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Abstract 28 

Objectives: To develop a regional model of COVID-19 dynamics, for use in estimating 29 

the number of infections, deaths and required acute and intensive care (IC) beds using 30 

the South West of England (SW) as an example case. 31 

Design: Open-source age-structured variant of a susceptible-exposed-infectious-32 

recovered (SEIR) deterministic compartmental mathematical model. Latin hypercube 33 

sampling and maximum likelihood estimation were used to calibrate to cumulative 34 

cases and cumulative deaths. 35 

Setting: SW at a time considered early in the pandemic, where National Health 36 

Service (NHS) authorities required evidence to guide localised planning and support 37 

decision-making.  38 

Participants: Publicly-available data on COVID-19 patients. 39 

Primary and secondary outcome measures: The expected numbers of infected 40 

cases, deaths due to COVID-19 infection, patient occupancy of acute and IC beds and 41 

the reproduction (“R”) number over time. 42 

Results: SW model projections indicate that, as of the 11th May 2020 (when 43 

‘lockdown’ measures were eased), 5,793 (95% credible interval, CrI, 2,003 – 12,051) 44 

individuals were still infectious (0.10% of the total SW England population, 95%CrI 45 

0.04 – 0.22%), and a total of 189,048 (95%CrI 141,580 – 277,955) had been infected 46 

with the virus (either asymptomatically or symptomatically), but recovered, which is 47 

3.4% (95%CrI 2.5 – 5.0%) of the SW population. The total number of patients in acute 48 

and IC beds in the SW on the 11th May 2020 was predicted to be 701 (95%CrI 169 – 49 

1,543) and 110 (95%CrI 8 – 464) respectively. The R value in SW England was 50 

predicted to be 2.6 (95%CrI 2.0 – 3.2) prior to any interventions, with social distancing 51 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.10.20084715doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.10.20084715
http://creativecommons.org/licenses/by-nd/4.0/


 

reducing this to 2.3 (95%CrI 1.8 – 2.9) and lockdown/ school closures further reducing 52 

the R value to 0.6 (95CrI% 0.5 – 0.7). 53 

Conclusions: The developed model has proved a valuable asset for local and 54 

regional healthcare services. The model will be used further in the SW as the 55 

pandemic evolves, and – as open source software – is portable to healthcare systems 56 

in other geographies. 57 

 58 

Future work/ applications: 59 

i. Open-source modelling tool available for wider use and re-use. 60 

ii. Customisable to a number of granularities such as at the local, regional and 61 

national level. 62 

iii. Supports a more holistic understanding of intervention efficacy through 63 

estimating unobservable quantities, e.g. asymptomatic population. 64 

iv. While not presented here, future use of the model could evaluate the effect of 65 

various interventions on transmission of COVID-19. 66 

v. Further developments could consider the impact of bedded capacity in terms 67 

of resulting excess deaths. 68 

 69 

  70 
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Introduction 71 

Since the initial outbreak in 2019 in Hubei Province, China, COVID-19, the 72 

disease caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-73 

2), has gone on to cause a pandemic [1]. As of 11th May 2020, the Centre for Systems 74 

Science and Engineering at Johns Hopkins University reports over 4,000,000 75 

confirmed cases and 250,000 deaths globally [2]. National responses to the outbreak 76 

have varied; from severe restrictions on human mobility alongside widespread testing 77 

and contact tracing in China [3] to the comparatively relaxed response in Sweden, 78 

where lockdown measures have not been enacted [4].  In the UK, advice to socially 79 

distance if displaying symptoms was given on the 15th March, while school closures 80 

and ‘lockdown’ measures were implemented from 23rd March onwards [5]. 81 

Mathematical modelling has been used to predict the course of the COVID-19 82 

pandemic and to evaluate the effectiveness of proposed and enacted interventions [6–83 

