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With the rapid spread of the SARS-CoV-2 virus since Fall 2019, governments took various
measures to contain the propagation of the pandemic, declared on March, 2020. This study
introduces a novel method to estimate the reproductive number using Bayesian inference
with time-dependent priors. By inferring the infection dates from incidence time series, the
developed approach allows direct comparison between reproductive number and introduc-
tion of public health measures in a specific country. First a specific period between the onset
of the symptoms and a case being declared as dead is derived on data available in Switzer-
land. Focussing on the measures taken by 31 European countries, this study shows that most
countries required tough state interventions with a stringency index equal to 83.6 out of 100
to reduce the reproductive number below one and hence control the development of the epi-
demy. In addition, it is shown that there is a direct correlation between the time taken to
introduce restrictive measures and the time required to contain the spread of the epidemy
with a median time of 8 days between the introduction of initial restrictive measures and the
reproductive rate reducing below one.

Introduction

Since being first observed in Wuhan in late 2019, the outbreak of the 2019 SARS-CoV-2 virus has

caused global concerns on health and economy. The transmission rate, pressure on the healthcare

system and lack of effective treatment lead countries to take various measures to limit the spread of

the virus, among them confinement measures ranging from banning gatherings to complete lock-

downs and closing borders 1, 2. In this research, the impact of these measures is evaluated through

their influence on the effective reproduction number Rt and its evolution in time. The effective

reproduction number aims to quantify the number of secondary infections caused by an individual

over the time at which this person is infected. It is important to make the distinction between the
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effective and basic reproduction rate. The basic reproduction R0 refers to the evolution of the dis-

ease when the population is fully susceptible to the disease while the effective reproductive rate Rt

factors the immunity acquired within the population 3. The reproduction rate is a key parameter to

evaluate the evolution of an epidemic. Any value below 1 indicates that the spread is decreasing,

any value above one indicates that the spread is increasing. In addition, the reproductive num-

ber allows a direct comparison of the epidemiologic profiles observed in different countries with

largely different characteristics (population, testing methods, etc), thus considering temporality

and populational characteristics.

Numerous methods have been developed to compute the reproductive rate and its evolution

over time4. Initial methods derived the reproductive rate from transmission model similar to the

SIR model 5–9. However, these models require assumptions about the epidemiology of the disease

and are dependent on the recovered cases which are very often difficult to evaluate. Later models,

including the Wallinga and Teunis approach10, use a likelihood-based estimation procedure to re-

construct infection patterns. These methods were however found to exhibit large variations when

using daily data 11. Approaches which aimed to correct these fluctuations were very sensitive to

the selected smoothing parameters 11, 12. Cory et al. developed an additional method to mitigate

these drawbacks and their method showed special robustness to underreporting13.

Since the start of the pandemic, various studies have looked at the impact of public health

interventions on the evolution of the COVID-19 at a regional or national level. Studies first fo-

cussed on China, demonstrating the importance of control strategies to reduce the reproductive

rate14, 15. These studies used mechanistic transmission models to obtain the reproductive number

with the drawbacks associated with these models described earlier. Further studies focussed on

how state interventions prevented ICU capacity to be overwhelmed as well as the impact of these

measures on fatalities in the UK16, Germany17 and France18. While these researches focussed

on individual country, a report published by Flaxman et al.19 aimed to demonstrate the impact of

non-pharmaceutical interventions in 11 European countries. This study assumed that the various

interventions had the same effect across countries and that their impact was independent of the

timing of the measure. In addition, this study assumed the reproductive number is fixed between

the different measures. However, a recent research shows that community changes also play a role

in slowing the evolution of the virus20.

The aim of this work is to extend previous researches by focussing on the effects of state
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interventions in 31 European countries. As the evolution of the reproductive number is a function

of both the introduction of restrictive measures as well as changes in behaviours with specific

societal properties, we do not aim to quantify the effect of each measure. Instead, we aim to show

how these combined interventions and their temporality have influenced the spread of the virus.

