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Abstract:  

While targeted therapies exist for human epidermal growth factor receptor 2 positive (HER2+) 

breast cancer, HER2+ patients do not always respond to therapy. We present the results of 

utilizing a biophysical mathematical model to predict tumor response for two HER2+ breast 

cancer patients treated with the same therapeutic regimen but who achieved different treatment 

outcomes. Quantitative data from magnetic resonance imaging (MRI) and 64Cu-DOTA-

Trastuzumab positron emission tomography (PET) are used to estimate tumor density, perfusion, 

and distribution of HER2-targeted antibodies for each individual patient. MRI and PET data are 

collected prior to therapy, and follow-up MRI scans are acquired at a midpoint in therapy. Given 

these data types, we align the data sets to a common image space to enable model calibration. 

Once the model is parameterized with these data, we forecast treatment response with and 

without HER2-targeted therapy. By incorporating targeted therapy into the model, the resulting 

predictions are able to distinguish between the two different patient responses, increasing the 

difference in tumor volume change between the two patients by >40%. This work provides a 

proof-of-concept strategy for processing and integrating PET and MRI modalities into a 

predictive, clinical-mathematical framework to provide patient-specific predictions of HER2+ 

treatment response. 
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1. Introduction 

There is growing evidence that imaging-informed, mechanism-based mathematical 

models can accurately predict the development of cancers of the kidney [1], brain [2-5], lung [6, 

7], and pancreas [8-11]. Importantly, these studies often aim to evaluate tumor growth or 

response to therapy on a patient-specific basis. A particular example of an imaging modality that 

can and has been utilized for mathematical modeling of tumor response is magnetic resonance 

imaging (MRI), which can be used to quantitatively characterize (for example) blood flow, 

vessel permeability, tissue volume fractions, cellularity, pH, and pO2 [12]. Additionally, positron 

emission tomography (PET) can quantitatively characterize molecular events related to (for 

example) metabolism, proliferation, hypoxia, and various cell surface receptors [13]. The 

strength of these imaging measurements is that they can be collected (with minimal invasion) at 

the time of diagnosis and then at multiple time points throughout treatment. Furthermore, 

imaging allows mathematical models to be initialized and constrained with patient-specific data 

rather than, for example, population data from the literature or animal data. Therefore, the ability 

to parameterize models with data that are readily accessible and specific to the individual enables 

mathematical modelling to potentially be integrated into clinical trials and, ultimately, translated 

to clinical practice.  

For the particular case of breast cancer, we have previously developed mathematical 

models using patient-specific MRI data to calibrate the model’s parameters to the unique 

characteristics of each patient [14-20], thereby enabling patient-specific predictions. Recently, 

we presented a proof-of-principle study that extended a model to include estimates of drug 

delivery to each voxel via dynamic contrast-enhanced MRI (DCE-MRI), enabling a more 

accurate assessment of local tumor cell death due to therapy on a patient-specific basis [20]. 

Further assessment of this model’s predictive ability revealed that it could reliably distinguish 

between patients that would respond or not to therapy regimens—as defined by the response 

evaluation criteria in solid tumors (RECIST) [21]. However, the model did not perform as well 

for patients who also received targeted therapies in addition to chemotherapies. Specifically, for 

patients with tumors that overexpress the human epidermal growth factor receptor 2 (HER2) 

treated with antibodies targeted to this receptor (i.e., trastuzumab and/or pertuzumab), the model 

was not able to reliably distinguish tumors that would or would not respond to neoadjuvant 
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therapy (NAT)—regimens that occur prior to surgery. This strongly suggests that the model must 

be amended to incorporate the effects of targeted therapies. Of course, extending a model results 

in a larger number of free parameters, which, in turn, requires more data to initialize and 

constrain the model. It is the overall goal of this study to develop a multi-modal imaging 

acquisition and analysis protocol that would enable patient-specific predictions of the response of 

HER2+ breast cancer to combination targeted and non-targeted therapies.  

Breast cancers that overexpress the HER2 protein have a uniquely aggressive natural 

history and determine candidacy for HER2-directed therapies [22]. Trastuzumab is a humanized 

antibody that binds to the extracellular domain of HER2 and prevents intracellular signaling for 

proliferation. The addition of pertuzumab further inhibits downstream signaling by preventing 

the heterodimerization of HER2 [23]. The determination of HER2 status is made on a pre-

treatment tumor biopsy specimen, which is a small sample of a larger tumor and may not be 

representative of the entire tumor and provides minimal information about heterogeneity of 

HER2 expression.   Moreover, heterogeneity of HER2 expression and distribution of the HER2 

antibody may play a role in HER2-directed treatment failure, when a patient does not achieve a 

complete response to therapy (unrelated to drug resistance). Several imaging modalities, 

including PET and MRI, can be used to assess tumor heterogeneity, density, perfusion, and 

therapy delivery as potential factors in determining response to HER2-directed therapy in vivo, in 

individual patients. Radiolabeled trastuzumab, 64Cu-DOTA-trastuzumab (64Cu-DT), has been 

used as PET imaging agent to characterize the delivery of HER2 targeted therapies [24]. We 

have previously utilized 64Cu-DT-PET to estimate the spatial distribution of trastuzumab in 

women with metastatic HER2 positive breast cancer. In this study, we use pretreatment MRI and 
64Cu-DT PET-CT to predict response at surgery to the combination of cytotoxic chemotherapy 

with the humanized monoclonal antibodies, trastuzumab and pertuzumab in women with locally 

advanced HER2+ breast cancer (clinical trial NCT02827877).  

