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[talian Towns

Thomas S. Coleman*

June 10, 2020

Abstract

For COVID-19 the Infection Fatality Rate or IFR — a crucial variable in epidemiological modeling — is
difficult to estimate because many cases are asymptomatic and the overall infection rate is generally not
known. Circumstances in the Italian provinces of Milano, Bergamo, Brescia, and Lodi allow estimation
of lower bounds for age- and sex-specific all-cause excess mortality (a proxy for IFR) since anecdotal
reports indicate some towns were close to fully infected. Using data from ISTAT on mortality from
January 1 through April 15 for 2020 and the three preceding years, I estimate excess mortality by sex
and age categories (0-14, 15-54, 55-64, 65-74, and 75+ years) while controlling for town-specific mortality
that proxies for town-specific infection rate. The 99th percentile from the tail of the town distribution
gives a lower-bound estimate for COVID-19 mortality. The overall population-weighted mortality at the
99th percentile is 1.09 percent (95% CI 1.06-1.14). The age- and sex-specific rates vary considerably: for
men age 65-74 the estimate is 2.10 percent (95% CI 1.94-2.28) which is 3.5-times higher than men 55-64
and 2.7-times higher than women 65-74.
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1 Summary of Results

Towns in the four northern Italian provinces of Milano, Bergamo, Brescia, and Lodi were heavily infected

with the coronavirus in the first few months of 2020. Some towns had substantial excess mortality:

e Nembro, 147 extra deaths, population 11,526, excess mortality 1.275 percent

e Alzano Lombardo, 102 extra deaths, population 13,655, excess mortality 0.75 percent

If the towns had been fully infected during this period the excess mortality would provide an estimate of
mortality due to COVID-19. Since the towns may have been less than fully infected these provide lower

bounds.
The excess mortality provides a valuable bound for COVID-19 mortality and it would

Generalizing the idea to multiple towns provides better precision in the estimates, and opens the way for
estimating mortality by age and sex. A Poisson count model provides the statistical framework to pool data
across towns, estimating age- and sex-specific mortality rates, while controlling for differences across towns
in the degree of excess mortality. There are 612 towns with deaths by age and sex available from ISTAT for
January 1 through April 15 for the years 2017-2020 in the northern provinces of Milano, Bergamo, Brescia,
and Lodi — a population of 5,753,296 or 98 percent of the regional population.

Town-specific random effects control for differences across towns in the level of excess mortality which
presumably results from differences in infection rates, and also provide a method for estimating mortality
for the most-infected towns. The upper tail (99th percentile) of the town distribution corresponds to the
highest-mortality towns — presumably those most infected by the coronavirus. The 99th percentile out of

612 towns is roughly the 606th town, so at the upper tail but not simply the most-infected town.

Table 1 shows overall excess mortality of 1.09 percent (95% CI 1.06-1.14),' an IFR higher than many
published estimates (e.g. Ioannidis [2020] (surveying published studies) reports 0.02 percent to 0.40 percent;
CDC [2020] uses an “upper bound” for disease severity of case fatality rate 1 percent and asymptomatic case
percentage of 50 percent, implying an IFR of 0.5 percent; Grewelle and Leo [2020] does estimate a higher
global IFR (1.04 percent), but this is equal to our lower bound). The IFR shows a dramatic age and sex
profile: men age 65-74 have excess mortality 12-times higher than younger men and 2.7-times higher than
women of the same age. Applying the age- and sex-specific excess mortality to the U.S. age profile produces
a bound for the U.S. overall IFR of 0.87 percent — Table 2.

These estimates of all-cause excess mortality provide particularly firm and useful bounds for COVID-19
mortality because they do not depend on the assumptions often necessary with other measures. They do

not depend on ascribing cause of death or determining exposure or proportion asymptomatic infections.

