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Abstract 
 
Aims: We aimed to estimate the risk of COVID-19 outbreaks associated with air travel from a 
country with a very low prevalence of COVID-19 infection (Australia) to a COVID-19-free country 
(New Zealand; [NZ]), along with the likely impact of various control measures for passengers and 
cabin crew. 
Methods: A stochastic version of the SEIR model CovidSIM v1.1, designed specifically for COVID-
19 was utilized. It was populated with data for both countries and parameters for SARS-CoV-2 
transmission and control measures. We assumed one Australia to NZ flight per day.  
Results: When no interventions were in place, an outbreak of COVID-19 in NZ was estimated to 
occur after an average time of 1.7 years (95% uncertainty interval [UI]: 0.04-6.09). However, the 
combined use of exit and entry screening (symptom questionnaire and thermal camera), masks on 
aircraft and two PCR tests (on days 3 and 12 in NZ), combined with self-reporting of symptoms and 
contact tracing and mask use until the second PCR test, reduced this risk to one outbreak every 29.8 
years (0.8 to 110). If no PCR testing was performed, but mask use was used by passengers up to day 
15 in NZ, the risk was one outbreak every 14.1 years. However, 14 days quarantine (NZ practice in 
May 2020), was the most effective strategy at one outbreak every 34.1 years (0.86 to 126); albeit 
combined with exit screening and mask use on flights. 
Conclusions: Policy-makers can require multi-layered interventions to markedly reduce the risk of 
importing the pandemic virus into a COVID-19-free nation via air travel. There is potential to 
replace 14-day quarantine with PCR testing or interventions involving mask use by passengers in 
NZ. However, all approaches require continuous careful management and evaluation. 
 
 
Introduction 
 
The COVID-19 pandemic has had major international health impacts during 2020, with 6.3 million 
cases and 380,000 deaths globally by 3 June (1). In many countries, border controls have been used 
to limit pandemic spread and this (combined with fear of the pandemic) have markedly reduced 
international travel. This reduction in travel has contributed to adverse economic and social impacts 
for countries by reducing business interactions, tourism and movements of international students. 
 
New Zealand is one of the few countries that has eliminated transmission of the SARS-CoV-2 
pandemic virus within its borders in line with the goal it adopted to achieve this (2). Some Australian 
states may also be approaching elimination status, but for Australia as a whole, elimination might not 
be achievable and the country might persist with a suppression strategy until a vaccine is widely 
available. Nevertheless, quarantine-free travel between the two countries is a goal envisaged by the 
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Prime Ministers of Australia and New Zealand in terms of a trans-Tasman “bubble” (3). Such an 
approach has been discussed by the leaders of Austria, Greece, Israel, Norway, Denmark, the Czech 
Republic, Singapore, Australia, and New Zealand. These leaders “agreed that as each begins to ease 
restrictions they could capitalise on low infection rates by creating tourism safe zones” (4). 
Nevertheless, such travel arrangements may be even more likely between New Zealand and those 
Pacific Island nations that have either successfully eliminated COVID-19 (e.g., as Fiji has declared) 
or which have been able to keep it out entirely due to strict border controls (e.g., Samoa, Tonga and 
Vanuatu). 

Another development has been that many major airlines are also bringing in procedures to improve 
safety on flights to reduce the risk of SARS-CoV-2 transmission. These include physical distancing 
procedures and requirements for passengers and cabin crew to wear masks (5). 

Given this background, we aimed to estimate the risk of COVID-19 outbreaks associated with 
increased air travel from Australia to New Zealand, along with the likely impact of various control 
measures that could be used to minimize the risk of such outbreaks. 
 
 
Methods 
 
Model design and parameters for SARS-CoV-2 and COVID-19: We used a stochastic SEIR type 
model with key compartments for: susceptible [S], exposed [E], infected [I], and recovered/removed 
[R]. The model is a stochastic version of CovidSIM which was developed specifically for COVID-19 
(http://covidsim.eu; version 1.1). Work has been published from previous versions of this model (6) 
(7), and two preprints detail the equations and their stochastic treatment (8, 9). The model was built 
in Pascal and 100 million simulations were run for each set of parameter values. Such a large number 
of simulations was necessary due to the high probability of zero infected individuals on a flight given 
the low prevalence of infection in Australia (see below). 
 
The parameters were based on available publications and best estimates used in the published 
modelling work on COVID-19 (as known to us on 27 May 2020). A key one was that 65% of 
infected COVID-19 cases develop clearly detectable symptoms (Table 1). Another was the effective 
reproduction number (Re) in COVID-19-free New Zealand, which was assumed to be 2.0 (Table 1).  
 