11]. These models have been predominantly aimed at the national level and have 84 

largely been based on epidemiological and biological data sourced from the initial 85 

epidemic in Wuhan, China [12] and the first large outbreak in Lombardy, Italy [13]. 86 

In the UK, the epidemic escalated most rapidly in London [14] and the majority 87 

of national modelling is seemingly driven by the trends in London, due to its large case 88 

numbers and large population. One of the key issues facing NHS authorities is 89 

planning for more localised capacity needs and estimating the timings of surges in 90 

demand at a regional or healthcare system level. This is especially challenging given 91 

the rapidly evolving epidemiological and biological data; the changes in COVID-19 92 

testing availability (e.g. previously limited and changing eligibility requirements); the 93 

uncertainty in the effectiveness of interventions in different contexts; significant and 94 
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uncertain time-lags between initial infection and hospitalisation or death; and different 95 

regions being at different points in the epidemic curve [9]. South West England (SW) 96 

is the region with the lowest number of total cases in England (as of 11th May 2020), 97 

lagging behind the national data driven by the earlier epidemic in London [9,14]. 98 

COVID-19 results in a significant requirement for hospitalisation, and high 99 

mortality amongst patients requiring admission to critical care (particularly amongst 100 

those requiring ventilation) [15,16]. In the SW, the population is on average older than 101 

in London [17] and is older than the UK as a whole (Table S1). Older age puts 102 

individuals at elevated risk of requiring hospital care [18–20]. Consequently, we might 103 

expect higher mortality and greater demand for beds in the SW than estimations output 104 

from national models that may lack such granularity or risk sensitivity. 105 

However, the SW’s first case occurred around 2 weeks later than the first UK 106 

case [14]; perhaps implying that the local SW epidemic may be more effectively 107 

controlled due to a lower number of baseline cases (than the national average) at the 108 

time national interventions were implemented, as well as reduced transmission due to 109 

rurality. This sub-national analysis can support in mapping the local epidemic, planning 110 

local hospital capacity outside of the main urban centres, and ensuring effective 111 

mobilisation of additional support and resources if required. Should demand be lower 112 

than expected, reliable forecasts could facilitate more effective use of available 113 

resources through re-introducing elective treatments (that had initially been 114 

postponed) and responding to other, non-COVID-19 sources of emergency demand. 115 

In this study, taking into account the timeline of UK-wide non-pharmaceutical 116 

interventions (social distancing, school closures/lockdown) we illustrate use of our 117 

model in projecting estimates for the expected distributions of cases, deaths, 118 
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asymptomatic and symptomatic infections, and demand for acute and intensive care 119 

(IC) beds. We present the model trajectories for SW England using publicly-available 120 

data. 121 

 122 

Methods  123 

We developed a deterministic, ordinary differential equation model of the 124 

transmission dynamics of COVID-19, including age-structured contact patterns, age 125 

specific disease progression and demand for hospitalisation, both to acute and IC. We 126 

then parameterised the model using available literature and calibrated the model to 127 

data from the SW. The model is readily adapted to fit data at sub-regional (e.g. Clinical 128 

Commissioning Group), regional or national level. Key assumptions of the model are 129 

summarised in the supplementary information. 130 

The model was developed in R and all code and links to source data are freely 131 

available (github.com/rdbooton/bricovmod). The model is coded using package 132 

deSolve, with contact matrices from package socialmixr, and sampling from package 133 

lhs. 134 

Model structure 135 

The stages of COVID-19 included within this model are 𝑺-susceptible, 𝑬-exposed (not 136 

currently infectious, but have been exposed to the virus), 𝑨- asymptomatic infection 137 

(will never develop symptoms), 𝑰-symptomatic infection (consisting of pre-138 

symptomatic or mild to moderate symptoms), 𝑯-severe symptoms requiring 139 

hospitalisation but not IC,  𝑪-very severe symptoms requiring IC, 𝑹-recovered and 𝑫-140 

death. The total population is 𝑵 = 𝑺 + 𝑬 + 𝑨 + 𝑰 + 𝑯 + 𝑪 + 𝑹 + 𝑫 (Figure 1).  141 
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Each compartment 𝑿𝒈 is stratified by age-group (0-4, 5-17, 18-29, 30-39, 40-142 