These excess mortality estimates provide lower bounds for COVID-19 IFR in realistic circumstances, but we
need to discuss their interpretation. The Infection Fatality Rate (IFR) is a key variable in epidemiological
modeling and is usually considered a constant, but in reality IFR can vary with circumstances. There are
three channels through which a COVID-19 epidemic will affect mortality. The first is death caused directly
by COVID-19 but under “good medical treatment.” We might call this the “clinical” or “best-case” IFR and

1The rates by age and sex are estimated from the underlying data, and then aggregated to the totals using population
weights for the overall region (shown in Table 9).
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Table 1: Estimated Excess Mortality, Approximate 99th Percentile of Town Infection Distribution

Age Male  95% CcI  Female 95% c1  Total 95% cI  Ratio M/F  95% CI
0-14yr 0.01% o0.01-0.02 0.01% 0-0.01 0.01% 0-0.01 0,

15-54yr  0.06% 0.05-007 0.04%  0.03-0.04 0.05% 0.04-0.06 1.65 1.40-1.91
55-64yr  0.59% 0.54-0.64 0.22%  0.19-0.25 0.40% 0.37-0.43 2.65 2.34-3.14
65-7T4yr  2.10% 1.94-2.28 0.80% 0.74-0.87 1.41% 1.30-1.52 2.62 2.47-2.80
75+ 8.95% 836952 6.47%  6.02-6.89 7.42%  6.93-7.88 1.38 1.34-1.45
TOTAL 1.14% 1.07-1.21  1.04% o0.97-1.11  1.09% 1.02-1.16 1.09 1.06-1.14

Excess mortality rates calculated by ten age-sex categories then weighted to totals using age-specific
population in the regions of Milano, Bergamo, Brescia, and Lodi. Non-parametric bootstrap confidence
intervals as described in the text.

this is what is usually meant when discussing the IFR. The second is higher mortality still caused directly
by COVID-19 but due to ineffective or lesser medical care that may exist during the initial outbreak or
disorganized medical conditions. The third is excess mortality from other causes due to disorganized medical
treatment, for example cardiac cases not seeking or receiving adequate care — not technically part of the
IFR but still mortality resulting from the disease.? The three channels combined we might label the “initial

response,” “real-world,” or “worst-case” IFR — due not only to the clinical conditions of infection but also to

real-world treatment challenges and the “fog of war” in fighting a new disease.

Reports on the response of hospitals and ICU beds in Lombardy (e.g. Manca [2020], Grasselli et al. [2020])
indicate that the medical system was stressed but not overwhelmed and hospitals responded with large
increases in ICU capacity. From anecdotal reports it appears that increased mortality due to the third
channel (non-treatment of non-COVID conditions) was small, and due to the second channel (ineffective
COVID care) was probably not substantial. Nonetheless, as time, knowledge, and medical practice progresses

this initial response IFR will likely decrease.

The estimates in Table 1 provide benchmarks against which to compare parameters used in epidemiological
modeling. In this respect it is instructive to examine recent CDC simulations (CDC [2020]). Re-weighting
our age-specific estimates for US population (as shown in Table 2) we find 0.87 percent overall and 3.95
percent for age 65+. The CDC scenario 5 (“current best estimates”) assumes 35 percent asymptomatic cases
and case fatality rates of 0.4 percent overall, 0.2 percent for 55-64, and 1.3 percent for age 65+, implying
IFR of 0.26 percent overall, 0.13 percent for 55-64, and 0.845 percent age 65+. These are substantially lower
than the observations from northern Italy and raise the question of whether U.S. mortality will in fact be

improved relative to Italy by a factor of three.3

By estimating excess mortality using fixed effects for demographic and town effects, we can examine town-
by-town mortality while still pooling data across demographics and towns. Table 3 shows six towns between
the 98th and 99th percentile with the highest predicted overall mortality.* There are a number of towns
in the tail of the overall mortality distribution (for exampleGazzaniga, Castiglione d’Adda, and Nembro)
that have moderate populations and statistically significant estimated fixed effects. This indicates that the

estimates from the tail of the random effects estimator shown in Table 1 are not simply a statistical artifact:

2There is a fourth possible source for the observed increase in mortality: some unobserved confounding factor that increased
mortality in northern Italian towns in spring 2020. Although logically possible this is unlikely to be a major factor in this case,
particularly given two observations: the clear identification of a mechanism (virus and disease) causing increased mortality
globally, and significant increases in mortality in northern Italian towns that occurred at the same time as identified COVID-19
infection and in tandem in all groups except the youngest.

