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Abstract 

Machine learning approaches hold potential for deconstructing complex psychiatric traits and yielding 

biomarkers which have a large potential for clinical application. Particularly, the advancement in deep 

learning methods has promoted them as highly promising tools for this purpose due to their capability to 

handle high-dimensional data and automatically extract high-level latent features. However, current 

proposed approaches for psychiatric classification or prediction using biological data do not allow direct 

interpretation of original features, which hinders insights into the biological underpinnings and 

development of biomarkers. In the present study, we introduce a sparse deep neural network (DNN) 

approach to identify sparse and interpretable features for schizophrenia (SZ) case-control classification. An 

L0-norm regularization is implemented on the input layer of the network for sparse feature selection, which 

can later be interpreted based on importance weights. We applied the proposed approach on a large multi-

study cohort (N = 1,684) with brain structural MRI (gray matter volume (GMV)) and genetic (single 

nucleotide polymorphism (SNP)) data for discrimination of patients with SZ vs. controls. A total of 634 

individuals served as training samples, and the resulting classification model was evaluated for 

generalizability on three independent data sets collected at different sites with different scanning protocols 

(n = 635, 255 and 160, respectively). We examined the classification power of pure GMV features, as well 

as combined GMV and SNP features. The performance of the proposed approach was compared with that 

yielded by an independent component analysis + support vector machine (ICA+SVM) framework. 

Empirical experiments demonstrated that sparse DNN slightly outperformed ICA+SVM and more 

effectively fused GMV and SNP features for SZ discrimination. With combined GMV and SNP features, 

sparse DNN yielded an average classification error rate of 28.98% on external data. The importance weights 

suggested that the DNN model prioritized to select frontal and superior temporal gyrus for SZ classification 

when a high sparsity was enforced, and parietal regions were further included with a lower sparsity setting, 

which strongly echoed previous literature. This is the first attempt to apply an interpretable sparse DNN 

model to imaging and genetic features for SZ classification with generalizability assessed in a large and 
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multi-study cohort. The results validate the application of the proposed approach to SZ classification, and 

promise extended utility on other data modalities (e.g. functional and diffusion images) and traits (e.g. 

continuous scores) which ultimately may result in clinically useful tools.  
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Introduction 

Schizophrenia (SZ), is a disabling psychiatric disorders with a lifetime prevalence ~0.8%, casts a serious 

socioeconomic burden worldwide [1]. More than a century after Kraepelin’s dichotomy was formulated, 

precise treatment is still not available for SZ [2, 3]. Current diagnostic and treatment practice are largely 

based on descriptive clinical characteristics whose relationships to underlying biological processes await 

delineation [2, 4]. This gap underlies many issues faced by clinical psychiatry, including vague boundaries 

between defined clinical entities, and heterogeneity within individual clinical entities. As a result, symptom 

presentations often do not neatly fit the categorical diagnostic system, and one diagnostic label covers 

biologically diverse conditions. These issues challenge treatment planning, which turns out to be largely 

empirical [5, 6]. It has now been widely acknowledged that objective biological markers are needed to 

quantify abnormalities underlying phenotypic manifestation, which allows characterizing disorders based 

on a multitude of dimensions and along a spectrum of functioning, so as to improve patient stratification 

and inform treatment planning [7, 8].  

Hopes have been invested in machine learning approaches as a solution to this challenge, given the 

complexity of SZ. Patients with SZ present widespread structural and functional brain abnormalities, 

including gray matter loss in the frontal, temporal and parietal cortices and subcortical structures [9-11], 

reduced fractional anisotropy in most major white matter fasciculi [12], as well as abnormal resting state 

functional connectivity in default mode, somatomotor, visual, auditory, executive control and attention 

networks [13-15]. In parallel, genome wide association studies (GWASs) of SZ lend support for a polygenic 

architecture, where the disease risk is attributable to many genetic variants with modest effect sizes [16]. 

These findings have boosted the efforts to model SZ in a multivariate framework, which is expected to not 

only delineate the relationships between individual biomarkers and disease, but also to provide a 

generalizable mathematical model that can be used to predict risk.  
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One straightforward approach is to feed voxelwise neurobiological features (e.g. gray matter density) into 

support vector machine (SVM). With this strategy, Nieuwenhuis et al. obtained a classification accuracy of 