Prevalence of infection in Australia: To estimate the prevalence of SARS-CoV-2 infection in 
Australia, we assumed that there was the same number of undetected cases as there were detected 
cases. So we used 27 May 2020 data, when Australia reported 65 new detected cases for the 
preceding seven days (10). Then assuming a 16-day long period (latent period plus infectious 
period), this suggested a point prevalence of infected cases of 0.0006% ((65/7 x 16) / 25.46 million 
people). For the simulations, passengers were randomly sampled from the Australian population. The 
infection risk for the cabin crew was elevated due to in-flight transmission on serial flights that we 
modelled (detailed further below). In most of our scenarios, passengers and cabin crew members 
underwent entry screening before boarding (see Figure 1 and details below). 
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Figure 1: Flow diagram of the assumed movements of passengers and cabin crew in the model including 
interventions (simplified and not showing the precise details for how the cabin crew move back and forward 
between countries and the details around passengers seeking medical attention when symptomatic in New 
Zealand, isolation of identified cases and contact tracing)  
 

 
 
 
Selection of control measures: We identified plausible control measures from the published 
literature and also an online review of strategies identified by an IATA Medical Advisory Group 
(11). These controls are shown in Figure 1 and Table 2. 
 
Air travel from Australia to New Zealand: We simulated one flight per day from Australia to New 
Zealand, carrying 300 passengers and 6 cabin crew members. A wide range of aircraft were used on 
this route in the pre-pandemic era with common ones being the Boeing 777-200 which takes 312 
passengers and the Airbus A300-300 with 297 passengers. We used the minimum ratio of one cabin 
crew member to 50 seats (as required by some regulators), on the assumption that there might be new 
processes that reduce crew workloads (e.g., meals/drinks placed on seats in advance). This is a small 
proportion of the level of travel in the pre-pandemic time (i.e., 7.1% of the of 1,542,467 visitor 
arrivals from Australia to New Zealand in the year to January 2020 (12)).  
 
In-flight transmission risk: There are several publications that suggest transmission of SARS-CoV-
2 on aircraft. One reported on 11 patients who “were diagnosed after having flown together in the 
same flight with no passenger that could later be identified as the source of infection” (13). Another 
reported a single case “most likely acquired during a flight” (14). But a flight with an index patient 
who had a dry cough when onboard did not appear to spread infection to any of the approximately 
350 passengers (15). An IATA document (11) has reported a number of flights with passengers with 
SARS-CoV-2 infection who apparently infected no other passengers, but also one UK to Vietnam 
flight with “up to 14 people” infected. Also, based on an IATA survey of four airlines, it was 
reported that: “There was one possible secondary passenger case identified in the total, along with 
just two crew cases, thought to be the result of possible in-flight transmission” (11).  
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Also, of note is that there has been a COVID-19 outbreak in Zhejiang Province, China on a bus (16): 
passengers on the same bus as the index case had an infection risk ratio of 41.5 (95% CI: 2.6–669.5) 
compared with passengers on another bus. There has also been an aircraft outbreak of SARS (the 
coronavirus SARS-CoV-1) where one symptomatic person generated 16 laboratory-confirmed 
secondary cases (with 6 other likely cases) (17).  
 
Given this background, it is obviously difficult to quantify the risk on SARS-CoV-2 transmission on 
board of a passenger aircraft. Therefore, for simulation purposes, we used quantified data from 
influenza transmission on aircraft. To do this we extracted data from a relevant systematic review 
and re-analyzed it (see Appendix One). This work indicated that an index case might typically 
generate an average of 6.0 secondary cases on a flight of at least three hours duration (assuming no 
mask use and assuming SARS-CoV-2 is similar to influenza in infectivity in such situations). We 
assumed that cabin crew had the same per person risk of being infected and the same transmission 
rate as any of the passengers (in the absence of any data on this from the systematic review). We also 
considered compulsory mask use on flights, as per major airlines in June 2020 (5). 
 
Arrival in New Zealand: Upon arrival in New Zealand, we assumed there is entry screening for both 
passengers and cabin crew. Passengers were either placed in supervised quarantined for 14 days (as 
per actual arrangements in May 2020) and then released to move freely, or, as an alternative to 14 
days of quarantine, we considered various combinations of PCR testing in New Zealand. Indeed, the 
PCR test on arrival is already in use in some settings (i.e., Austria in May 2020) with a three hour 
waiting time until test results. Up until their last PCR test, we assumed that people could move freely 
around New Zealand but were required to wear a mask while in the presence of other people; we 
further assumed that half of the cases who develop symptoms during this period would report these 
symptoms within one day. Also, we assumed that if these people are tested positive, or if they 
reported symptoms themselves, contact tracing would identify 75% of their infected contacts in New 
Zealand who would be isolated after another delay of one day.  
 
After entry screening, cabin crew arriving in New Zealand are not quarantined but are assumed to 
stay for one day in New Zealand before their next flight (albeit in an scenario analysis they stay in 
special facilities and do not mix with the public as per some existing processes for New Zealand 
(18)). 
 
Ongoing infection transmission in New Zealand: Secondary cases who were infected by crew 
members or passengers in New Zealand, yet who were not traced, and tertiary cases who are infected 
by traced secondary cases before they were isolated, were assumed to have the full length of their 
infectious period ahead of them. Some of them then can trigger an outbreak. 
 