3The CDC scenario 3 has the highest implied IFR of 0.8 percent overall and 2.56 percent for 65+, still lower than our lower
bounds.

4The age-specific mortality is predicted for each town, then weighted using that town’s population weights.
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Table 2: Estimated FExcess Mortality with Totals Re-Weighted by US Population, Approximate 99th Per-
centile

Age Male Female Total

0-14yr 0.01% 0.01%  0.01%
15-54yr  0.06%  0.04%  0.05%
55-64yr  0.59%  0.22%  0.41%
65-74yr  2.10%  0.80%  1.41%
75+ 8.95%  6.47%  7.50%
TOTAL 1.03% 0.71% 0.87%

Estimates for the upper tail of the random effects estimator and for individual towns tell the same story of

high excess mortality for highly-infected towns.?

Table 3: High Mortality Towns — Actual and Predicted Excess Morality, and Estimated Fixed Effect

Pop Actual Predicted Estimated Fixed Effect Actual

Overall Overall value z-ratio M55-64 M65-74
Gazzaniga 5,018 1.32% 1.27% 1.413 8.82 0.00% 2.38%
Castiglione d’Adda 4,646 1.29% 1.27% 1.554 8.74 0.28% 4.68%
Valbondione 1,032 1.36% 1.28% 1.587 4.10 3.85% -1.56%
Averara 181 1.10% 1.29% 1.583 1.73 0.00% 0.00%
Nembro 11,526 1.31% 1.31% 1.554 13.88 0.88% 3.15%
Valtorta 267 1.50% 1.37% 1.399 2.09 0.00% 3.57%

Towns between roughly the 98th and 99th percentiles in the distribution of overall predicted excess
mortality (towns 599 to 604 out of 612 towns)

The “Actual” excess mortality for males aged 55-64 and 65-74 also show why pooling across the towns is
valuable. Towns with low population will have substantial random variation, particularly for groups with
low mortality. Even if the overall town mortality is enough to provide reliable overall mortality estimates,
the age-specific mortality measures may not be reliable. The town of Valbondione provides an example. The
town has a population of 606 with only 57 men aged 55-64. With one death in 2019 versus none in 2020 the
town has a large negative excess mortality, when in fact the variation in number of deaths is likely due to

random chance given the small size of the relevant population.

2 Background and Summary Statistics

There are 612 towns (Comunes) having data provided by ISTAT in the four provinces of Milano, Bergamo,
Brescia, and Lodi. Table 4 shows summary statistics. The median town population is 4,108. Median

observed mortality for 2020 was 0.58 percent, with the median excess mortality 0.25 percent.b

There is substantial variation in 2020 mortality across towns, and substantially more than in 2019. The
interquartile range is 0.39 percentage points, versus 0.19 percentage points in 2019. This variation in observed

mortality, which carries over to the excess mortality, is presumably due to the variation across towns in overall

5The predicted overall morality from the random effects estimation shown in Table 1 is lower than for these towns at the
99th percentile. This effect, shrinkage of the random effects distribution, is a characteristic of mixed models — see Clark [2019].

60bserved excess mortality is calculated as the difference between the 2020 mortality and 2019 mortality on a town-by-town
basis, so the median of the excess mortality may not equal the difference in the medians of 2020 and 2019. The Predicted excess
mortality is calculated from the Fixed Effects estimator as 2020 predicted mortality versus the pre-2020 mortality estimated
using 2017, 2018, 2019.
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infection rates. This variation, and particularly the upper tail of the distribution of excess mortality across

towns, is what we can exploit to calculate lower bounds for IFR.