~70% which was confirmed in independent data with a sample size of a few hundred [17]. Whether more 

sophisticated feature selection can be combined with classifiers to yield improved discrimination has also 

been explored. For instance, resting state connectivity between networks extracted by independent 

component analysis (ICA), followed by K nearest neighbors, yielded an accuracy of 96% in a data set 

consisting of 28 controls and 28 patients, which were randomly partitioned to serve as training and testing 

samples [18]. In addition, fusion of multiple modalities that may carry complementary information of the 

brain holds promise for further improvement. In a work by Liang et al., combining gray and white matter 

features resulted in an average classification accuracy of ~76% in 48 controls and 54 patients with first 

episode SZ, in a 10-fold cross validation set up [19]. In contrast to neurobiological features, genetic 

variables, such as single nucleotide polymorphisms (SNPs), in general suffer modest effect sizes [16] and 

could hardly be directly trained for classification. A more commonly used feature for risk discrimination is 

polygenic risk score (PGRS), which reflects the cumulative risk of multiple variants, and proves to be a 

generalizable and promising marker for disease discrimination and patient stratification [20, 21], with 

complementary value for group classification beyond brain MRI and cognitive data [22].   

More recently, the advancement of deep learning methods has opened a new perspective on elucidating 

biological underpinnings of SZ. Deep Neural Networks (DNNs) are known to excel in handling high-

dimensional data and automatically identifying high-level latent features, which promotes them as 

promising tools for better understanding of complex traits such as SZ. In a pioneer study, Plis et al. 

demonstrated the application of restricted Boltzmann machine-based deep belief network to sMRI data. A 

classification accuracy of ~90% was obtained with a 10-fold cross validation in 181 controls and 198 

patients with SZ [23]. A deep discriminant autoencoder network has been proposed and applied to 

functional connectivity features, and yielded a leave-site-out classification accuracy of ~81% in 377 

controls and 357 patients of SZ [24]. A comparable leave-site-out accuracy of ~80% was observed in 542 
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controls and 558 patients with SZ, when a multi-scale recurrent neural network was applied to time courses 

of fMRI data [25]. However, these approaches do not provide importance weights of original biological 

features indicating their relative contribution to classification, making interpretation less straightforward.  

As commonly implemented, DNNs are black-boxes with hundreds of layers of convolution, non-linearities, 

and gates, optimized solely for competitive performance. While the value of DNN may be backed up with 

a claimed high accuracy on benchmarks, it would be desired to be able to verify, interpret, and understand 

the reasoning of the system. This is particularly essential for the psychiatric community, for the purpose of 

deconstructing complex disorders and facilitating improved treatment. In the current work, we introduce a 

sparse DNN model which allows identifying sparse and interpretable features for SZ discrimination. The 

sparsity is achieved with an L0-norm regularization on the input layer of the network for feature selection. 

Under the L0-norm sparsity constraint, the model is trained to select the most important features while 

retaining the high SZ classification accuracy. We applied the sparse DNN approach on a multi-site gray 

matter volume (GMV) and SNP data set for SZ discrimination. In brief, a total of 634 individuals (346 

controls and 288 patients with SZ) served as the training set, which was internally partitioned for 

hyperparameter tuning. The resulting classification model was then evaluated for generalizability on three 

independent data sets (n = 635, 255 and 160, respectively). We examined the classification power of pure 

GMV features, as well as whether combining GMV with SNP features would benefit classification. The 

performance of the proposed approach was compared with that yielded by ICA+linear SVM. Empirical 

experiments demonstrate that the selected voxel regions from sparse DNNs are interpretable and echo many 

previous neuroscience studies. 

Materials and Methods 

Participants.  

A total of 1,684 individuals aggregated from multiple studies, including MCIC, COBRE, FBIRN, NU, 

BSNIP, TOP and HUBIN, were employed for the current study. The institutional review board at each site 
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approved the study and all participants provided written informed consent. Diagnosis of SZ was confirmed 

using the Structured Clinical Interview for Diagnosis for DSM-IV or DSM-IV-TR. Table 1 provides the 

primary demographic information of individual study. More details regarding scanning information are 

listed in Table S1, which also provides a summary of previous publications with description of recruitment. 

The training sample consisted of 288 cases and 346 controls from MCIC, COBRE, FBIRN and NU. 

Meanwhile, three independent data sets, BSNIP (n = 635), TOP (n = 255) and HUBIN (n = 160) were used 

for validation.  

Structural MRI data  

Whole-brain T1-weighted images were collected with 1.5T and 3T scanners of various models, as 

summarized in Table 1 and Table S1. The images of the training set were preprocessed using a standard 

Statistical Parametric Mapping 12 (SPM12, http://www.fil.ion.ucl.ac.uk/spm) voxel based morphometry 

pipeline [26-29], a unified model where image registration, bias correction and tissue classification are 

integrated. The resulting modulated images were resliced to 1.5mm×1.5mm×1.5mm and smoothed by 6mm 

full width at half-maximum Gaussian kernel. A mask (average GMV > 0.2) was applied to include 429,655 

voxels. We further investigated correlations between individual images and the average GMV image across 

all the subjects. Subjects with correlations < 3SD were considered as outliers and excluded from subsequent 

analyses [30]. Finally, voxelwise regression was conducted to eliminate the effects from age, sex, and 

dummy-coded site covariates [28]. While all the scanning parameters (Table S1) would yield 93 dummy 

variables in the training data, we chose to correct scanning effects by ‘site’ before association analysis to 

avoid eliminating too much information due to unknown collinearity. The validation images were 

preprocessed separately, using the same pipeline.  