Return flight to Australia (cabin crew): To make the simulations as realistic as possible, cabin crew 
members were assumed to travel back to Australia after their one day layover in New Zealand, 
taking any infection they previously acquired back with them. They were then assumed to have 
another layover in Australia of one day (where uninfected cabin crew members could also pick up 
the infection from interacting with the public) and then they may or may not be detected (and 
removed) at the next boarding screening process. While cabin crew were subjected to exit and entry 
screening and the wearing of masks onboard, these were the only interventions we considered for 
them (albeit scenario analysis regarding not having a one day layover in either country).  
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Table 1: Input parameters used for modelling the potential spread of COVID-19 infections with the 
stochastic version of CovidSIM (v1.1) with New Zealand as a case study  

Parameter Value/s used Further details for parameter inputs into the modelling 
Latency 
period 

5 days We used the best estimate from CDC in May 2020 of a mean of 6 days to 
symptoms (i.e., the latency period plus the prodromal period) (19). We used a 
standard deviation (SD) of 25% (1 day) (calculated using 16 stages; Erlang 
distribution). 

Prodromal 
period 

1 day There is, as yet, insufficient information on this prodromal period for COVID-
19, so we used an assumed value for influenza (SD = 25%; 0.25 days, Erlang 
distribution).  

Symptomatic 
period 

10 days (split 
into 2 periods 

of 5 days 
each) 

The WHO-China Joint Mission report stated that “the median time from onset 
to clinical recovery for mild cases is approximately 2 weeks and is 3-6 weeks 
for patients with severe or critical disease” (20). But given that mild cases 
may have been missed in this particular assessment, we used a slightly 
shorter total time period of 10 days (SD = 25%; 2.5 days, Erlang distribution).  

Infections 
that lead to 
sickness 
(symptomatic 
illness) 

65% 
 

We used the best estimate from CDC in May 2020 of 65% symptomatic and 
35% asymptomatic (19). This is more than the 20% proportion of 
asymptomatic cases as per a Chinese study (21), and as used in an 
Australian modelling study (22). This value is, however, lower than the 43% 
found in an Icelandic study (23). But it is also higher than that found in 
another Chinese study (at 6% asymptomatic) (24). A UK study of a cohort of 
health care workers reported that 27% of all infections were asymptomatic – 
but this group will be of different ages than the general population (25). 

Contagiousness 
Effective 
reproduction 
number (Re) 
in the NZ 
post-
pandemic 
setting 

2.0 We considered the best estimate from CDC in May 2020 of Ro = 2.5 (19) but 
then reduced this to 2.0 to account for behavioral changes in the post-
pandemic period (i.e., after the first wave in February to April 2020) in NZ. 
That is such changes as: some persisting voluntary physical distancing such 
as more working from home, higher levels of online shopping, enhanced 
hygiene behaviors, and some residual caution around attending large events. 

Relative 
contagious-
ness in the 
prodromal 
period 

100% We used the best estimate from CDC in May 2020 of infectiousness of 
asymptomatic individuals relative to symptomatic individuals of 100% (19).  

Contagious-
ness after 
the 
prodromal 
period 

100% and 
50%  

In the first five days of symptoms, cases were considered to be fully 
contagious. In the second five-day period, this was assumed to be at 50%. 
The latter figure is still uncertain, but is broadly consistent with one study on 
changing viral load (26). 

 

Control measures assumptions: The full details on the control measures we considered are detailed 
in Table 2. 
 
Table 2: Control measures used and their estimated efficacy in preventing SARS-CoV-2 transmission 

Control measure Key value Comment 
Airport exit 
screening for 
COVID-19 for both 
passengers and 
cabin crew leaving 
Australia (symptom 
questionnaire and 
thermal camera) 

50% of 
symptomatic 
cases are 
identified 

Many infected passengers will be asymptomatic (including 
presymptomatic) at the time of exit screening. E.g., a modelling study 
of COVID-19 estimated that only 44% (95%CI: 33 to 56) of infected 
cases would be detected by exit screening (27). But this study only 
considered thermal camera scanning (with a sensitivity of 86% (28)) 
and did not consider a symptom questionnaire as well.  
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Control measure Key value Comment 
Required mask use 
on flights by 
passengers and 
cabin crew (except 
when drinking and 
eating)  

90% efficacy 
for both 
groups 

We considered the results of a systematic review and meta-analysis 
that reported that mask use could result in a large reduction in risk of 
infection (n=2647; adjusted odds ratio = 0·15, 95%CI: 0·07 to 0·34) 
(29). But we used a slightly higher estimate to better approximate 
supervised and enforced mask use on the aircraft flight.  
Of note is that many major airlines are now requiring mask use by 
passengers (5), and the use of masks on planes by the general public 
is encouraged by the World Health Organization (30). Also of note is 
the experimental evidence for mask efficacy. E.g., one experimental 
study using Avian Influenza virus to simulate the pandemic 
coronavirus, showed that: “N95 masks, medical masks, and 
homemade masks made of four layer kitchen paper and one layer cloth 
could block 99.98%, 97.14%, and 95.15% of the virus in aerosols” 
respectively (31). Another experiment has shown how a damp cloth 
over a speakers mouth reduces emitted droplets detected by laser light 
scattering by over 99% (32). More specifically another study reported 
that a non-fitted surgical mask was 100% effective in blocking 
detection of seasonal coronavirus (albeit slightly less effective for when 
measuring viral load in the samples) (33). 