Table 4: Summary Statistics for 612 Towns in Northern Italy

Population ~ Obs Mortality = Excess Overall —Excess M15-54
2019 2020 Obs Pred Obs Pred

25th percentile 1,758 0.21% 0.39% 0.10% 0.11% 0.00% 0.00%
Median 4,108 0.29% 0.58% 0.29% 0.28% 0.00% 0.01%
75th percentile 8,146 0.39% 0.78% 047% 048% 0.03% 0.03%
99th percentile 50,281 0.83% 1.95% 1.73% 1.48% 0.33% 0.07%
Interquartile range 0.17% 0.39% 037% 0.37% 0.03% 0.03%
99-to-median 0.54% 1.37% 1.44% 1.20% 0.33% 0.06%

Using the raw mortality for estimating IFR bounds by specific age and sex groupingsx presents problems,
however. Some towns have low population and for groups with low underlying mortality rates, purely random
variation will sometimes produce a small number of excess deaths. In towns with small populations such
excess deaths translate into unusually high mortality rates, and these high rates will bias upwards the upper
tail of the across-town distribution. Table 4 shows the problem. For the median town Males 15-54 have low
overall mortality and zero excess mortality. In contrast, the upper tail (the 99th percentile) shows a high
observed excess mortality of 0.33 percent. This is not a reliable estimate. The Poisson mixed effects model

provides more reliable estimates.

Figures 1 and 2 shows the location of the towns. Figure 1 is a simple quantile map, showing towns by their
predicted 2020 excess mortality. Figure 2 clusters towns by the excess mortality and contiguity (Euclidean
distance). The maps indicate that mortality was high around Bergamo and particularly in the valleys

north-east of Bergamo. Milan and surroundings appear to have been more lightly infected.

Figure 1: Quantile Map for Predicted Excess Mortality by Town in the Italian provinces of Milano, Bergamo,
Brescia, and Lodi
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Figure 2: Clustered KMeans Map for Predicted Excess Mortality by Town in the Italian provinces of Milano,
Bergamo, Brescia, and Lodi
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Predicted excess mortality rate (from fixed effect estimation) clustered with GeoDa using KMeans
clustering with 5 clusters, geometric centroids weighted at 0.33. The cluster center excess mortality
(after standardizing) is: 1: 0.0038; 2: 0.0008, 3: 0.0008; 4: 0.0070; 5: 0.0126

2.1 Data from ISTAT on Deaths in Italian Towns

ISTAT (Istituto Nazionale de Statistica, the Italian statistical agency) publish data on deaths by regions
due to the coronavirus under https://www.istat.it /it /archivio/240401 — a cover page titled Decessi e Cause
di Morte: Cosa Produce L’ISTAT (Deaths and Causes of Death: What ISTAT Produces). Under Dataset
analitico con i decessi giornalieri in ogni singolo comune di residenza (Analytical dataset with daily deaths
in each single municipality of residence (https://www.istat.it/it/files//2020,/03/Dataset-decessi-comunali-
giornalieri-e-tracciato-record.zip)) they report mortality “by gender and five-year age classes (for the first 4
months of the years from 2015 to 2019 for all 7904 municipalities in Italy, for the first three months of 2020
for 6,866 Municipalities and for the period from 1 January to 15 April 2020 for the 4,433 Municipalities
verified in ANPR).” T aggregate this to

e Deaths from 1 January to 15 April for the years 2017, 2018, 2019, 20207
e Deaths by five age groups: 0-14 years, 15-54, 55-64, 65-74, 75+
e Deaths for Male, Female, Total

e Select the provinces of Milano, Bergamo, Brescia, and Lodi which were particularly badly hit by the

coronavirus, giving 612 towns

"The ISTAT data extract includes deaths through 30 April for the years before 2020, so observations for days after 15 April
are excluded.
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At http://demo.istat.it /popyyyy/indexcoeff.html ISTAT reports population by town.

In the region of Lombardy the four provinces of Milano, Bergamo, Brescia, and Lodi were particularly badly

hit by the coronavirus. There are 612 towns with mortality data reported.

3 Poisson Count Mixed Effects Model

I use a mixed fixed and random effects Poisson count model (a form of general linear mixed model — see
Raudenbush and Bryk [2002] Chapter 10 or Stroup [2013]). Data are grouped by:

e i — 612 towns

e j — ten demographic groups (Male 0-14, Male 15-54, Male 55-64, Male 65-74, Male 75+, Female 0-14,

)
o ¢ — year (2017, 2018, 2019, 2020)

We have observations on:

e Y;: — deaths for each town, demographic group, and year for January 1 through April 15th for each
of the years 2017-2020

e POP;;; — population for each town, demographic group, for the years 2017-2019 (the 2019 population
is used for 2020)

e C;jt — COVID treatment (indicator variable for pre-2020 vs 2020)