SNP data  

The SNP data were collected and processed as described in our previous work [30]. DNA samples drawn 

from blood or saliva were genotyped with different platforms (see Table S1). No significant difference was 

observed in genotyping call rates between blood and saliva samples. A standard pre-imputation quality 
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control (QC) [31] was performed using PLINK [32]. In the imputation, SHAPEIT was used for pre-phasing 

[33], IMPUTE2 for imputation [34], and the 1000 Genomes data as the reference panel [35]. Only markers 

with INFO score > 0.3 were retained. Polygenic risk scores (PGRS) for SZ were then computed using 

PRSice, which was a sum of genetic profiles weighted by the odds ratios reported in the PGC SZ GWAS, 

reflecting the cumulative risk for SZ of a set of SNPs. Specifically, the genotype data were pruned at r2 < 

0.1 [30]. Then a full model PGRS was computed on 61,253 SNPs retained after pruning. 

Sparse DNN 

Figure 1 shows the overall architecture of our method, which contains three stages. First, the GMV voxels 

are partitioned into a set of groups (or brain regions) with a pre-defined radius. Then a sparse DNN model 

is deployed for feature (brain region) selection, followed by augmenting the selected sparse regions of GMV 

with the SNP data for classifier retraining. In the sequel, we will introduce each of these steps in more 

details. 

Given a GMV dataset 𝐷 = {(𝒙𝑖, 𝑦𝑖), 𝑖 = 1,2, ⋯ , 𝑁}, where 𝒙𝑖 denotes the 𝑖-th subject’s GMV image and 

𝑦𝑖 denotes the corresponding label: case or control, we train a neural network ℎ(𝒙;  𝜽), parameterized by 

𝜽, to fit to the dataset 𝐷 with the goal of achieving good generalization to unseen test data. For a GMV 

image 𝒙 ∈ 𝑅𝑀×1, we use 𝑥𝑗 to represent the 𝑗-th voxel of image 𝒙, where 𝑗 = 1,2, ⋯ , 𝑀 and M = 429,655 

in our study. 

As the number of voxels 𝑀 is much larger than the number of functional regions of human brain (e.g., 

typically around 100 as defined by various brain atlases), we first partition the brain voxels into a set of 

small regions, each of which is represented by a ball of a pre-defined radius 𝑅. We enumerate all M voxels 

one by one: if a voxel hasn’t been assigned to any region, we assign that voxel as a root to start a new 

region. After selecting a root voxel, we compute the Euclidean distance between the root voxel and all the 

unassigned voxels. All the unassigned voxels with distance smaller than 𝑅 are then assigned into this 

region. We then iterate this process over the remaining voxels to form next region until all the voxels are 
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assigned to one of the regions. We denote the 𝑘-th region 𝐺𝑘. After this preprocessing step, we identify K 

regions, from which we aim to identify important regions for SZ discrimination. 

Stage 1 of our algorithm is to prune insignificant regions from K pre-defined regions. We formulate our 

region selection algorithm by considering a regularized empirical risk minimization procedure with an 𝐿0-

norm regularization. Specifically, we attach a binary random variable 𝑧𝑘 ∈ {0,1} to all the voxels in region 

𝐺𝑘: 

 

𝒙̃ = 𝒙 ⊙ 𝑨𝒛,      𝒛 ∈ {0,1}𝐾 , (1)  
 

where 𝒛 ∈ 𝑅𝐾×1 denotes a binary mask for brain image 𝒙 ∈ 𝑅𝑀×1, ⊙ is an element-wise product, and 𝐴 ∈

𝑅𝑀×𝐾 is an affiliation matrix we construct from the preprocessing step above, with element 𝐴𝑗,𝑘 = 1 if 

voxel 𝑥𝑗 is in region 𝐺𝑘, and 0 otherwise. For all the voxels in a region 𝐺𝑘, they share the same binary mask 

𝑧𝑘, and 𝑘 ∈ {1,2, ⋯ , 𝐾}. This means if 𝑧𝑘 is 0, all the voxels in region 𝐺𝑘 will have a value of 0, otherwise 

the value of 𝑥𝑗 is retained. In the sequel, we will discuss our method that can learn 𝒛 from training set 𝐷, 

and we wish 𝑧𝑘 takes value of 1 if 𝐺𝑘 is an important region and 0 otherwise. In other words, z is a measure 

of feature (region) importance that we wish to learn from data. 