Entry screening on 
arrival in NZ (both 
passengers and 
cabin crew) 

50% of 
symptomatic 
cases 
identified 

As per exit screening above (i.e., symptom questionnaire and thermal 
camera). Unless stated otherwise, we always applied entry screening 
for crew members; for passengers, we only used entry screening if 
they were not immediately to have a PCR test on arrival or are 
quarantined anyway. 

Quarantine in NZ for 
passengers only 
(current practice as 
per May 2020 in NZ)  

14 days We ran the simulations for the 14-day quarantine period to determine 
how many passengers were still infectious when quarantine ended. Of 
note is one estimate (34) that around 1% of people will still develop 
symptoms after 14 days (and will also be infectious at this time), but we 
do not use this estimate in our simulations, because the correct fraction 
depends on the infection stage of passengers at the beginning of their 
quarantine.  

Testing instead of 
14 days quarantine: 
PCR test for SARS-
CoV-2 at various 
times  

The time 
course of 
sensitivity 
values from 
Kucirka et al. 
was used  

We used the results of a study (35) which fitted a Bayesian hierarchical 
logistic regression model for test sensitivity. This meant for example, at 
day 4 after infection, 67% of test results were false negatives (95%CI: 
27% to 94%). This decreased to 20% (95%CI: 12% to 30%) on day 8 
and then increased after this e.g., up to 66% (95%CI: 54% to 77%) on 
day 21. For cases who already recovered before their PCR test, we 
use the final value reported by Kucirka et al. (i.e., 34% sensitivity). In 
the days after arrival and before the next PCR test, we assume that 
people act normally and so can potentially spread infection to the NZ 
public (albeit with mask use when with other people). For more details, 
see Appendix Two. 
In the absence of relevant data, we had to assume test result 
independence i.e., a false negative for a test was not correlated with a 
false negative for a later test. If both results were negative, we 
assumed no further follow-up. 
We considered a wide range of different timing options for PCR tests 
after arrival in NZ. 

Contact tracing if (i) a 
scheduled PCR test 
is positive or (ii) if 
people develop 
symptoms and seek 
medical attention 
(see below) 

75% of 
infected 
contacts are 
traced and 
isolated 

No detailed data on the efficacy of contact tracing has been published 
for NZ. Nevertheless, the success of contact tracing to identify the 
source of clusters as detailed on the NZ Ministry of Health website is 
62% (10/16 clusters, 30 May data (36)). However, we assume here a 
slightly higher success rate given on-going learnings by the NZ health 
system.  

Mandatory mask use 
by incoming 

90% 
transmission 

See above for details on the likely efficacy of mask use in reducing 
contagiousness (i.e., from an infected person spreading infection to 
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Control measure Key value Comment 
passengers up to the 
time of their final 
PCR test 

reduction (as 
per above) but 
also no mask 
use in a 
scenario 
analysis 

others). We also used a higher efficacy than reported in the systematic 
review (29) (detailed above), on the basis that this group of passengers 
would be provided information on the flight and on arrival in NZ on the 
critical importance of mask use and its mandatory nature, along with a 
free supply of masks on arrival). 

The proportion of 
infected passengers 
who when they 
develop any 
symptoms  
seek medical 
attention (i.e., they 
are in the 65% who 
will ever develop 
symptoms) 
 

50% (self-
reporting 
occurs on 
average 1 day 
after symptom 
onset) 

We assumed that this proportion is somewhat higher than that for the 
general community (see below) on the basis that these passengers 
would be provided information on the flight and on arrival in NZ on the 
critical importance of seeking medical attention if they develop any 
symptoms. They would also be told that such medical attention would 
be provided free of charge. We assumed PCR confirmation of self-
reported symptoms and if a positive test, then we assumed case 
isolation and potentially triggering contact tracing.  
Of note is that routinely in NZ, 39.5% of people with “fever and cough” 
symptoms seek medical attention, as reported by the NZ Flutracking 
surveillance system (37). This is very similar to international estimates 
for people with influenza who seeking medical attention at 40% e.g., as 
used in other modelling (6). 

Quarantine of traced 
contacts 

1 day after 
detection of 
index cases 

Traced contacts are assumed to be effectively quarantined with no 
further spread of infection. 