Here, we first describe two patients from NCT02827877, one of whom had a complete 

response to therapy and another who did not. Second, we present the details of the image 

processing and analysis to yield data types that can be directly incorporated into the 

mathematical model. Third, we present the mathematical model and strategy for implementation. 

Fourth, we present the results of the predictions for the model with and without the HER2 

therapy component to provide early evidence on the relative importance of these terms. Finally, 
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we place the results in the context of the field, and discuss limitations of the study, and identify 

future avenues of investigations at the interface of multi-modality imaging and mathematical 

oncology. 

 

2. Methods 

2.1 Patient cohort 
 

Patients with locally advanced breast cancer were considered eligible from clinical trials 

provided that they had biopsy confirmation of HER2 overexpression, ECOG (Eastern 

Cooperative Oncology Group) performance status 0-2, normal cardiac function, a primary tumor 

> 2 cm or axillary lymph nodes > 2 cm in diameter, and planned neoadjuvant chemotherapy with 

trastuzumab, pertuzumab, docetaxel and carboplatin. Participants could not have evidence of 

metastatic disease as determined by 18F-fluorodeoxyglucose (18F-FDG-) PET/CT and could not 

have received prior HER2 directed therapy. The City of Hope Institutional Review Board 

approved the study, and all patients provided written consent before participating 

(NCT02827877).  

Prior to institution of chemotherapy, breast MRI, 18F-FDG- and 64Cu-DT-PET were 

performed. Patients received intravenous trastuzumab, pertuzumab, docetaxel and carboplatin 

every 3 weeks for 6 cycles in the absence of disease progression or unacceptable toxicity. 

Response status was determined by surgical pathology after the completion of NAT. See Figure 

1 for details on the study design with respect to the NAT regimens. In particular, a pathological 

complete response (pCR) is defined as finding no viable tumor cells present in the primary tumor 

or lymph nodes at the time of surgery following completion of neoadjuvant systemic therapy. 

Prior to therapy, a diagnostic biopsy was performed. For both patients, their diagnostic 

biopsies received an immunohistochemistry (IHC) HER2-overexpression score of 3+ (scores 

range from 0 to 3+ for different intensity levels of IHC staining), indicating that the tumors 

display complete, intense circumferential membranous staining in > 10% of tumor cells. Further 

inspection and processing of the biopsy slides supports that the cancer cells have fairly uniform 

HER2 expression (see Supplemental Materials for images of the IHC staining results for each 

patient), an important point we return to in the discussion. 

In this study, to illustrate our multi-modal imaging based mathematical modeling 

approach, we selected two patients from NCT02827877 with contrasting tumor responses; 
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where, at the time of surgery, one patient achieved a pCR (patient 1) while the second patient 

had residual disease (non-pCR, patient 2).  

 

2.2 MRI data acquisition  

MRI data were acquired at baseline after diagnosis but prior to treatment and also at a 

midpoint of NAT prior to surgery (for patient 1, after four cycles of therapy and for patient 2, 

after three cycles of therapy). MRI was performed using a 1.5T GE scanner with the body coil 

and a four-channel bilateral phased-array breast coil as the transmitter and receiver, respectively. 

Each MRI session began with pilot scans, axial T2- weighted MRI with fat-saturation, and axial 

T1-weighted without fat-saturation, before proceeding to diffusion-weighted (DW)-MRI and 

contrast enhanced (CE)-MRI and sagittal delayed T1 weighted acquisitions. The bilateral DW-

MRI was acquired in the axial plane with a single-shot spin echo planar imaging sequence, with 

b-values of 0, 600, 800, 1000 and 1500 s/mm2, TR/TE = 6675 ms/97.3 ms, and 5 signal 

averages. The acquisition matrix was 128 × 128 (reconstructed to 256 × 256) over a 360 × 360 

mm2 field of view, and a slice thickness of 5 mm. Then bilateral, full breast, axial CE-MRI was 

acquired with a fat suppressed, gradient echo-based 3D VIBRANT (Volume Image Breast 

Assessment) sequence. CE-MRI acquisition parameters were TR/TE/α = 4 6.6 ms/3.19 ms/10°, 

and an acquisition matrix of 420 × 420 (reconstructed to 512 × 512) over a 340 × 340 mm2 field 

of view, and a slice thickness of 1.8 mm. The intravenous injection of Gd-BOPTA (Multihance, 

Bracco, Italy) was 0.2 mmol/kg at 2 ml/s delivered by a programmable power injector followed 

by a 20 ml saline flush. One baseline and three post contrast image volumes were acquired with 

temporal resolution of 180 sec per acquisition. The acquisition time for the CE-MRI was 

approximately 20 min, depending on the number of slices needed (112–120) in each image 

volume for full breast coverage. See Figure 2 for examples of both patient’s DW- and CE-MRI 

data. 