We regard z as the feature importance weight for the prediction of DNN model ℎ(𝑥𝑖;  𝜽) and learn z by 

minimizing the following L0-norm regularized loss function: 

 

𝑅( 𝜽, 𝒛) =
1

𝑁
∑ ℒ(ℎ(𝒙𝑖 ⊙ 𝐴𝒛; 𝜽), 𝑦𝑖)

𝑁

𝑖=1

+ 𝜆‖𝒛‖0

=
1

𝑁
∑ ℒ(ℎ(𝒙𝑖 ⊙ 𝐴𝒛; 𝜽), 𝑦𝑖)

𝑁

𝑖=1

+ 𝜆 ∑ 1[𝑧𝑘≠0]

𝐾

𝑘=1

, (2) 

 

 

where ℒ(∙) denotes the data loss over training data 𝐷, such as the cross-entropy loss for classification, ‖𝒛‖0 

is the L0-norm that measures number of nonzero elements in 𝒛, 𝜆 is a regularization hyperparameter that 

balances between data loss and feature sparsity, and 1[𝑐]is an indicator function that is 1 if the condition c 
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is satisfied, and 0 otherwise. To optimize Eq. 2, however, we note that both the first term and the second 

term of Eq. 2 are not differentiable w.r.t. z. Therefore, further approximations need to be considered. 

We can approximate this optimization problem via an inequality from stochastic variational optimization 

[36]. Specifically, given any function  ℱ(𝒛) and any distribution 𝑞(𝒛), the following inequality holds 

 
𝑚𝑖𝑛

𝒛
ℱ(𝒛) ≤ 𝔼𝒛∼𝑞(𝒛)[ℱ(𝒛)], (3) 

 

i.e., the minimum of a function is upper bounded by the expectation of the function. With this result, we 

can derive an upper bound of Eq. 2 as follows. 

Since 𝑧𝑘, ∀𝑘 ∈ {1, ⋯ , 𝐾} is a binary random variable, we assume 𝑧𝑘 is subject to a Bernoulli distribution 

with parameter 𝜋𝑘 ∈ [0,1], i.e. 𝑧𝑘 ∼ Ber(𝑧; 𝜋𝑘) . Thus, we can upper bound min
𝑧

 𝑅(𝜽, 𝒛)  by the 

expectation 

𝑅̃( 𝜽, 𝝅) =  
1

𝑁
∑ 𝔼𝑞(𝐳|𝛑)[ℒ(ℎ(𝒙𝑖 ⊙ 𝐴𝒛; 𝜽), 𝑦𝑖)]

𝑁

𝑖=1

+ 𝜆 ∑ 𝜋𝑘

𝐾

𝑘=1

. (4) 

 

Now the second term of the Eq. 4 is differentiable w.r.t. the new model parameters 𝝅. However, the first 

term is still problematic since the expectation over a large number of binary random variables 𝐳 ∈ {0,1}𝐾 

is intractable, so is its gradient. To solve this problem, we adopt the hard-concrete estimator [37]. 

Specifically, the hard-concrete gradient estimator employs a reparameterization trick to approximate the 

original optimization problem of Eq. 4 by a close surrogate loss function 

𝑅̂( 𝜽, log 𝜶) =
1

𝑁
∑ 𝔼𝐮∼𝒰(0,1)[ℒ(ℎ(𝒙𝑖 ⊙ 𝑔(𝐴𝑓(log 𝛂 , 𝐮)); 𝜽), 𝑦𝑖)] + 𝜆 ∑ 𝜎 (log 𝛼𝑘 − 𝛽 log

−𝛾

𝜁
)

𝐾

𝑘=1

𝑁

𝑖=1

= ℒ𝐷(𝜽, log 𝜶) + 𝜆ℒ𝐶(log 𝜶), (5)

 

with  

𝑓(log 𝛼𝑘 , 𝑢𝑘) = 𝜎 (
log 𝑢𝑘 − log(1 − 𝑢𝑘) + log 𝛼𝑘

𝛽
) (𝜁 − 𝛾) + 𝛾, (6) 

and 

g(⋅) = 𝑚𝑖𝑛(1, 𝑚𝑎𝑥(0,⋅)) (7) 
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where 𝜎(𝑡) = 1/(1 + exp (−𝑡)) is the sigmoid function,  ℒ𝐷  measures how well the classifier fits to 

training data 𝐷, ℒ𝐶 measures the expected number of non-zeros in 𝒛, and 𝛽 =
2

3
 , 𝛾 = −0.1 and 𝜁 = 1.1 are 

the typical parameters of the hard-concrete distribution. Function 𝑔(⋅) is a hard-sigmoid function that 

bounds the stretched concrete distribution between 0 and 1. With this reparameterization, the surrogate loss 

function Eq. 5 is differentiable w.r.t. its parameters. 