 
 
Results  
 
For the base case of one flight per day from Australia and where no interventions were assumed to be 
in place, we estimated that New Zealand would on average experience an outbreak of COVID-19 
after 1.7 years (Table 3). This was increased to 2.2 years after adding in exit screening upon leaving 
Australia; to 3.3 years by adding in mask use on flights; and to 3.5 years by adding in entry screening 
on arrival in New Zealand. When adding in PCR testing (accompanied by self-reporting of 
symptoms, wearing of masks, and contact tracing/case isolation up to the last test), the various 
scenarios indicated average times to an outbreak of 4.4 to 29.6 years (Table 3). The key driver of 
these results was not the number of tests but the timing of the last test, as this extended the benefits 
of mask use, symptom reporting and contact tracing. Additional results with the time to last PCR test 
extended up to day 15 in New Zealand (Table 4), indicate the particularly important benefit from 
mask use, then symptom self-reporting, and then contact tracing/isolation. The best result was an 
average outbreak time of 29.6 years (Table 3). Nevertheless, if PCR testing was completely 
abandoned and replaced with just mask use up to day 15 in New Zealand, there was still a reasonable 
benefit (i.e., 14.1 years for “mask use after arrival” in Table 4). 
 
If 14-days of quarantine was used instead of PCR testing (as per actual practice in May 2020 in New 
Zealand), this would be by far the most effective intervention as it increased the average time to an 
outbreak to over 34.5 years for all the scenarios considered. Reducing the quarantine from 14 to 7 
days resulted in a much more pessimistic result (average waiting time for an outbreak: 5.8 years).  
 
Of note is that all these values are average durations until an outbreak occurs, yet each single flight 
bears an, albeit small, risk of triggering such an event. Outbreaks occur at a random time point 
(exponentially distributed) with the expected value given in Table 3. As the variance of the 
exponential distributions is extremely large, the 95% uncertainty intervals for when such an outbreak 
occurs are correspondingly very large. That is, in the most pessimistic scenario (no intervention 
scenario) with an expected duration of 1.7 years, 95% of outbreaks are predicted to occur between 
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0.04 years (15 days) and about 6.09 years; in the most optimistic scenario (with quarantine) with an 
expected duration of 34.1 years, 95% of outbreaks occur between 0.86 and 126 years. 
 
Passengers as a group were the major driver of outbreak risk relative to cabin crew: they caused over 
100 times as many outbreaks as cabin crew members (depending on the scenario). Passengers also 
caused more outbreaks on a per capita basis than cabin crew, given the 50:1 ratio of these groups per 
flight. 
 
Table 5 indicates the extreme rarity of outbreaks in New Zealand if Australia’s infection prevalence 
was 10 times lower than in the base case (i.e., approximating if Australia is on the verge of 
elimination or has eliminated and then experiences a small undetected outbreak from a border control 
failure). But when scaling up from the base case to ten-fold higher infection prevalence in Australia 
or ten-fold increase in travel volumes from Australia to New Zealand, then the results scale up 
accordingly. For each of these scenarios individually, there would typically be an outbreak every 3.0 
years for using PCR testing or 3.4 years for the quarantine intervention (Table 5). 
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Table 3: Results of the simulations of the base case risk (no interventions) and for multi-layered packages of interventions to prevent COVID-19 outbreaks in 
New Zealand (NZ) (assuming the prevalence of infection in Australia (AU) is 0.0006% as per our best estimate for May 2020). 

Strategy 

Exit 
screening 

in AU 
(detection  

of sick 
cases) 

All wear 
masks on  

board * 
(prevention) 

Entry 
screening 

in NZ 
(detection  

of sick 
cases) 

Quaran-
tine of 

passen-
gers 

PCR  
tests  
for 

passengers 
(day 1 is 
arrival 
day)* 

Contact 
tracing 

between 
PCR 
tests 

Passengers 
wear 

masks in 
NZ  

until last 
PCR test ** 

Self-
reporting 
of symp-
toms *** 

Self-
reporting 
triggers 
contact 
tracing 

Expected 
duration 

until 
outbreak 

in NZ 
(years) 

Uncertainty 
interval  
in years  

(95%) 

No PCR 
tests,  

no 
quaran-

tine 

- - - - - - - - - 1.7 0.04-6.09 

50% - - - - - - - - 2.2 0.06-8.11 

50% 90% - - - - - - - 3.3 0.08-12.1 

50% 90% 50% - - - - - - 3.5 0.09-12.9 

PCR tests (in addition to various impacts from exit and entry screening and masks on flights etc) 

PCR 
tests 
(see 

Table 4 
for more 
details) 

50% 90% - - day 1 - - - - 4.4 0.11-16.1 

50% 90% - - days 1 + 8 75% - - - 6.4 0.16-23.7 

50% 90% - - days 1 + 8 75% - 50% 75% 7.5 0.19-27.7 

50% 90% - - days 1 + 8 75% 90% - - 17.0 0.43-62.7 

50% 90% - - days 1 + 8 - 90% 50% - 19.9 0.50-73.2 

50% 90% - - days 1 + 8 75% 90% 50% 75% 20.0 0.51-73.6 

50% 90% 50% - days 3 + 12 75% - - - 5.4 0.14-19.8 

50% 90% 50% - days 3 + 12 75% - 50% 75% 6.4 0.16-23.6 

50% 90% 50% - days 3 + 12 75% 90% - - 23.5 0.60-86.8 

50% 90% 50% - days 3 + 12 - 90% 50% - 28.1 0.71-104 

50% 90% 50% - days 3 + 12 75% 90% 50% 75% 29.6 0.75-109 

Quarantine (in addition to impacts from exit and entry screening and masks on flights etc) 