 

2.3 PET data acquisition 

PET data acquisition occurred at baseline after diagnosis but prior to treatment. Images 

were collected using a Discovery STE clinical PET/CT scanner (GE Healthcare, Waukesha, WI, 

USA). Data were acquired in the prone position using a custom-built padded support [25-28]. A 

low-mAs CT scan was acquired using the smart mA setting for attenuation correction of the 
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emission data. Standard-of-care 18F-FDG PET/CT scan was acquired to evaluate patient 

eligibility.  
64Cu was provided by the Mallinckrodt Institute of Radiology, Washington University 

School of Medicine). 64Cu radiolabeled trastuzumab was prepared according to an investigational 

new Drug Application (IND 109971). The procedure includes heating at 43oC for 45 minutes 

followed by incubation with an excess of diethylenetriaminepentaacetic acid, which eliminates 
64Cu binding to secondary chelating sites on the antibody while maintaining the 

immunoreactivity of the radiolabeled product. The 64Cu-DT (trastuzumab dose, 5 mg) was mixed 

with saline (25 mL). Fifteen minutes prior to administration of the radiolabeled trastuzumab, 45 

mg of trastuzumab was administered IV to decrease the hepatic uptake of 64Cu without affecting 

tumor uptake [25]. HER2 is expressed in both healthy and cancerous cells albeit to different 

extents; therefore, the administration of a cold dose of trastuzumab prior to imaging is required 

to saturate normal tissues taking up the antibody [29]. After 60-90 minutes post-injection of the 

cold antibody, patients receive 15 mCi of 64Cu-DT administered intravenously over 10 min and 

undergo a PET/CT scan within 28 - 30 hours. Attenuation and scatter corrected 64Cu-DT scans 

were reconstructed on a 128 × 128 matrix over a 700 mm square field of view using an ordered 

subset expectation maximization algorithm (GE VUE point HD) with two iterations and 20 

subsets. Voxel resolution of the reconstructed image was 5.5 × 5.5 × 3.3 mm3. See Figure 2 for 

central slice examples of both patient’s 64Cu-DT- and 18F-FDG-PET data. While the standard-of-

care 18F-FDG-PET data was collected, it was not used for this modeling study.  

 

2.4 Image analysis 

Our approach to imaging-based modeling requires that all image sets be registered to the 

same imaging space. Thus, the first step in the data processing protocol consists of registering 

the DW-MRI and CE-MRI data for each scan session for motion correction followed by 

registering the PET-CT data to the MRI data. For each patient, the MR images acquired at each 

session (intra-visit) were registered using a rigid algorithm where the diffusion-weighted images 

were linearly interpolated in 3D to match the resolution of the CE-MRI data and registered to the 

contrast enhanced images. The interpolation of images was implemented using MATLAB’s 

(MathWorks, Natick, MA) function interp3 and the rigid algorithm used for the intra-visit 

registration via the function imregister. A deformable intra-visit registration was employed to 
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align the PET/CT and MRI data via the MATLAB function imregdemons, where the field of 

view for the corresponding CT scan was trimmed and registered to the contrast enhanced images, 

and the resulting deformation field was applied to the PET images (linearly interpolated in 3D to 

match the CE-MRI resolution). See Figure 3 for example images of the 64Cu-DT-PET to MRI 

registration for patient 1. 

The second step encompasses the preliminary processing of the data including calculating 

the apparent diffusion coefficient (ADC) of water maps, identifying the tumor regions of interest 

(ROIs), and approximating the drug distributions for each patient. The ADC of water was 

calculated from the DW-MRI data using all five b-values via standard methods [31]. Using the 

CE-MRI data, a fuzzy c-means (FCM)-based algorithm is applied to a manually drawn, 

conservative ROI to identify the boundaries of the tumor [32]. The FCM algorithm is a clustering 

method that not only partitions the voxels into classes but also assigns a weighting based on 

probability of a voxel belonging to the tumor. See Figure 3 for an example of applying this 

approach to patient 2. Also using the CE-MRI data, to approximate the distribution of 

chemotherapy drug throughout the tissue for each patient, a normalized map of the vasculature 

was calculated by: (1st) subtracting the average baseline signal from the pre-contrast dynamics, 

(2nd) computing the area under the curve (AUC) for each voxel post injection of the contrast 

agent, and (3rd) dividing by the maximum AUC over the whole ROI. This normalized AUC map 

was used to define the initial systemic drug distribution throughout the tumor and surrounding 

tissue at the time of each therapy dose. The 64Cu-DT-PET data is used to define a normalized 

map of the distribution of the targeted anti-HER2 therapy trastuzumab based on the dosage of the 

radiotracer the patients received. See Figure 4 for the resulting drug distribution maps in the 

breast domain for a central slice of each patient’s tumor at baseline.  

The third step is a registration that aligns the images and calculated maps of both of the 

patients’ scans (across time, inter-visit) to one common spatial coordinate system (co-registered). 

A non-rigid registration algorithm (an adaptive basis algorithm) with a constraint that preserves 

the tumor volumes at each time point was used [33]. This was accomplished using the open 

source toolbox Elastix [34, 35].  

The final step is calculating the modeling quantities, including defining maps of the 

different tissues of the breast and calculating the number of tumor cells in the ROIs from the 

ADC of each voxel. The CE-MRI data were used for the tissue segmentation. The fibroglandular 
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and adipose tissues were segmented using a k-means clustering algorithm that partitions the 

tissues of the breast into separate clusters. The resulting masks are used for the assignment of 

tissue stiffness properties in the mathematical model (see below). The ADC value for each voxel 

within the tumor (as segmented using the above methods) was converted to an estimate for the 

number of tumor cells per voxel at each 3D position x� and time t, NTC(x�,t), via our established 

methods [16-18, 20, 31]:  

NTC(x�,t) = θ �ADCw - ADC(x�,t)

ADCw - ADCmin

� , 

where ADCw is the ADC of free water (3 × 10
-3

mm2/s at 37o C) [36], ADC(x�,t) is the ADC value 

for the voxel at position x and time t, and ADCmin is the minimum ADC value over all tumor 

voxels for the patient [14, 37]. The parameter θ is the carrying capacity describing the maximum 

number of tumor cells that can physically fit within a voxel; its numerical value is determined by 

assuming a spherical packing fraction of 0.74 [38], a nominal tumor cell radius of 10 μm, and the 

voxel volume (2.18 mm3). See Figure 4 for the resulting tissue segmentation and tumor cell maps 

in the breast domain for a central slice of each patient’s tumor at baseline.  