After training, we learn log𝜶 from the dataset 𝐷 . At test time, we employ the following estimator to 

generate a sparse mask or feature importance weight: 

𝒛̂ = 𝑚𝑖𝑛 (𝟏, 𝑚𝑎𝑥 (𝟎, 𝜎 (
log 𝜶

𝛽
) (𝜁 − 𝛾) + 𝛾)) , (8) 

which is the sample mean of 𝒛 under the hard-concrete distribution 𝑞(𝒛|log𝜶). 

After we train the sparse DNN with the L0-norm regularization, we get the trained neural network 

parameters 𝜽 and sparse mask 𝒛̂ ∈ [0,1]𝑲 over all 𝐾 regions, with element 𝑧̂𝑘 a continuous variable that 

represents the importance of region 𝐺𝑘. Because of the sparsity inducing property of the L0-norm, many 

elements of learned 𝒛̂ are pushed to zero, which are considered as unimportant regions and thus pruned 

from the model. The level of sparsity can be modulated by hyperparameter 𝜆: the larger 𝜆 is, the sparser 

regions is identified, and vis-a-versa. 

In Stage 2 of our algorithm, we can further improve the accuracy of the classifier by finetuning the DNN 

with the selected 𝐿 regions from Stage 1 but without the L0-norm regularization. To examine whether 

incorporating genetic features can improve the classification accuracy, we also concatenate the PGRS 

feature to the selected voxels as the input of the DNN classifier to finetune the classifier. 

In our study, the training data consists of 634 individuals (346 controls and 288 cases), which were equally 

partitioned into three subsets (each containing 33% of the samples). A nested 3-fold cross validation was 

then implemented to identify the discriminating genetic and brain MRI features and construct a 

classification model for SZ. The region radius 𝑅 we used was 12mm and each brain image was partitioned 

into 1111 regions as we described above. In Stage 1 group selection and Stage 2 retraining, we used a DNN 
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classifier with 2 fully connected layers of 200 and 16 neurons, respectively, and the rectified linear unit 

(ReLU) activation function. We performed grid search to find the best hyperparameters for our sparse DNN 

model. In Stage 1 group selection, we used the SGD optimizer with learning rates of 0.005 and 1 for model 

parameter 𝜽 and log𝜶, respectively. In Stage 2 retraining classifier, we used the Adam optimizer with 

learning rate of 0.005 for 𝜽 and a weight decay of 1e-5. After the sparse DNN was trained on the GMV 

features, the regions with nonzero 𝑧̂s were considered as important regions for the SZ classification. The 

selected regions across 3-fold cross validation were highlighted for model interpretation. In particular, we 

tuned hyperparameter 𝜆 to compare the classification performances with different levels of sparsity, i.e. 

with 5 or 20 regions as predictors. In Stage 2 retraining, the selected voxel regions were fed into the 

classifier and may concatenate the PGRS feature to improve the classification accuracy. The model 

established in the training data was further evaluated on three external data sets: BSNIP, TOP and HUBIN.  

ICA+linear SVM 

To compare with sparse DNN, we also conducted classification using linear SVM with components 

extracted by ICA as input. ICA decomposes data into a linear combination of underlying components 

among which independence is maximized [38, 39]. When applied to sMRI data, ICA essentially identifies 

maximally independent components, each including a weighted pattern of voxels with covarying gray 

matter patterns across samples [40]. ICA has been widely used in the neuroimaging field, yielding 

meaningful and generalizable brain networks which are not well captured by anatomical atlas [41, 42, 28]. 

In the current work, following the training and testing of the sparse DNN, we applied ICA on the GMV 

data for 67% of the training samples. The resulting components were then fed into linear SVM to obtain a 

classification model. This model was then assessed on the remaining 33% of the training samples for 

accuracy. Since the number of ICA components was a hyperparameter to be tuned, we repeated the above 

process with different component numbers. The optimal model was then determined to be the one yielding 

the highest accuracy, and this was then validated in the three independent data sets. Echoing the sparse 

DNN experiments, we also investigated whether having more GMV components as predictors would affect 
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the performance of classification. When genetic feature was further incorporated, PGRS was treated as an 

additional predictor, which was sent into linear SVM along with the GMV components. Note that genetic 

data were available only for TOP and HUBIN, such that only these two data sets were examined for imaging 

genetic based classification.   