Evaluating the reproductive number from incidence data

The number of infected individuals at a given time can be estimated as follows:

E[I(t)] = R(t)
t∑

s=1

wsI(t− s) (1)

where ws is the serial interval. The distribution of ws for the SARS-CoV-2 virus was found by

Nishiura et al.21 to have a mean of 4.8 days and a standard deviation of 2.3 days.

Given the time at which an infection I(t) occurred is not available, the number of confirmed

cases and deaths on a given day are used as proxies, keeping in mind that the developed method is

able to deal with underreporting. Linton et al.22 derived the incubation period (from illness onset

to hospitalization) at 2.7 days from confirmed infection and diagnosis outside of the epicentre of

Hubei Province, China, based on official reports from governmental institutes. The period between

the onset of the symptoms and a case being declared as confirmed in Switzerland, was estimated to

5.6 days by a study performed in Basel, Switzerland23. Incubation, Onset to confirmed, and Onset

to death periods were assumed to be gamma distributed and their mean and standard deviation are

summarised in table 1.

Table 1: Incubation and waiting time distribution

Period Mean [days] Standard deviation [days]

Incubation (Linton et al.22) 4.6 2.6

Onset to confirmed (Scire et al.23) 5.6 4.2

Onset to death (our study) 15.3 6.7

From the latter periods it is possible to calculate a posterior distribution of Rt based on the

inferred infection dates extracted from the cases being reported as confirmed or dead. For the cases

declared on each day, a shift following a gamma distribution between the defined cases (confirmed

or dead) and the time of infection is randomly generated. For each case, the new date of infection
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Table 2: Distribution model and AIC for test to death period

Distribution Gamma Weibull Lognormal

AIC 8997 9026 9085

then becomes the date at which the case was reported minus the generated shift. This procedure is

then performed iteratively with the mean of the obtained infections on each day over the simula-

tions being retained thus increasing the robustness of our proposed method by naturally smoothing

the incidence data. This step is critical in order to deal with infrequently published data. In ad-

dition, the infections for the most recent days are corrected (Scire et al.23) to factor the fact that

some of the infections which occurred on this day will be reported in the future (see Methods).

Our method to estimate the reproductive rate is a variation of the one proposed by Cori et al.13.

While their method assumes a constant gamma distribution for the prior distribution, the presented

model takes advantage of the information gained in time by updating the prior distribution for each

window with the previous posterior (see Methods). Rt was estimated using incidence data for con-

firmed cases and death published in the COVID-19 Data Repository by Johns Hopkins University

(JHU CSSE). Data regarding the various state interventions were retrieved from the Coronavirus

government response tracker (OxCGRT) developed by the Blavatnik School of Government, Ox-

ford University. The stringency index provided in this dataset tracks government’s policies and

interventions across different categories and provides a score between 0 and 100 evaluating the

overall stringency of the measures taken in a given country24. Combining these two datasets, the

full set of data was obtained for 33 European countries. For our analysis, Russia and Ukraine were

removed from our dataset as the reported daily death are still increasing for these two countries

when we are interested in countries which have successfully contained the evolution of the pan-

demic before the 23rd of May 2020. We were therefore left with a set of 31 European countries

listed in Appendix A.

Determining the period between a positive case and death

In this study, the period between a case being reported positive and the death of the individual was

extracted from 1430 cases provided by the Swiss Federal Office of Public Health (FOPH). Our

result provide a distribution on a much larger dataset than the one built by Linton et al.22 which

used 33 cases. We tested three different distributions: lognormal, Weibull and gamma with the

Akaike Information Criterion (AIC) being used to identify the best distribution. The results are

summarised in table 2.
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A gamma distribution with a mean and a standard deviation equal respectively to 10.7 and

6.73 days was found to best fit the data from infection to death. The distribution along the ex-

tracted data are shown in figure 1. This distribution was then combined with the incubation period

provided by Linton et al.22 to obtain the period between onset and death shown in table 1.