This is a mixed effects model, with grouping by town (4) and demographic group (j), with the data being
“treatment” of COVID versus pre-2020:

log(E(Yijt | C)) = Boi + Boj + B1iCiji + B15Cijt + log(POP;;t)
where the intercepts and slopes are specified as

Boi = apo + ap; Town pre-2020 effect (intercept)
B1i = a1g + a1; Town 2020 effect (slope)
Boj = Yoo +Y0; Demographic pre-2020 effect (intercept)

B1j = 710 +71; Demographic 2020 effect (slope)

I am going to treat all the demographic factors as fixed and (potentially) allow the town effects to be random.
This seems reasonable because there are a large number of towns, each with a relatively small number of
observations (eight demographic groups pre- and post-2020) but a small number of demographic groups each
with a large number of observations (307 towns for each of pre- and post-2020). I can of course also examine

this by treating all factors as fixed.) In this case the combined model is

log(E(Y3j¢ | C)) = aoo + Y00 + Y05 + @10Cijt + 710Cijt + 71;Cijt + i + a1,Csj¢ +1og(POP;j5:) (1)

fixed-effects random-effects exposure
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Error Structure

log(Yiji | C)) = Boi + Boj + 1:Cijt + B1;Ciji + 1og(POP;j1) + €41

€ijt =M +& + G

Count, IFR, Infection Rate
By definition the number of deaths is:
count = Pop - IFR - Infection
For now I am going to think about mortality rather than IFR and Infection separately:
M = IFR- Infection

count = Pop- M

In Equation 1 the terms ago + Yoo + Yo; represent the pre-2020 age-specific mortality for the median town.
The terms oo + 10 + 715 represent the age-specific excess mortality for the median town. The terms ag;
represent the random variation in pre-2020 town-specific mortality, and «;; the 2020 town-specific excess

mortality.

3.1 Fixed Effect versus Random Effect Estimators
The demographic effects are treated as fixed effects to be estimated:

e o + Yoo + Yo; — 8 parameters (demographic groups) pre-COVID (pre-2020)

® a9+ 710+ 71, — 8 parameters (demographic groups) for COVID mortality (2020)

The town effects (ap; and «y;) can be treated as either fixed or random effects. There are 612 towns in the
most-affected regions (Milano, Bergamo, Brescia, Lodi). The gives either 1,116x fixed effects (612 for for
pre-2020 and 612 for 2020) or two random effects (one for pre-2020 and one for 2020).

The pre-2020 effects measures inherent base-case mortality differences across towns. (These are not due to
different age and sex distributions since population and mortality are measured by the eight demographic
categories listed above.) These pre-2020 effects are estimated using mortality from 2017, 2018, 2019. The
2020 effects provide for differences across towns in excess of their pre-2020 mortality. These mortality
differences presumably result from different infection rates across towns, and possibly other factors such as

the care and treatment provided locally.

Fixed effects estimators are appropriate for estimating specific town mortality, controlling for both pre-
COVID mortality levels and noise in the 2020 mortality. Towns with low population will have low mortality
counts and substantial variability in the counts. Across a large sample of towns some towns will produce
large rates simply due to random variation. Randomly high counts for small towns will translate into high

rates, potentially biasing any observations using raw rates.
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Predicted mortality for town-specific rates using the fixed effects estimates will be more reliable than raw
observations, particularly by demographic group. I am pooling age-specific counts across all towns to estimate
age-specific rates, and pooling town-specific counts across age groups to estimate each town fixed effect.
Standard errors for estimated fixed effects provide information on the confidence we should assign to town-

specific estimates.

Random effects will be more appropriate for estimating the overall effect of COVID-19. The estimated
pre-2020 age-specific mortality effects (ap;) provide estimates for the "average" town pre-COVID. The 2020
effects (ay;) estimate excess mortality for the "average" 2020 town - average in pre-2020 mortality and in

2020 infection rate.