Results 

The performance was summarized in Table 2. When only GMV features were used for classification, the 

ICA+SVM approach achieved the highest accuracy with 20 components in the training samples. In parallel, 

the performance of DNN also started to saturate around a sparsity level of 20 regions. It can be seen that 

for both ICA and DNN approaches, lower error rates were achieved when 20 rather than only 5 brain 

regions/components served as predictors. When fewer brain regions were used to train the model, the mean 

error rate across three independent data sets was ~35% for both ICA and DNN, though in specific data sets 

discrepancies could be noted. When the classification model was allowed to incorporate more brain 

regions/components, the mean error rate across three data sets decreased to 31.03% for DNN models and 

31.86% for ICA models. Specifically, the error rates were comparable between ICA and DNN in HUBIN 

and BSNIP, while the error rate improved by 3.66% in TOP when DNN was used.  

When PGRS was further incorporated for classification, the DNN approach yielded consistent improvement 

in accuracy across all the data sets, either with 5 or 20 regions as predictors, where the decrease in error 

rate ranged from 1.41% to 3.94%. In contrast, with ICA components were combined with PGRS for 

classification, the error rate did not always decrease. The lowest error rate (27.75%) was observed in 

HUBIN, when the DNN classification model used 20 brain regions plus the PGRS.  

The brain regions identified by DNN are summarized in Tables 3 (5 regions) and 4 (20 regions), and Figures 

2 and 3 show the spatial maps of individual regions. Note that only the regions identified in all three folds 

are listed. When 5 regions were to be selected as predictors, the three folds consistently identified the same 

5 regions, spanning inferior, middle and superior frontal gyrus, superior temporal gyrus, as well as 
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cerebellum. When 20 regions were to be selected, variations were noted across folds, such that 13 brain 

regions were consistently identified. Compared to those covered by 5 regions, cuneus, precuneus, medial 

frontal gyrus, and paracentral lobule were also determined to be informative and included for classification. 

The importance weights yielded by the interpretable DNN model were overall highly consistent with those 

inferred from the original features, such that a positive/negative DNN weight indicated that the region 

showed higher/lower values in controls compared to patients with SZ. The only exception was region 27 

which was identified in the 20-region model.  

Discussion 

An interpretable sparse DNN approach was proposed for application to medical data analysis and its 

capability was examined on a large and heterogeneous SZ data set. The results confirmed that the proposed 

approach yielded reasonable classification accuracies, could identify meaningful brain regions, and the 

interpretation of these brain regions was consistent with that directly inferred from original features. 

Particularly, the proposed model appeared to more effectively fuse imaging and genetic features for 

classification compared to ICA+SVM, holding potential for data fusion.  

The DNN models reliably generalized to data collected at different sites, with reasonable classification 

accuracies compared to ICA+SVM. The generalizability indicates that the classification models are not 

vulnerable to scanning protocol, recruiting criteria, ethnicity influence, medication history, etc. Regarding 

performance, both DNN and ICA+SVM approaches presented higher accuracies when more brain 

regions/components served as predictors, with error rates being 31.03% and 31.86%, respectively. The 

ICA+SVM performance was comparable to those reported by Cai et al., where the authors conducted a 

comprehensive study on generalizability of machine learning for SZ classification using ICA-extracted 

resting-state fMRI features, and achieved an external accuracy of 70% with transfer learning procedures 

[43]. Notably, Cai et al. emphasized the importance of assessing models across sites and studies, while 

results based on a single study need to be interpreted cautiously. This might explain why our classification 
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accuracy based on a large and multi-study cohort is lower than some previous studies with smaller sample 

sizes or single-study cohort [44], indicating complex heterogeneity of patients with SZ. Increasing sample 

size of the training data and incorporating other data modalities promise further improvement. 

The proposed approach highlights a sparsity constraint, which allows trade-off between explained variance 

and interpretability of identified features. In general, a low level of sparsity allows more features to be 

admitted into the classification model, which however results in more variance across samples. As shown 

in the current work, when a higher level of sparsity was enforced, the same 5 regions were identified across 

3 folds. In contrast, with a lower sparsity, 13 out of 20 regions were consistently identified, although the 

latter explained more variance and yielded higher classification accuracies. It should be pointed out that, 

increasing the predictors from 5 to 20 regions resulted in a decrease of ~4% in error rate, which was indeed 

not profound. In other words, although GMV abnormalities are widely distributed across the brain in SZ, 

the majority of the variance can be captured by the identified five distinct regions. The samples missed in 

the classification, or missing variance, likely call for a larger training data set to allow better capturing 

heterogeneity, as well as for information from other data modalities, rather than simply adding more 

features from the sMRI modality.  

SZ is a complex disorder, where genetic and environmental factors interact with each other to affect brain 

structure and function which ultimately manifest into clinical symptoms. With so many factors involved in 

the pathology of SZ, it is expected that multiple data modalities need to be integrated to fully characterize 

the disorder. This also applies to classification, which should capitalize on data fusion to extract 

complementary information from different modalities. The proposed model holds promise for this purpose. 

