula, 402 

results and discussion of topological framework is briefly presented in order to sustain the 403 

robustness of mathematical and empirical framework of analysis. This approach is mainly 404 

addressed to government’s interventions on public health measures against COVID-19 and also 405 

for researches to analyze independently for your own country how policies affected the 406 

evolution of virus spreading patterns. 407 

The results obtained showed that the indicator can be valid as a predictive method of 408 

analysis in terms of identifying how the epidemics are behaving over time being influenced by 409 

public health policies. The method used is high sensible to policies adopted by countries having 410 

a confidence power relative to how a country respond to epidemic in terms of these policies.  411 

Strategic policy interventions can be proposed while events takes place over time as well 412 

as evaluations of how policies already adopted can be failing to achieve the desired results. 413 

This feature can be used both for country or regions/states/localities within a country. Policy 414 

measures are considered nowadays as the best optimal solution to contain COVID-19 415 

spreading patterns towards exponential growing aspect. 416 

The COVID-19 event was considered from a theoretical viewpoint using the qualitative 417 

theory of differential equations (QED) framework to help to understand how the input of many 418 

variables and output results in terms of convergence and stability aspects of policies adopted 419 
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by each country, could point to any possible confounding data related to empirical evidences 420 

of countries divergences visible through cumulative daily new cases and time for an 421 

exponential growing behavior of infection. 422 

The authors also invite/suggests other researchers to perform the same analysis for their 423 

own country in other publications. Observe in details how indicator behaves and at what time 424 

(date) policies were adopted, as well as other aspects such as integrity of the measure, regions 425 

that adopted it, population compliance, duration and other strong variables influence like 426 

economics aspects. A machine learning tool could be used to track these results as an 427 

informative graph per country/region/city/public area/local building with specific range of 428 

time crossing the data of policy adopted/modified by one week, two weeks, one month and 429 

finally three months. That could be a good start to help governments or other interested 430 

people to retrieve predictive analysis and strategic plans to achieve COVID-19 spreading 431 

patterns reduction. 432 
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