4 Details on Estimation

Table 5 shows the coeflicients for estimating Equation 1 as a mixed effect Poisson count model, with the
town effects treated as random and the demographic effects as fixed. Using these estimates I can calculate
predicted counts and thus predicted rates for the eight demographic groups both pre-COVID and for 2020.
If we set the random effects at zero we will estimate excess mortality for the middle of the random effects
distribution —i.e. the median town in terms of both pre-COVID and 2020 mortality. These results are shown
in Table 8 below.?

Table 5: Estimated Random Effects Estimators (Town RE and Demographic FE)
Estimate  Std. Error z value Pr(>|z|)

Intercept -9.796 0.1249 -78.42 0.0%
Male 0-14 0.485 0.1570 3.09 0.2%
Female 15-54 1.253 0.1295 9.67 0.0%
Male 15-54 1.715 0.1277 13.44 0.0%
Female 55-64 2.957 0.1281 23.09 0.0%
Male 55-64 3.500 0.1268 27.60 0.0%
Female 65-74 3.891 0.1263 30.81 0.0%
Male 65-74 4.477 0.1257 35.61 0.0% Intercept 2020
Female 75+ 5.920 0.1249 47.39 0.0% RE Std Dev  0.115 0.335
Male 75+ 6.040 0.1250 48.32 0.0% No Obs 24,480
2020 Female 0-14 0.047 0.2559 0.19 85.3% No Towns 612
2020 Male 0-14 -0.023 0.2009 -0.11 90.9% Population 5,753,296
2020 Female 15-54 0.231 0.0683 3.39 0.1%
2020 Male 15-54 0.256 0.0537 477 0.0%
2020 Female 55-64 0.287 0.0562 5.11 0.0%
2020 Male 55-64 0.598 0.0409 14.62 0.0%
2020 Female 65-74 0.534 0.0373 14.33 0.0%
2020 Male 65-74 0.829 0.0289 28.68 0.0%
2020 Female 75+ 0.578 0.0195 29.63 0.0%
2020 Male 75+ 0.736 0.0201 36.56 0.0%
R using glmer from the Imej package, with optimizer = "bobyqa". Note how the fixed effects

are parametrized: overall 2020 effect (the difference between pre-2020 and 2020 “intercept”) is ex-
cluded, so that all the age-specific 2020 effects are measured relative to pre-2020. The reported
standard errors are appropriate for testing for individual age-specific effects are different from
zero. If the standard R parametrization were used the overall 2020 effect would be included and
the FO-14 excluded, so testing one of the age-specific 2020 effects would require testing the sum
(overall2020ef fect + age-speficif ef fect), the standard error for which would involve the correlation
between the coefficients.

8Using the observed population for all provinces combined (weights for 2020 shown in Table 9, total 5,861,057) produces
predicted counts for all provinces combined. The difference in counts provides an estimate of the excess mortality by demographic
groups. Summing counts across male and female gives the population-weighted averages, and dividing by the population gives
the population-weighted excess mortality
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We want the predicted excess mortality for the upper tail of the distribution — for towns that had high excess
mortality and were thus, presumably, heavily infected. The estimated distribution of the 2020 random effect
(1) measures this right tail (more infected towns) and will provide a lower bound for age-specific IFR. We
use the 99th percentile of the «ay; distribution. If the estimated 2020 demographic fixed effect for a group j is
&10+%10+91; and the variance of the ay; distribution is G4own,2020 then the 99th percentile (2.50) of the 2020
mortality will be larger than the pre-2020 mortality by the factor exp (&10 + Y10 + Y15 + 2.5 - Gtown,2020). The
excess mortality for group 7 will be

exp (&oo + Joo + Yo5) - [exp (610 + F10 + F15 + 2.5 - Grown,2020) — 1] - (2)

The coeflicients in Table 5 show the age and sex profile of mortality in ratio terms (while the excess mortality
in Table 1 show it as differences in rates — Equation 2). Mortality for demographic group j for the 99th-
percentile town increased by the factor exp (&1 + §10 + Y15 + 2.5 - Gtown,2020). These increases, as a ratio to

the pre-2020 mortality, are shown in Table 6; they are large and larger for older men.