In all the tested scenarios, the DNN approach effectively fused GMV and PGRS features to yield improved 

classification accuracies, indicating that the model reliably extracted SZ-related variance in PGRS that was 

not captured by GMV. In contrast, no consistent improvement was noted for ICA+SVM, where PGRS and 

brain components were directly fed into linear SVM for classification training. The results appeared to lend 
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support that nonlinear models excel in delineating the relationships across different modalities in hidden 

layers and robustly capturing complementary variance that is related to the trait of interest.  

The brain regions identified by DNN are overall well documented in SZ studies. With high sparsity, 5 brain 

regions were consistently identified across 3 folds, as listed in Table 3, highlighting frontal gyrus, superior 

temporal gyrus, and cerebellum. All the five regions presented positive weights, indicating higher GMV in 

controls compared to patients, which was consistent with the results of two-sample t-tests on original GMV 

features. SZ-related gray matter reduction has been widely observed in temporal and frontal regions. A 

longitudinal study by Thompson et al. revealed accelerated gray matter loss in early-onset SZ, with earliest 

deficits found in parietal regions and progressing anteriorly into temporal and prefrontal regions over 5 

years [45]. The identified frontal and temporal brain regions have also been identified for SZ-related 

reduction in a comprehensive study on gray matter volume in psychosis using the BSNIP cohort [9]. The 

role of cerebellum in SZ has been revised in recent years, where accumulating evidence suggests that 

cerebellum is also involved in cognitive functions and cerebellar abnormalities are noted in SZ [46, 47]. 

Gray matter loss around the identified cerebellar region has also been reported previously [48].  

With low sparsity, 13 brain regions were consistently identified by DNN across 3 folds, as listed in Table 

4. In addition to frontal, temporal and cerebellar regions discussed above, parietal regions including cuneus, 

precuneus and paracentral lobule were highlighted. As implicated in Thompson et al, while temporal and 

prefrontal gray matter loss were characteristic of adult SZ, parietal regions were noted for earliest gray 

matter loss which was faster in younger patients with SZ [45]. The identified parietal regions also echoed 

the BSNIP findings to show higher GMV in controls compared to patients [9]. Overall, it is reasonable that 

DNN prioritized to select temporal and frontal regions for classification when high sparsity was enforced, 

which aligns with the notion that gray matter loss in these regions characterizes adult SZ. In the meantime, 

when a lower sparsity was enforced, parietal abnormalities were the first priority to be added as additional 

predictors which offered complementary variance. Among the 13 regions, region 27 (cerebellar tonsil) was 

the only feature whose DNN weights did not coincide with the inference drawn from original GMV 
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features. It was noted that the voxels in region 27 showed modest case-control differences compared to 

voxels in other identified brain regions. We suspect the selection of region 27 by DNN might be driven by 

some hidden properties rather than group differences, which explains the inconsistency in interpretation 

between DNN and two-sample t-tests.   

One limitation of our algorithm is that we assume the brain regions to be spherical, which we obtained by 

measuring the Euclidean distance. This may not align with the optimal partition. And we did not extensively 

investigate how the radius of brain regions would affect the performance. In the future, we plan to test 

whether defining regions based on a brain atlas (such as Yeo atlas [49]) would benefit the model training.  

Besides, likely due to the limited sample size, the DNN performance saturated at 2 hidden layers. It remains 

a question how the performance would scale with increasing sample size. This awaits investigation when 

more data become available. Furthermore, while the DNN approach holds promise for data fusion, its 

capability of integrating multiple high-dimensional imaging modalities was not examined in the current 

work, given that incorporating another modality would further reduce the sample size. This will also be part 

of our future work.  

In summary, to the best of our knowledge, this is the first study of DNN application to sMRI and genetic 

features for SZ case-control classification with generalizability assessed in a large and multi-study cohort. 

An interpretable sparse DNN approach was first proposed to allow identifying, refining and interpreting 

features used in classification. The results indicate that the new approach yielded reasonable classification 

performances, highly interpretable classification features, as well as potential for data fusion. Collectively, 

the current work validates the application of the proposed approach to SZ classification, and promises 

extended utility on other data modalities (e.g. functional and diffusion images) and traits (e.g. continuous 

scores).  
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NIMH Data Archive (https://nda.nih.gov/). Request of access to other data should be addressed to the 

individual principal investigator. 
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Tables 

Table 1: Subject demographic information. 