The tumor volume was approximated as the product of the total number of voxels within 

the segmented tumor ROI and the voxel volume. This measure of volume was also applied to all 

the modeling prediction results for direct comparison to the data. Note that for patient 1, there is 

no associated DW-MRI data for scan 2. We have confidence about the volume at the time point, 

so a tumor cell map was generated for the ROI at scan 2 to have a similar percent reduction in 

total tumor cellularity as achieved by patient 2. 

 

2.5 Mathematical model 

We have previously developed a 3D mathematical model that includes the mechanical 

coupling of tissue properties to tumor growth and the delivery of systemic therapy [20, 21]. This 

model was designed to be initialized with patient-specific, imaging data to the response of breast 

cancer patients to NAT [17-19]. The governing equation (a reaction-diffusion type partial 

differential equation) for the spatiotemporal evolution of tumor cells, NTC(x�,t), with respect to 

time, t, and per voxel, x�, is:  

            ∂NTC(x�,t)

∂t
 = �·(D(x�,t)�NTC(x�,t))������������	

diffusion

 + k(x�)(1- NTC(x�,t)/θ)NTC(x�,t)
����������������	

logistic growth

 - Cdrug(x�,t)NTC(x�,t)����������	
therapy

,            (1) 
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where the first term on the right-hand side describes the effects of tumor cell movement, the 

second term describes the growth of the cells, and the third term describes the effect of 

chemotherapy. All model parameters and functions are described in Table 1, and the reader is 

encouraged to refer to it as they move through the description of the mathematical model. This 

model has been well documented through its evolution [14-20], but we describe the established 

features (diffusion and growth) and discuss the expanded therapy term, Cdrug(x�,t), all together 

here. The first term on the right-hand side of Eq. (1), representing the random diffusion 

(movement) of the tumor cells, D(x�,t), is mechanically linked to the breast tissue’s material 

properties via: 

D(x�,t) = D0exp(-γσvm(x�,t)),                (2) 

where D0 is the diffusion coefficient in the absence of external forces, and the exponential term 

damps D0 though the von Mises stress, σvm(x�,t), which is calculated for the fibroglandular and 

adipose tissues within the breast—where fibroglandular tissue has greater stiffness compared to 

adipose [39]. This mechanical coupling to the diffusion is subject to an equilibrium dependent 

upon changes in tumor cell number:  

    �·G�u
� + � G

1 - 2ν
(�·u
�) - λ�NTC(x�,t) = 0,           (3) 

where G the shear modulus, where G = E/(2(1 - ν)) for the Young’s modulus (E) and Poisson’s 

ratio (ν) material properties, u
� is the displacement due to tumor cell growth, and � is another 

empirical coupling constant  [17-19, 40-45]. Therefore, the diffusion term encompasses tumor 

changes such as growth or response to therapy that can cause deformations in the surrounding 

healthy tissues (i.e., fibroglandular and adipose tissues), thereby changing the stress field and the 

associated expansion of the tumor.  

 The second term on the right-hand side of Eq. (1) is the reaction term that describes 

tumor proliferation through logistic growth at the rate k and up to a carrying capacity, θ. The 

carrying capacity is defined per voxel using approximate cell size and packing density (as 

described above in the calculation of tumor cells, section 2.4), while the proliferation rate is 

calibrated per voxel for each individual patient (the numerical details on model calibration are 

detailed below in section 2.6). 
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The final term on the right-hand side of Eq. (1)—the therapy term—describes the 

spatiotemporal distribution of each systemic drug in the tissue and its effect on the cells of each 

voxel using the following equation, 

    Cdrug(x�,t) = α1Cdrug
1
(x�,t*)exp(-β

1
t)

��������������	
chemotherapy 1

 + α2Cdrug
2
(x�,t*)exp(-β

2
t)

��������������	
chemotherapy 2

,         (4) 

where αi is the efficacy of each chemotherapy on the tumor cells; Cdrug
i
 is the initial distribution 

of each drug for each dose (changing with time t*, described below), and the exponential decay 

terms, exp(-β
i
t), represent the eventual washout of drug over time after each dose. The αi and β

i
 

parameters are calibrated for each patient and chemotherapy, where the β
i
 calibration is restricted 

using bounds defined from ranges found in the literature for the terminal elimination half-lives of 

each drug [46-51]. Previously, Cdrug
i
, was approximated using a pharmacokinetic analysis of 

dynamic CE-MRI [20]; however, the present data set does not have the requisite temporal 

resolution or number of time points for such an analysis. Thus, we use the normalized AUC map 

(described in section 2.4) for each voxel post injection of the contrast agent. This drug 

distribution is dependent on the time t*, indicating that for the calibration of the model the drug 

distribution map is derived from scan 1, but an updated drug distribution map from scan 2 is 

provided to the model to predict the tumor at the time of surgery. Therefore, the drug effect in 

the tumor tissue is spatially non-uniform and temporally varying based on the individual 

patient’s response to therapy and NAT schedule.  