Quaran-
tine 

50% 90% 50% 7 days - - - - - 5.8 0.15-21.5 

50% 90% 50% 14 days - - - - - 34.1 0.86-126 

100 million stochastic simulations were run for each intervention strategy. Values typically rounded to three meaningful digits. Passengers are allowed to move freely in NZ 
from arrival to the last PCR test or after being released from quarantine (see Figure 1).  
* A range of days were considered, but the 3 + 12 day option is the one currently adopted for all travelers as per June 2020 in NZ (albeit combined with quarantine for all 
travelers to NZ). 
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** Prevention of secondary infections due to wearing of masks by potentially infected individual passengers. 
*** The given fraction of passengers who report having developed symptoms while staying in NZ to the health system; they are assumed to be isolated one day after symptom 
onset and contact tracing may occur after this; traced contacts are PCR tested and isolated after another delay of one day. 
 
 
Table 4: Expected duration (in years) until a COVID-19 outbreak in New Zealand for differing duration of intervention and for different timing of PCR tests for 
arriving passengers while in New Zealand (assuming exit screening in Australia and mask use on flights in all scenarios) 

Scenario 
Intervention until day (counting arrival day as day 1 in NZ) 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 PCR tests*, self-reporting of symptoms, contact tracing, but passengers do 
not wear masks in NZ 6.2 6.6 7.2 7.8 8.2 8.0 7.5 7.1 6.7 6.3 6.0 5.9 5.8 5.7 

Passengers wear masks in NZ**, but no PCR tests, no self-reporting of 
symptoms, no contact tracing 3.6 3.8 4.0 4.2 4.5 4.9 5.4 6.0 6.9 7.9 9.2 10.4 12.2 14.1 

Passengers wear masks in NZ and self-report symptoms**, but no PCR tests 
and no contact tracing 3.7 3.9 4.1 4.5 4.9 5.5 6.3 7.3 8.5 9.9 11.5 13.1 15.0 17.3 

Passengers wear masks in NZ, self-report symptoms with contact tracing**,  
but no PCR tests 

3.7 3.9 4.1 4.4 4.9 5.6 6.5 7.5 8.7 10.1 11.6 13.4 15.7 17.6 

Only 1 PCR test***, passengers wear masks in NZ and self-report symptoms, 
but no contact-tracing 

7.7 8.3 9.5 11.2 13.3 15.2 16.2 18.3 19.4 19.7 20.3 20.7 21.6 22.3 

2 PCR tests1, passengers wear masks in NZ, but no self-reporting and no 
contact tracing 

7.0 7.7 9.0 11.0 13.5 16.0 17.2 18.6 19.5 19.8 20.4 20.9 21.6 22.3 

2 PCR tests1 with contact tracing, passengers wear masks in NZ but no self-
reporting of symptoms 6.9 7.8 9.0 11.0 13.6 16.1 17.3 18.8 19.7 20.1 20.6 21.3 22.2 23.4 

2 PCR tests1, passengers wear masks in NZ and self-report symptoms, 
but no contact tracing 

8.1 8.9 10.4 12.5 15.2 17.8 19.8 22.6 23.8 24.5 25.4 25.8 26.4 27.7 

2 PCR tests1, passengers wear masks in NZ and self-report symptoms; 
both, PCR tests and self-reporting trigger contact tracing 

8.2 9.0 10.4 12.4 15.5 18.5 20.4 23.3 24.9 25.6 26.3 26.9 28.0 29.5 

 
Each result was obtained by running 100 million stochastic simulations. 
* First PCR is performed instead of entry screening immediately after arrival, second PCR is performed on the last intervention day; all interventions stop thereafter. 
** No PCR tests are performed; entry screening after arrival; all interventions stop after the last intervention day. 
*** Entry screening after arrival; first PCR test occurs on the last intervention day; all interventions stop thereafter. 
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Table 5: Results for major changes in the prevalence of infection in the source country (Australia) and flight 
volumes from Australia to New Zealand 

Parameters / scenarios 

Expected duration until outbreak in NZ (years) 
(95% uncertainty interval) 

No interventions 
PCR testing on 

days 3 + 12  
14 days of 
quarantine 

As per the base case. 
1.7 years 

(0.04-6.09) 
29.6 years 
(0.75-109) 

34.1 years 
(0.86-126) 

Australia’s infection prevalence is 10 times lower 
than in the base case (i.e., 0.0006%). This could 
be when Australia is on the verge of elimination or 
has eliminated and then experiences an outbreak 
after a border control failure [Scenario A]. 