Figure 1: Distribution of the period between a positive test and the death of the patient

The importance of taking measures early

The evolution of the reproductive rate in Austria is shown in figure 2. The daily observed con-

firmed cases and deaths are shown in the top part with blue and violet bars respectively. The same

colour code is applied in the top part for the estimated daily infections date inferred from these

cases and on the bottom part, the derived reproductive rates. These results are shown along the

state interventions taken in the respective countries with vertical bars at the date of applicability

with red and green unified short descriptions for beginning and termination of restrictive measures

respectively (see Petherick et al.24 for more details on terminology and corresponding scores of the

measures).

Austria provides a good analysis case as it was one of the first country in Europe to impose

lockdown measure, as early as on the 13th of March, but also to ease restrictions in mid-April. It is

interesting to note that the reproductive rate started to decline before the introduction of restrictive

measures. The reductions was however steeper after a set of measure was introduced between the

13th and 17th of March. The reproductive rate then plateaued at around 0.65 during the lockdown.
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Figure 2: Evolution of the reproductive rate (mean and 95% confidence interval) in Austria. Top plot: reported deaths
and confirmed cases shown with bars, inferred estimated infection distributions shown as solid lines. Bottom plot:
vertical black lines mark the introduction (red name) and removal (green name) of measures. The solid lines represent
the mean of the estimated reproductive rate and the shaded area the 95% CI (see Methods)

Recently the reproductive rate has been oscillating around one. This last phase shows the difficulty

to reduce the number of cases below a certain threshold with the emergence of localised clusters

whose identification will be critical to contain the evolution of the virus.

The stringency index developed by Petherick et al.24 was used to assess the role of state

interventions in controlling the epidemy. This index was compared with the evolution of the re-

productive rate rather than the incidence of confirmed or dead cases. Indeed, differences in testing

or reporting policies between countries make it very difficult to compare these variables directly.

While the reproductive rate is also subject to variations in these policies, it depends on the change

in confirmed and death cases therefore allowing comparison between countries with different poli-

cies. The measures as well as the stringency index each country had in place when their reproduc-

tive rate based on the confirmed cases dropped below one is analysed. The intention is to determine

which measures allowed countries to contain the evolution of the virus. The stringency index of

the countries included in our analysis are presented in figure 3. When countries managed to re-

duce their reproductive rate below one they had a mean stringency index of 83.6 out of 100 with a

standard deviation of 13.5. When Rt dropped below one, the median severity of the measures for

each category defined in the OxCGRT dataset was the following. Countries had completely closed

their school as well as non-essential workplace. All public events were cancelled and gathering

6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.10.20126870doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.10.20126870
http://creativecommons.org/licenses/by-nc/4.0/


with more than 10 people were banned. Finally, the median country required not to leave the house

apart than for specific activities and internal movements were severely restricted.

Figure 3: Stringency index per country when Rt dropped below 1. The median value is indicated with the dotted line

In order to assess the impact of taking restrictive measures early in the crisis, the time taken

to introduce initial restrictive measures was compared to the period taken to control the epidemy.

The time until the introduction of restrictive measure was defined as the period between the 5th

death in a given country and the stringency index reaching a score of 35. The stringency index

corresponds to the lowest score observed when Andorra reached a Rt smaller than one. The time

required to control the epidemy was then defined as the period between the 5th death and the

reproductive rate based on the confirmed cases dropping below one. The results along a linear

regression are presented in figure 4. A Pearson correlation coefficient of 0.762 was found between

the two variables indicating that there is indeed a positive benefit of taking early measures to

control the epidemy. The United Kingdom can serve as an interesting example. The UK had

initially planned to build “targeted herd immunity” delaying the introduction of restrictive measure.

As a results of this delay, the UK were only able to contain the epidemy 30 days after the fifth

death occurred in the country when the median time for the countries included in our analysis

was of eight days. There are three outliers in our analysis being Andorra, Sweden and Iceland.