 Eqs. (1) – (4) do not account for targeted therapies. To overcome this limitation, Eq. (1) 

was modified to account for the change in proliferation rate due to trastuzumab and pertuzumab 

binding. As described in the introduction, the primary mechanism of action for these two 

targeted antibodies is the reduction in proliferation by binding to HER2, interrupting intracellular 

signaling. Therefore, similar to our previous in vitro modeling of trastuzumab [52], Eq. (1) 

becomes: 

 ∂NTC(x�,t)

∂t
 = �·(D(x�,t)�NTC(x�,t))������������	

diffusion

 + kH(x�)(1- NTC(x�,t)/θ(x�))NTC(x�,t)
������������������	

logistic growth

 - Cdrug(x�,t)NTC(x�,t)����������	
therapy

,       (5) 

where kH depends on the concentration of the targeted therapies, 

kH(x�,t)= k(x�)·g(�trastuzumab], [pertuzumab�). The proliferation kH includes the spatially defined 

proliferation map k(x�) as well as a function dependent on the distribution of the two targeted 
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drugs g(�trastuzumab], [pertuzumab��. As the 64Cu-DT-PET data is specific to the trastuzumab 

antibody, we make the simplifying assumption that this data can be used to also approximate the 

distribution of pertuzumab and define the growth modulation function as:      

g(�trastuzumab], [pertuzumab�) = 1 - 2μ�trastuzumab�,                   (6) 

where [trastuzumab] and [pertuzumab] indicate the concentrations of trastuzumab and 

pertuzumab, respectively, and μ represents the effectiveness of the targeted therapies. Note that 

we assume that the targeted therapies have a constant effect once administered (i.e., drug 

clearance is not accounted for in this initial study, and we return to this important point in the 

Discussion section. Additionally, we assume the reduction in proliferation is linear with 

concentration and that the entire tumor burden may be affected by the targeted therapies. From 

here we refer to the model without the effect of the targeted therapy explicitly incorporated as the 

“MRI-based model” (i.e., Eqs. (1) – (4)), while the model that explicitly incorporates the targeted 

therapy as the “PET/MRI-based model” (i.e., Eqs. (2) – (6)). Note that the MRI-based model is 

the same as the PET/MRI-based model when the concentrations of the targeted therapies are set 

to zero.  

 

2.6 Model parametrization and evaluation of predictions 

All simulation codes and numerical calculations were written and executed in MATLAB 

(MathWorks, Natick, MA). The model was implemented in three dimensions (3D) with a fully 

explicit finite difference scheme with ∆t = 0.25 day with the mesh dimensions defined by the 

size of the CE-MRI voxels. The size of the computational domain is set by a rectangle whose 

dimensions are determined by the size of the breast for each patient. A no flux boundary 

condition was prescribed at the boundary of the breast. 

Our modeling approach used the two MRI data sets for each patient to calibrate the 

mathematical model and then simulate the model to the time of surgery to make a prediction of 

tumor response. See Figure 1 for a graphical depiction of the implementation of our modeling 

approach. Specifically, we used the cellularity maps of each tumor (derived from the ADC of the 

DW-MRI data—see section 2.4) to calibrate model parameters (D0, α, β, and � parameters are 

global; k is spatially determined). For the calibration, a Levenberg–Marquardt least squares non-

linear optimization was used, where the sum of squared errors between the simulated tumor cell 

numbers from the model and the calculated number of tumor cells from the imaging data was 
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minimized. To reduce computation time for all calibrations, the voxel matrix within this 

designated rectangular domain was down sampled by a factor of four. See [42] for additional 

details on the full development of these numerical methods. 

Using these patient-specific, calibrated parameters, the model was reinitialized with the 

tumor cellularity, tissue, and drug distribution maps from scan 2 and run forward to the time of 

surgery to predict tumor response. We applied this approach with and without HER2-directed 

targeted therapy incorporated into the model, where the predictions of each model were 

evaluated by comparing two measures quantifying tumor response—total tumor cellularity and 

total tumor volume. Using these measures, the predicted percent change in the tumor responses 

from baseline (scan 1) to surgery as well as scan 2 to surgery were compared between the two 

models. 

 

3 Results 

Figure 5 depicts a central tumor slice of the resulting prediction for the time of surgery 

for each version of the model for both patients. Tumor cell number is overlaid in color on an 

anatomical image of the breast tissue. Notice that the original MRI-based model predicts larger 

tumors with higher cellularity for both patients compared to the PET/MRI-based model with the 

targeted therapy. In particular, for patient 1, the PET/MRI-based model predicts a tumor 

approximately 25% of the total tumor cellularity of that of the MRI-based model’s prediction. 

For both patients, the MRI-based model (i.e., Eqs. (1) – (4) that do not explicitly 

incorporate the HER2-targeted therapies) predicted that from baseline to surgery the tumors 

would shrink by > 50% in cellularity and volume as listed in Table 2. Specifically, the predicted 

overall tumor reduction by the MRI-based model was -59% and -51% for total cellularity and -

63% and -62% for volume, for patients 1 and 2, respectively. However, the model predicted that 

both patients will experience an increase in cellularity (203% and 86% for patients 1 and 2, 

respectively) and volume (46% and 37% for patients 1 and 2, respectively) from scan 2 to the 

time of surgery. Recall that patient 1 is the pCR patient, and patient 2 is the non-pCR patient. 

Thus, given the available data, the MRI-based model may prove difficult to use to distinguish 

between response types.  