16.5 years 
(0.42-60.9) 

296 years 
(7.49-1090) 

341 years 
(8.63-1260) 

Australia’s infection prevalence 10 times as high 
as in the base case (i.e., 0.006%). This could be 
due to poorer suppression or a winter upsurge 
[Scenario B]. 

0.17 years 
(0.004-0.61) 
[2.0 months] 

3.0 years 
(0.07-10.9) 

3.4 years 
(0.09-12.6) 

Travel volume is 10 times as high as in the base 
case (i.e., 10 flights per day) with the infection 
prevalence as per the base case [Scenario C]. 

0.17 years 
(0.004-0.61) 
[2 months] 

3.0 years 
(0.07-10.9) 

3.4 years 
(0.09-12.6) 

Combination of increased infection prevalence 
and increased travel volume as outlined above 
[Scenario B and Scenario C together]. 

0.02 years 
(0.0004-0.06) 

[6 days] 

0.3 years 
(0.007-1.09) 
[3.6 months] 

0.34 years 
(0.01-1.26) 
[4 months] 

 
100 million simulations for each set of parameter values. Values typically rounded to three meaningful digits. 
 

 
Discussion 
 
Main findings and interpretation 
This analysis examined the risk of COVID-19 outbreaks in a COVID-19-free nation (New Zealand), 
if there was travel from a low-prevalence country (Australia) with no control procedures in place, 
and then if there were various multi-layered interventions in place. It suggested that without any 
controls there would be such an outbreak of COVID-19 in New Zealand after an average of 1.7 years 
(i.e., for just one flight per day from Australia and at a very low assumed prevalence of infection in 
Australia at just 149 undetected infected people in a population of 25 million). Fortunately, the 
multi-layered packages of interventions we have modeled can reduce this risk to much lower levels. 
In particular, quarantine for 14 days was by far the most effective single intervention. Nevertheless, 
the package of PCR testing (with mask use, symptom self-reporting and contact tracing) might be a 
reasonable alternative, with an expected outbreak occurring after an average of about 30 years. 
Surprisingly, there was also a large benefit from just mask use alone for 15 days by arriving 
passengers. But specific complexities if quarantine is not used, include the issues of: 

• Might PCR testing on arrival in New Zealand provide a false sense of reassurance to 
passengers if they test negative (and so subsequently impede their mask wearing adherence 
and self-reporting of symptoms to health workers)? 

• Would the experience of PCR testing on arrival (if the taking of the nasopharyngeal sample is 
experienced as unpleasant), result in higher levels of defaulting for subsequent PCR testing? 

• Might the requirement to turn up to a health provider for a PCR test on day 15, be an actual 
stimulus for improved mask adherence and symptom reporting (relative to intervention 
packages that did not involve any PCR testing)? 
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• Would adherence to mask use by passengers when in the New Zealand community be as high 
as we assume (given the minimal use of masks in the first pandemic wave in New Zealand 
and lack of Government mandates for mass masking at any of the four alert levels of COVID-
19 response)? Also, might the use of fines and threat of deportation improve adherence with 
mask use amongst passengers once in New Zealand? 

• Might digital tools for tracking and even active monitoring of early signs of illness have a 
role in minimizing risk amongst incoming passengers (especially in the first two to three 
weeks after arrival? 

 
All these issues could benefit from further investigation, potentially involving state-of-the art study 
designs that remain possible under pandemic conditions (38). 
 
Nevertheless, to select the best multi-layered package of interventions requires information on not 
only their estimated effectiveness, but also their estimated real-world cost-effectiveness, feasibility, 
acceptability and adherence with the traveling public, airlines and border control services. Obtaining 
such information would include studying the cost of dealing with false positives of PCR testing and 
the resources spent chasing up passengers who miss attending their scheduled PCR tests. There is 
also the need to identify the cost of the New Zealand public health system maintaining a state-of-the 
art contact tracing capacity (though this may be highly desirable for other reasons such as control of 
measles outbreaks). The relevance of these costs to policy-makers might also be impacted by who is 
paying. For example, all incoming passengers could be charged a COVID-19 levy and the whole 
system could be made user-pays and cost-neutral to taxpayers.  
 
Ultimately, there is also a need for cost-benefit analyses which considers the benefits of increased 
travel to the New Zealand society and economy – along with the risks of outbreaks that need to be 
rapidly controlled (and might even get completely out of control). With such information policy-
makers could then decide: 

• On continuing with the 14-day quarantine or shifting to PCR testing with mask use 
interventions. 

• On the extent to which they open up traveler volumes for different types of traveler from 
specified low-risk countries (e.g., including essential workers, students, business people, or 
tourists).  

• On the extent to which they fund research on evaluating antibody tests to determine if some 
previously exposed passengers can be exempted some of the quarantine or PCR testing 
processes (though the quality of such antibody tests is still suboptimal and specificity might 
be a problem owing to other circulating coronaviruses). 