Sweden has decided not to introduce a complete lockdown. While true that Sweden has achieved

a reproductive rate oscillating around one, it currently stands with one of the highest daily death

incidence in Europe having 5.34 deaths per million people per day on the 23th of May when the

mean for the countries included in our analysis is 0.82 on the same day (as retrieved from Our

World in Data).
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Figure 4: Period required to contain the epidemy as a function of the period to introduce initial restrictive measures.

Conclusions

First, an improved estimation of the time spent between a positive test and the death of a patient

was derived using 1430 cases reported in Switzerland. This is an essential parameter to predict the

occupancy of ICU units and models are very sensitive to it. Second, we propose a new method, that

allows to estimate a sequence of reproduction numbers, where information acquired by previous

reproduction numbers is transferred to more recent reproduction number estimates via Bayesian

inference. By retrieving the infection date, this method allows direct comparison between the

introduction of restrictive measures and their effect on the reproduction rate. Our analysis on 30

European countries shows that all countries apart from three required state interventions to control

the epidemy. It was finally shown that countries which took restrictive measures earlier managed

to control the epidemy in a shorter time frame indicating these measures were indeed effective in

limiting the number of casualties in Europe as of the 23rd of May 2020.
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Methods

Correcting the number of infections The infections for the most recent days are corrected (Scire

et al. 23) to factor the fact that some of the infections which occurred on this day will be reported

in the future:

Ī(t) =
I(t)

F̂ (l)
(2)

where F̂ is the cumulative distributive function of the period between an infection and a case being

reported as positive or dead, l is the time between t and the last reported case, Î(t)) and I(t) are

respectively the corrected and initial infections which took place on a given day.

Estimation of the reproductive rate The method presented in this report is a variation of the one

proposed by Cori et al13. Assuming the incidence at time t, It, is Poisson distributed so that the

likelihood of the incidence It given Rt and conditional on previous incidence I0, . . . , It−1:

P (It|I0, . . . , It−1, w,Rt) =
(RtΛt)

It

It!
(3)

with Λ =
∑t

s=1wsIt−s

The posterior of the reproductive number Rt conditional on previous incidences is:

P (Rt|I0, . . . , It−1, It, w) ∝ P (It|I0, . . . , It−1, w,Rt)P (Rt) (4)

While the method developed by Cori et al13 assumes a constant gamma distribution for the prior

distribution, the presented model takes advantage of the information gained in time by updating

the prior distribution for each window with the previous posterior:

P (Rt) = P (Rt−1|I0, . . . , It−2, It−1, w) (5)

The 95% CI is then derived by computing the 2.5% and 97.5% quantiles.

The reproductive number Rt based on the confirmed cases is reported up to 9 days before the

last date at which results are available. This corresponds to the median time for confirmed cases to

be reported. Using the same method, Rt based on the cases reported as dead is reported up to 19

days before the last day on which deaths were reported for a given country.

Code availability The codes are available upon request to the corresponding author.
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Data availability The incidence data for the confirmed and death cases were recovered from:

Johns Hopkins University Center for Systems Science and Engineering, COVID-19 data reposi-

tory, Center for Systems Science and Engineering (CSSE): https://github.com/CSSEGISandData/COVID-

19 [accessed on 23/05/2020].

Data regarding the state interventions were retrieved from: Thomas Hale, Sam Webster, Anna Peth-

erick, Toby Phillips, and Beatriz Kira. (2020). Oxford COVID-19 Government Response Tracker,

Blavatnik School of Government: https://github.com/OxCGRT/covid-policy-tracker [accessed on

23/05/2020].