The expanded PET/MRI-based model also predicted for both patients that the tumors 

would shrink from baseline to surgery by > 60% in cellularity and volume. Specifically, the 
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predicted overall tumor reduction by the PET/MRI-based model was -90% and -61% for total 

cellularity and -88% and -69% for volume, for patients 1 and 2, respectively. Note that patient 

1’s tumor was predicted to have a greater decrease in total cellularity and volume when 

compared to the predicted response of patient 2 (by almost 30% and 20%, respectively). For the 

percent change from MRI 2 to the time of surgery, the model predicted opposite responses 

between the two patients; the model predicted the tumor cellularity and volume would decrease 

for the pCR patient (patient 1), while the tumor cellularity and volume would increase for the 

non-pCR patient (patient 2). The predicted percent change from scan 2 to the time of surgery for 

the PET/MRI-based model was -24% and 47% for total cellularity and -38% and 12% for 

volume, for patients 1 and 2, respectively. See Figure 6 for the predicted tumor response curves 

for total cellularity from scan 2 to the time of surgery. Notice that the MRI-based model 

predicted overall tumor control for both patients during therapy (oscillating between 

approximately 10-30% and 10-50% of the baseline total tumor cellularity for patients 1 and 2, 

respectively). On the other hand, the PET/MRI-based model predicted overall tumor reduction 

with therapy for patient 1 (progressively decreasing with each dose) and overall tumor control 

for patient 2 (oscillating between 20-30% percent of the baseline total tumor cellularity). 

 

4 Discussion 

While there is a developing literature on integrating imaging data (and, in particular, MRI 

data) to generate patient-specific predictions of tumor response [16-20, 43, 53], relatively few 

modeling frameworks have been proposed to integrate multiple imaging modalities [54]. Despite 

our previous successes with predicting the response of locally-advanced breast cancer to broad-

spectrum chemotherapies [20, 21], we have struggled to capture the effect of targeted therapies. 

As the dynamics of targeted therapy distribution are not necessarily captured by commonly 

available MRI techniques, we utilized PET imaging with a novel imaging agent (64Cu-DT) to 

approximate the distribution of the anti-HER2 antibody. We then compared the predictions of the 

MRI-based model to the PET/MRI-based model that includes the effect of targeted therapy on 

the proliferation of tumor cells using the PET imaging data to indicate targeted drug distribution. 

We found that the expanded, PET/MRI-based model gave distinctly different predictions for the 

two patients that more closely agreed with clinical outcome than the MRI-based model. 

Specifically, the MRI-based model predicted that both tumors would regrow (as indicated by 
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both cellularity and volume) after scan 2. As surgical pathology determined that these two 

patients had very different outcomes (pCR and non-pCR for patient 1 and 2, respectively), the 

MRI-based mathematical model failed to capture key patient-specific characteristics when 

making its forecast. Conversely, with the incorporation of the targeted therapy data and 

corresponding model modification, the PET/MRI-based model provides distinct predictions for 

the two patients that more closely agree with clinical outcome.  

To the best of our knowledge this represents the first study to combine MRI and PET data 

for breast cancer in a predictive mathematical model. However, previous theoretical work has 

shown that the linking of several different modalities of data to quantify tumor size, proliferation, 

metabolism, and vascularity using simple tumor growth models is not only plausible but also 

fundamental to capturing and understanding the biological phenomena that is cancer [55]. One 

example is the more recent work where MRI and PET data were combined in a clinical model of 

glioblastoma [54]. By using 18F-fluoromisonidazole (FMISO-) PET data to quantify the hypoxic 

areas of the tumor, the authors were able to couple this information to the effectiveness of 

radiation treatment and found that it decreased the error between the model’s predictions and the 

patient’s actual response by an order of magnitude. This result is very similar to what we 

observed in this breast cancer study by including the effects of targeted therapy explicitly using 
64Cu-DT-PET.  

This study has several technical limitations related to both data acquisition and 

mathematical modeling that should be systematically investigated in future efforts. Considering 

data acquisition, we are limited by the paucity of time points at which the PET and MRI are 

collected, and this places substantial demands on our model calibration. While additional time 

points prior to and during therapy would enable a more precise determination of model 

parameters, potentially yielding more accurate predictions, the burden placed on patients as well 

as the associated expense involved in additional scans, fundamentally limits the practical 

feasibility of acquiring additional time points. As an initial effort to incorporate additional 

imaging data and determine if this stratification of the modeling framework can help distinguish 

predictions for pCR and non-pCR patients, this small data set provides sufficient evidence to 

continue exploring this avenue.  

Another consideration regarding the PET data, concerns the debate over which 

radiolabeled version of trastuzumab is most appropriate for clinical application, 64Cu or 89Zr 
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labelled trastuzumab. The longer half-life of 89Zr (78 hours) makes it more appealing from an 

imaging perspective, but this does expose patients to roughly 2.5× the radiation dose associated 

with (for example) a standard 18F-FDG-PET scan [56, 57]. While 64Cu has a shorter half-life 

(12.7 hours), it is still sufficiently long for imaging up to 48 hours. Therefore, the copper isotope 

is attractive for PET imaging as well as patient safety [30, 58].  

On the MRI side, a limitation we have previously discussed in detail is estimating 

cellularity with the ADC [20, 41, 59]. While there is good data indicating that the ADC is linearly 

correlated with cellularity [60], future efforts are needed to eliminate some of the ambiguity in 

the interpretation of ADC. Many other factors (cell membrane permeability [61], cell size, and 

tissue tortuosity [62]) in addition to cellularity can also effect the ADC, and therefore, estimating 

cellularity with ADC is simply an approximation. 