Cohort N Sex (M/F) Age (mean ± SD) Age (Min - Max) Diagnosis (HC/SZ) 

Training      
MCIC+COBRE+FBIRN+NU 634 459/175 35.44 ± 12.12 16 - 65 346/288 

Validation      
TOP 255 144/111 33.75 ± 8.99 17 - 62 154/101 

HUBIN 160 108/52 41.69 ± 8.56 19 - 56 76/84 
BSNIP 635 347/287 35.95 ± 12.45 16 - 64 369/266 
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Table 2: Summary of classification error rates. 

  sMRI   sMRI + SNP 

  TOP (255) HUBIN (160) BSNIP (635)   TOP (255) HUBIN (160) 

DNN (5 regions)       

EER1 35.69 33.08 34.49  32.94 28.13 

EER2 34.90 36.25 33.60  33.33 33.13 

EER3 34.90 36.25 36.80  32.55 32.5 

EER mean 35.16 35.19 34.96  32.94 31.25 

ICA+SVM (5 ICs)       

EER1 36.86 31.88 37.17  30.20 35.00 

EER2 37.25 34.38 37.32  30.59 35.63 

EER3 34.90 32.50 36.85  29.80 35.63 

EER mean 36.34 32.92 37.11   30.20 35.42 

DNN (20 regions)       

EER1 30.59 28.13 31.16  30.65 26.27 

EER2 30.98 32.50 32.91  27.75 27.25 

EER3 33.33 28.75 31.02  32.26 28.24 

EER mean 31.63 29.79 31.69  30.22 27.75 

ICA+SVM (20 ICs)       

EER1 33.33 27.50 30.87  32.94 29.38 

EER2 39.22 31.25 31.02  35.29 33.75 

EER3 33.33 28.75 31.50  30.98 30.00 

EER mean 35.29 29.17 31.13   33.07 31.04 
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Table 3: Summary of the 5 important brain regions identified by DNN. 

Region Area  Brodmann Area volume (cc) MNI (x, y, z) 

DL87 Uvula (cerebellum) * 0.7/0.0 (-18, -81, -33)/(0, 0, 0) 
DL382 Inferior Frontal Gyrus 47 1.9/0.0 (-54, 30, 0)/(0, 0, 0) 
DL493 Superior Frontal Gyrus 10 0.0/1.2 (0, 0, 0)/(27, 60, 9) 

 Middle Frontal Gyrus 10 0.0/0.9 (0, 0, 0)/(34.5, 57, 9) 
DL555 Superior Temporal Gyrus 13, 22, 41 1.0/0.0 (-45, -30, 15)/(0, 0, 0) 
DL775 Inferior Frontal Gyrus 9 0.0/1.0 (0, 0, 0)/(57, 12, 36) 
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Table 4: Summary of the 13 important brain regions identified by sparse DNN. 

Region Area  Brodmann Area volume (cc) MNI (x, y, z) 

DL2 Inferior Semi-Lunar Lobule * 0.1/0.0 (-7.5, -60, -54)/(0, 0, 0) 
DL27 Cerebellar Tonsil * 1.4/0.0 (-15, -55.5, -43.5)/(0, 0, 0) 
DL45 Cerebellar Tonsil * 0.7/0.0 (-12, -55.5, -40.5)/(0, 0, 0) 

DL172 Superior Temporal Gyrus 38 0.0/1.0 (0, 0, 0)/(48, 22.5, -19.5) 
DL260 Middle Frontal Gyrus 11 0.9/0.0 (-37.5, 40.5, -10.5)/(0, 0, 0) 
DL509 Inferior Frontal Gyrus 13, 47 1.3/0.0 (-42, 25.5, 10.5)/(0, 0, 0) 
DL599 Cuneus 18, 19 0.0/1.0 (0, 0, 0)/(18, -88.5, 19.5) 
DL691 Middle Frontal Gyrus 10, 46 1.2/0.0 (-34.5, 46.5, 27)/(0, 0, 0) 
DL805 Middle Frontal Gyrus 9 2.0/0.0 (-45, 28.5, 39)/(0, 0, 0) 
DL846 Precuneus 7, 19 0.0/1.0 (0, 0, 0)/(30, -66, 42) 

DL1008 Medial Frontal Gyrus 6 0.0/1.3 (0, 0, 0)/(7.5, -4.5, 63) 
DL1017 Paracentral Lobule 4, 5, 6 0.2/1.7 (-1.5, -40.5, 61.5)/(4.5, -37.5, 64.5) 
DL1039 Middle Frontal Gyrus 6 1.3/0.0 (-21, 9, 67.5)/(0, 0, 0) 
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Figures 

 

 

Figure 1: Overall architecture of our method. 
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Figure 2: Spatial maps of the five schizophrenia-discriminating regions identified by sparse DNN. 
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Figure 3: Spatial maps of the 13 schizophrenia-discriminating regions identified by sparse DNN. 
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