Table 6: Fractional Increase in Mortality as a Ratio to pre-2020 Mortality
Age Male Female

0-14yr 2.26 242
15-54yr  2.99  2.92
55-64yr 4.20  3.08
65-74yr  5.30  3.95
75+ 4.83 4.12

Male mortality is higher than female pre-COVID at every age, with the ratio given by exp (yor; — Yoa;)-

The ratio exp (y1r; — y1a;) measures how much the ratio increases in 2020.

Table 7 shows summary statistics and test for the random and fixed effects models. I estimate three nested
models for each the random and fixed effect specification. The first includes no estimates for 2020 effects —
setting a9 + y10 + 71; and a1, to zero. The second includes town-specific effects, estimating o;;. For both
random and fixed effects models a likelihood ratio test shows that town-specific 2020 effects are important.
The third model includes 2020 age-specific excess mortality effects — a0 + v10 + 71;. Again, a likelihood
ratio test shows that these effects are highly significant.

The residual deviance in Table 7 provides a test for whether the Poisson regression adequately accounts for
the observed variation — whether there is “overdispersion” relative to the Poisson assumption. The residual
deviance is asymptotically yx2-distributed: a large value implies that the model does not account for the data
very well. For both the random and the fixed effects model, the residual deviance is small relative to a x>

random variable — the probability of observing a value as large or larger than reported is 1.0.

For reference, Table 8 shows the estimated excess mortality for the median town, towns with presumably

modest overall infection rate.

Calculating standard errors for the excess mortality is difficult. For a specific age group this would be
the 99th percentile 2020 rate less the base-case pre-2020 rate shown in Equation 2. Standard errors for
that expression is not easy because it is a non-linear expression of the coefficients. One might try doing so
by the delta-method but that is complicated by two factors: first the standard error for &;pun 2020 is not

easy to obtain, and second we want to aggregate age- and sex-specific rates to overall rates using regional
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Table 7: Summary Statistics for Random and Fixed Effects Estimation

Random Effects

Fixed Effects

LL Ratio test AIC LL Ratio test AIC
value df prob value df prob
No 2020 effects 59,702.9 59,527.8
Town 2020 effects 6,067.3 2 0.000 53,639.7 7,777.3 612 0.000 52,974.6
Town + demographic 2020 effects  992.9 10 0.000 52,666.7 323.4 9 0.000 52,669.2
Residual Deviance 18,668.6 24,457  1.000 18,033.9 23,238 1.000

Table 8: Estimated Excess Mortality, Middle of the Town Infection Distribution

Age Male 95% CI Female 95% CI Total  95% CI
0-14yr 0.00% o0-0 0.00% 0-0 0.00% 0-0
15-54yr  0.01% o0.01-0.00 0.01%  0-0.01 0.01%  0-0.01
55-64yr  0.15% 0.13-0.17  0.04%  0.02-0.05 0.09% 0.08-0.1
65-74yr  0.63% 0.58-0.69 0.19% 0.17-0.22  0.40%  0.37-0.43
75+ 2.54% 2.4-2.71 1.62% 1.51-1.72  1.97%  1.87-2.09
TOTAL 0.32% 0.3-0.3¢  0.26%  0.24-0.28 0.29%  0.28-0.31

Excess mortality rates calculated by eight age-sex categories then weighted to totals using age-specific
population in the regions of Milano, Bergamo, Brescia, and Lodi. Non-parametric bootstrap confidence
intervals.

population weights, leading to weighted averages of terms like Equation 2. The most feasible alternative is
bootstrapping. Non-parametric bootstrapping where towns are sampled from the original distribution and
Equation 1 re-estimated for each sample. Tables 1 and 8 show the results for bootstrapping with 400 samples

(sampling with replacement from the town distribution).

Table 9: Percent of Population by Age and Sex, All Town 2020

Age Male  Female Total
0-14yr  71%  6.7% 13.8%
15-54yr  25.9% 25.0%  50.9%
55-64yr  6.4%  6.7% 13.1%
65-7dyr  5.0%  5.6% 10.6%
75+ 4.4%  71% 11.6%
TOTAL 48.8% 51.2%  100.0%

Figure 3 shows a histogram of estimated 2020 excess mortality across the 612 towns. This shows how towns

varied in their 2020 excess mortality, presumably resulting from different coronavirus infection rates.
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