We now discuss limitations from a modeling perspective. As it is well known that breast 

tumors are quite heterogeneous at all spatial and temporal scales, a limitation of the modeling 

approach is the assumption that there is only one tumor cell phenotype. While the spatially 

defined proliferation map allows the model to better capture local behavior of the tumor cells, a 

simplifying assumption was made that all tumor cells respond similarly to drug therapy with the 

global α and � parameters. The immunohistochemistry data from the biopsy samples indicate 

that all of the cancerous cells (highly) overexpress HER2. Therefore, our simplifying assumption 

of the tumor being composed of one HER2+ cell population is supported by the fact that the 

biopsy data suggests that the tumors have low intratumoral variability of HER2 expression. This 

is also in agreement with other studies evaluating the homogeneity of HER2 staining in 

cancerous cells of HER2+ tumors [63, 64]. However, in patients that exhibit HER2 expression 

heterogeneity on the biopsy specimens, the model could be extended to include a fraction of 

HER2 negative cells within the tumor. The spatial distribution of HER2 negative cells in the 

tumor mass may be estimated with other imaging modalities, for example 18F-FDG, or with 

simplifying assumptions of well mixed populations. 

Other modeling limitations stem from the incorporation of therapies into the model. First, 

it is important to note that assigning the delivery of drug in the mathematical model via CE-MRI 

data is only a first order approximation, not unlike other efforts that have attempted to estimate 

heterogeneous drug delivery to tissue [65-68]. However, we do not account for differences in the 

mechanisms of transport of the chemotherapy and antibodies separately or account for potential 
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drug synergy. We also assume that the antibody concentration in the tumor is constant 

throughout treatment. It is well known that antibodies circulate in the body for long periods of 

time, evidenced by up to 7-day post administration imaging of 89Zr labeled trastuzumab studies 

[30, 69, 70]. Future studies should consider decay in antibody concentration and/or increased 

drug resistance. Finally, a major limitation in the model for the drug delivery in general is a non-

evolving vasculature. Adding an evolving vasculature would require a significant expansion to 

the model (with a new governing equation for the vasculature component alone), and we have 

had some success with this in the pre-clinical setting but this approach requires more data than 

available to calibrate the model [59, 71].  

In spite of these limitations, it is important to note that the model is both spatially and 

temporally resolved and can be calibrated almost entirely with data obtained from individual 

patients in the clinical setting to simulate tumor response to therapy. The ability to predict 

individual patient response using non-invasive imaging measures is difficult to overstate in 

oncology. By building clinical-mathematical frameworks capable of being calibrated and 

constrained with patient-specific data, we can begin to not only simulate differing patient 

responses but begin to identify negative outcomes early in the course of therapy. To be of any 

relevance, various types of therapies must be incorporated into such a mathematical system, and 

therefore, multiple modalities of data must be considered despite the challenges of interlacing 

these data types. 

 

5 Conclusions 

We have provided a proof-of-concept study to demonstrate how two imaging modalities 

(MRI and PET) can be combined in a mathematical model to provide patient-specific predictions 

of response to neoadjuvant chemotherapy and targeted therapy. Considering an initial two 

patients, we find incorporating both MRI and PET imaging data into a mathematical model 

allows the model to better distinguish between pCR and non-pCR outcomes. These results 

represent a first step to combining multiple modalities of clinically-relevant imaging data in a 

mathematical model for individualized predictions of therapy response. 

 

6 Data Availability  
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The datasets generated during and/or analyzed during the current study are available from 

the corresponding authors on reasonable request. 
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11  Figures 