 
Study strengths and limitations 
This is the first such modeling study (that we know of), to consider interventions to control SARS-
CoV-2 spread by air travel between two countries. We were also able to consider a wide range of 
control interventions and to package these in multiple layers of defense and estimate uncertainty 
intervals. Nevertheless, there is quite high uncertainty around some of the parameters we used. For 
example, the prevalence of infection in Australia is highly variable by States/Territories, and this is 
also likely to vary over time. Real-world effectiveness of masks on aircraft is still uncertain, along 
with how well SARS-CoV-2 can spread on aircraft. For example, there is some evidence that this 
pandemic virus is particularly involved in super-spreading events with one estimate being that 80% 
of secondary transmissions may have been caused by a small fraction (e.g., ~10%) of infectious 
individuals (39). Given all such issues and ongoing improvements in knowledge of the transmission 
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dynamics of SARS-CoV-2, this type of modeling work should be regularly revised and be performed 
using different types of models. 
 
 
Conclusions 
 
This analysis suggests that an outbreak of COVID-19 in New Zealand might occur after an average 
of 1.7 years without any interventions and for just one flight per day from Australia. This risk is 
greatly reduced by the currently used 14-day mandatory quarantine. Our analysis shows that there is 
potential to replace this quarantine period with multi-layered interventions using PCR testing or 
other controls, including mask use by passengers in New Zealand, that would also maintain a low 
risk of importing the pandemic virus. However, all approaches require continuous careful 
management and evaluation. 
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Appendix One: Estimating the risk of SARS-CoV-2 in-flight transmission 
for one index case and with no mask use by cabin crew or passengers 

 

Methods 
 
We extracted data from the single available systematic review of in-flight outbreaks of influenza 
(40), the majority (14/19) of which were related to the pandemic influenza of 2009. For one outbreak 
with missing flight duration data, we estimated this using Google Maps and one study was removed 
from the dataset as it appeared to be of the same flight as another included study (as noted by the 
review authors). The results of our analysis are shown in Table A1. 
 
Discussion 
 
There is of course the limitation here that although pandemic influenza is a respiratory virus like 
SARS-CoV-2, these two agents might still have different transmission dynamics in the aircraft cabin 
setting. Another issue is that the in-flight influenza outbreaks in the systematic review did suffer 
from incomplete contact tracing (mean of 73% traced, median of 86% traced), and so the true burden 
of secondary cases is probably somewhat higher for these outbreaks. But countering this is the 
possibility that there might have been publication bias involved, given that in this review there were 
only 4/19 studies with zero secondary cases. This might suggest that large in-flight outbreaks of 
influenza were more likely to be studied (and published on) than those with no or little secondary 
spread. This may somewhat over-estimate the in-flight transmission of influenza, but it may be more 
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appropriate for the transmission of SARS-CoV-2 which seems to have a higher reproduction number 
than influenza. 
 
Table A1: Our analysis of extracted data from a published systematic review (40) of influenza 
outbreaks on aircraft flights  
 

Type of flight 

Secondary cases per 
flight when just 

considering a single 
index case 

Secondary cases per 
flight when 

considering both 
single and multiple 

index cases 

Adjusted secondary 
cases per flight when 

scaling to the 
equivalent of a single 

index case in each 
outbreak 

All flights (n = 19 flights*) 8.0 8.3 5.2 

Flight length ≤ 3 hours, ≤150 
passengers (n = 8 flights) 

7.6 
 

7.8 5.3 

Flight length ≤ 3 hours, >150 
passengers (n = 0 flights) – – – 

Flight length > 3 hours, ≤150 
passengers (n = 1 flights)* Ignored: only 1 flight Ignored: only 1 flight Ignored: only 1 flight 

Flight length > 3 hours, >150 
passengers (n = 10 flights)* 

6.0 
(this is the value we used for 

our Australia to NZ flight 
modeling for the no mask use 

scenario) 

7.6 3.7 

* Some longer flights included transfers and stopovers (which were treated in the analysis as one flight but we only 
considering flying time in the calculation of hours, except for one particular stopover where passengers remained on the 
plane).  
 

Appendix Two: Sensitivity of PCR tests during the course of infection 

Kucirka et al (35) provide in their Figure 2 estimates on the time-course of the fraction of false-
negative PCR results. We have reproduced their curve and translated it into a time-course that gives 
the test sensitivity for infected individuals, depending on the time since they were exposed to 
infection. As our simulations are not individual-based, but stochastic representations of a 
compartmental model, we cannot exactly know the time since exposure for an infected individual 
who is in a given state of infection (which is represented by one of the 16 latent stages, the 16 
prodromal stages, the 16 early and the 16 late infections stages). In order to match these 4x16 
infection stages, we ran one million stochastic simulations with one infected individual each, 
recorded the time when this individual entered or left any one of these stages and finally calculated 
the individual’s middle time point (since infection) for each of the 4x16 infection stages. In the next 
step, we recorded the sensitivity values that corresponded to the recorded 4x16 simulated time points 
of the individual, leading to one million simulation-matched values for each of the 4x16 infection 
stages. In a final step, we averaged over these one million values, obtaining 4x16 sensitivity values 
for the infection stages that we used in the simulations.  
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