The daily incidence for the death cases per million people was retrieved from: Max Roser, Hannah

Ritchie, Esteban Ortiz-Ospina and Joe Hasell, Coronavirus Pandemic (COVID-19), Our World in

Data, https://ourworldindata.org/coronavirus [accessed on 24/05/2020]

Data related to the period between a positive test and the death of an individual were retrieved

from: Swiss Federal Office of Public Health (FOPH), Cas confirmés en laboratoire : distribution

géographique, https://covid-19-schweiz.bagapps.ch/fr-1.html [accessed on 06/05/2020]
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Appendices
A List of countries along dates characterising the evolution of the epidemy

Date Days from 5th death to:

5th death Stringency index ≥ 35 Rt ≤ 1 Stringency index ≥ 35 Rt ≤ 1

Albania 26/03/2020 09/03/2020 31/03/2020 -17 5

Andorra 29/03/2020 16/03/2020 24/03/2020 -13 -5

Austria 19/03/2020 11/03/2020 22/03/2020 -8 3

Belgium 17/03/2020 14/03/2020 04/04/2020 -3 18

Bosnia and

Herzegovina
29/03/2020 11/03/2020 02/04/2020 -18 4

Bulgaria 28/03/2020 13/03/2020 29/03/2020 -15 1

Croatia 29/03/2020 14/03/2020 26/03/2020 -15 -3

Czechia 25/03/2020 11/03/2020 26/03/2020 -14 1

Denmark 19/03/2020 06/03/2020 01/04/2020 -13 13

Estonia 02/04/2020 12/03/2020 28/03/2020 -21 -5

Finland 27/03/2020 12/03/2020 04/04/2020 -15 8

France 05/03/2020 13/03/2020 08/04/2020 8 34

Germany 13/03/2020 10/03/2020 26/03/2020 -3 13

Greece 19/03/2020 12/03/2020 26/03/2020 -7 7

Hungary 22/03/2020 11/03/2020 09/04/2020 -11 18

Iceland 06/04/2020 16/03/2020 23/03/2020 -21 -14

Ireland 23/03/2020 12/03/2020 10/04/2020 -11 18

Italy 24/02/2020 22/02/2020 20/03/2020 -2 25

Luxembourg 21/03/2020 12/03/2020 22/03/2020 -9 1

Netherlands 13/03/2020 12/03/2020 05/04/2020 -1 23

Norway 18/03/2020 12/03/2020 23/03/2020 -6 5

Poland 22/03/2020 12/03/2020 06/04/2020 -10 15

Portugal 20/03/2020 16/03/2020 29/03/2020 -4 9

Romania 23/03/2020 08/03/2020 09/04/2020 -15 17

Serbia 28/03/2020 15/03/2020 11/04/2020 -13 14

Slovakia 15/04/2020 10/03/2020 13/04/2020 -36 -2

Slovenia 26/03/2020 16/03/2020 25/03/2020 -10 -1

Spain 07/03/2020 10/03/2020 26/03/2020 3 19

Sweden 16/03/2020 30/03/2020 19/04/2020 14 34

Switzerland 13/03/2020 13/03/2020 21/03/2020 0 8

United Kingdom 10/03/2020 22/03/2020 09/04/2020 12 30

The stringency index is extracted from the Coronavirus government response tracker (OxCGRT)

and measures the degree of government’s interventions on a scale from 0 to 100. Negative days

indicate that the given event occurred before the fifth death in this country.

14

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.10.20126870doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.10.20126870
http://creativecommons.org/licenses/by-nc/4.0/


B Stringency index when Rt ≤ 1

Country Stringency Index when Rt ≤ 1

Albania 84

Andorra 35

Austria 85

Belgium 84

Bosnia and Herzegovina 88

Bulgaria 75

Croatia 97

Czechia 83

Denmark 84

Estonia 75

Finland 75

France 89

Germany 75

Greece 88

Hungary 78

Iceland 57

Ireland 92

Italy 93

Luxembourg 82

Netherlands 85

Norway 76

Poland 84

Portugal 87

Romania 88

Serbia 100

Slovakia 91

Slovenia 81

Spain 78

Sweden 45

Switzerland 79

United Kingdom 80
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