Figure 1. Schematic of the integrated mathematical-experimental approach employed in the 
study. Prior to NAT, several imaging and biopsy data types were collected for each individual 
patient, including 18F-FDG PET-CT, but it is not being utilized in this current study. At a 
midpoint of NAT, a follow-up MRI scans were also performed. At surgery, tissue was collected 
and sent to pathology for evaluation. The first two sets of data (pre-NAT and at the midpoint of 
NAT) were used to calibrate the mathematical model’s parameters for each individual patient. 
With the patient-specific parameters, the model was reinitialized at each patient’s second 
imaging session data and run forward to predict tumor status at the time of surgery. Then the 
model’s predictions were compared to the clinical outcome determined at the time of surgery. 
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Figure 2. Example MRI and PET data for a central slice from both patients with the tumor 
region boxed in red. Note that MRI and PET data were acquired in the prone position as opposed 
to the usual supine position using our novel breast support device (see text for details), and these 
example images are prior to intra-scan registration that aligns the data to one common space for 
modeling. Note that in the CE-MRI data (panels (a) and (e)), the tumor enhances more than the 
surrounding tissues. The DW-MRI data is represented here by the calculated ADC map (overlain 
on an anatomical image) in panels (b) and (f). Note that low ADC values (blue) are indictive of 
areas of higher cellularity. Panels (c) and (g) show the 64Cu-DT-PET data, while panels (d) and 
(h) present the 18F-FDG-PET data. Note that due to the tumor location and arm positioning, for 
patient 2, part of her arm is out of view in the cropped image. For both a high signal intensity 
was observed within the tumors for the 64Cu-DT-PET data, whereas for the 18F-FDG-PET data 
the signal was not as strong for patient 1 for this slice. (While the 18F-FDG-PET data was 
collected with the data in this study and is part of the image processing pipeline, it was not used 
for this modeling study.) 
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Figure 3. Example images of data processing for intra-scan registration of PET data to MRI data 
(upper panel) and generation of tumor ROIs (lower panel). Upper panel, deformable intra-scan 
registration for PET data to MRI data. Note that these images were all acquired in the prone 
position as opposed to the usual supine position using our novel breast support device (see text 
for details). The top row depicts a central slice for patient 1 at baseline for the CE-MRI (panel a), 
64Cu-DT-PET (panel b), and the 64Cu-DT PET-CT (panel c). After the CT data is trimmed to 
only include breast tissue (i.e., the chest cavity and breast support was removed from the original 
images), the CT images were registered to the CE-MRI data using a fully deformable registration 
algorithm. Panels (d-i) depict the resulting overlap between the CE-MRI data and registered CT-
PET data for three central slices (green represents the CE-MRI data and pink represents the 
cropped 64Cu-DT PET-CT and 64Cu-DT-PET for panels (d-f) and (g-i), respectively). Lower 
panel, example images for generating tumor ROIs from CE-MRI data using the FCM method 
(patient 2). Panel (j) depicts a central slice of the CE-MRI data. Panel (k) shows a manually 
drawn, conservative ROI (red) on the CE-MRI data. Panel (l) depicts the FCM generated ROI 
(red). 
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Figure 4. The central slide of each tumor for both patients are shown to depict the tissue 
segmentation (panels a and e), number of tumor cells (b and f), and the normalized estimates of 
the systemic (c and g) and targeted (d and h) therapies used in the model. The tissue 
segmentation identifies the tumor (dark area), fibroglandular (white), and adipose (grey) tissues 
within the breast. For the remaining columns, the parameter maps (i.e., the colored pixels) are 
overlaid on anatomical images of the breasts (grey). At surgery, patient 1 was designated as a 
pCR, while patient 2 had residual disease and was designated as non-pCR. Both patient’s tumor 
exhibit areas of high cellularity, and the approximate drug distribution of the systemic therapies 
have similar intensities. Comparing the targeted distribution maps, patient 1 appears to have had 
greater drug distribution compared to patient 2 for this central slice. 
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Figure 5. Central slice examples of the predicted tumor cellularity by the MRI-based model 
compared to the PET/MRI-based model. The number of tumor cells is overlaid (color) on an 
anatomical image of the breast (grey). At surgery patient 1’s (left column) tumor response was 
designated as pCR and for patient 2 (right column) the tumor response was designated as non-
pCR. Notice that the PET/MRI-based model predicts overall smaller tumors and for patient 1 
specifically, lower overall cellularity. 
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Figure 6. Tumor response curves for total cellularity predicted by the MRI-based (blue curve) 
and PET/MRI-based model (orange curve) for each patient. Each panel depicts the predictions 
for total tumor cellularity from the time of scan 2 (day 0) to the time of surgery (end of 
simulation) for patient 1 (panel a) and patient 2 (panel b). Note that patient 1 received two doses 
of therapy between her second scan and surgery, while patient 2 received three doses of therapy 
during that time. The period of tumor regrowth after the completion of NAT occurs during the 
time patients were no longer receiving systemic therapy. Patients 1 and 2 underwent surgery 38 
and 36 days, respectively, after their last cycle of therapy. While both models predicted an 
oscillatory behavior in relation to when therapy was delivered, the MRI-based model (blue 
curves) predicted greater tumor regrowth during the refractory periods than the PET/MRI based 
model (orange curves). We conjecture this reflects the modified proliferation due to targeted 
therapy incorporated into the model. 
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12  Tables 

 
Table 1. Description of the variables and parameters for the model system including the assigned 
parameter values and specification of units. 

Variable Description 
   NTC(x�,t) Number of tumor cells in the voxel at position x� at time t 

D(x�,t) Diffusion coefficient of tumor cells, where D(x�,t) = D0exp(-γσvm(x�,t)) (mm2/day) 
σvm Von Mises stress (kPa) 

u
� Displacement vector due to tumor cell growth (mm) 

G Shear modulus due to breast tissue properties, where G = E/(2(1-ν)) (kPa) 

Ctissue
drug

(x�,t) 
Concentration of drug in the tissue in the voxel at position x� at time t 
(dimensionless) 

Parameter Description Value 

D0 
Diffusion coefficient of tumor cells 
without stress 

Calibrated, mm2/day 

γ Mechanical coupling coefficient for stress Assigned at 2.0 × 10-3 (1/kPa) 
ν Poisson’s ratio Assigned, 0.45 (dimensionless) 

E 
Young’s modulus for adipose, 
fibroglandular, and tumor tissues 

Assigned, 4 kPa, 2kPa, and 20 kPa, 
respectively  

λ 
Coupling constant for displacement of 
tumor cells 

Assigned as 2.5 × 10-3 
(dimensionless) [39] 

k(x�) Proliferation rate of tumor cells per voxel Calibrated, 1/day 

θ 
Carrying capacity of tumor cells in the 
voxel at position  x� 

Calculated, 2.02 × 106 cells 

α Efficacy of the chemotherapy Calibrated, 1/day 
β Drug exponential decay rate Calibrated, 1/day  
� Efficacy of the targeted therapy Calibrated, 1/day 

 
 
Table 2. Modeling results for the predicted percent change in tumor response from baseline and 
scan 2 to the time of surgery 

 Cellularity Volume 

 From baseline From scan 2 From baseline From scan 2 

Patient � 1 2 1 2 1 2 1 2 

MRI-based 
 model 

-59% -51% 203% 86% -63% -62% 46% 37% 

PET/MRI-
based model 

-90% -61% -24% 47% -88% -69% -38% 12% 
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