49, 50-59, 60-69, ≥70) where 𝑿 denotes the stage of COVID-19 (S,E,I,A,H,C,R,D) and 143 

𝒈 denotes the age group class of individuals. Age groups were chosen to capture key 144 

social contact patterns (primary, secondary and tertiary education and employment) 145 

and variability in hospitalisation rates and outcomes from COVID-19 especially in older 146 

age groups. The total in each age group is informed by recent Office for National 147 

Statistics (ONS) estimates [21]. 148 

Susceptible individuals become exposed to the virus at a rate governed by the 149 

force of infection 𝝀𝒈, and individuals are non-infectious in the exposed category. A 150 

proportion 𝜹	move from exposed to symptomatic infection and the remaining to 151 

asymptomatic infection, both at the latent rate 𝜼. Individuals leave both the 152 

asymptomatic and symptomatic compartments at rate 𝝁. All asymptomatic individuals 153 

eventually recover and there are no further stages of disease: the rate of leaving the 154 

asymptomatic compartment is therefore equivalent to the infectious period, 𝝁.  A 155 

proportion of symptomatic individuals 𝜸𝒈 go on to develop severe symptoms which 156 

require hospitalisation, but not intensive care. Once requiring hospitalisation, we 157 

assume individuals are no longer infectious to the general population due to self-158 

isolation guidelines restricting further mixing with anyone aside from household 159 

members (if unable to be admitted to hospital) or frontline NHS staff (if admitted to 160 

hospital). Individuals move out of the acute hospitalised compartment at rate 𝝆,	either 161 

through death, being moved to intensive care at rate 𝝐, or through recovery (all 162 

remaining individuals). A proportion 𝝎𝒈 of patients requiring IC will die at rate 𝝍, while 163 

the rest will recover. 164 
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The model (schematic in Figure 1) is therefore described by the following differential 165 

equations: 166 

Susceptible 𝑺𝒈 𝑑𝑆"
𝑑𝑡 = 	−𝜆"𝑆"	

(1𝑎) 

Exposed 𝑬𝒈 𝑑𝐸"
𝑑𝑡 = 	𝜆"𝑆" − 𝜂𝐸"	 (1𝑏) 

Asymptomatic 𝑨𝒈 #$!
#%

= 𝜂(1 − 𝛿)𝐸" − 𝜇𝐴"	 (1𝑐)  

Infectious 𝑰𝒈 #&!
#%
= 𝜂𝛿𝐸" − 𝜇𝐼"	 (1𝑑)  

Hospitalised in acute 

bed 𝑯𝒈 

𝑑𝐻"
𝑑𝑡 = 𝜇𝛾"𝐼" − 𝜌𝐻"	 (1𝑒) 

Hospitalised in IC 𝑪𝒈 𝑑𝐶"
𝑑𝑡 = 𝜌𝜖𝐻" − 𝜓𝐶"	 (1𝑓) 

Recovered 𝑹𝒈 

 

#'!
#%

= 𝜇𝐴" + 𝜇(1 − 𝛾")𝐼" +

(1 − 𝜖)(1 − 𝜅)𝜌𝐻" + S1 − 𝜔"U𝜓𝐶" (1𝑔)  

  

Death 𝑫𝒈 𝑑𝐷"
𝑑𝑡 = 	 (1 − 𝜖)𝜅𝜌𝐻" + 𝜔"𝜓𝐶"	 (1ℎ) 
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167 

Figure 1: Compartmental flow model diagram depicting stages of disease and transitions between 168 

states. Asymptomatic infection represents the number of people never showing symptoms, while 169 

symptomatic infection includes all those who show pre-symptomatic / mild symptoms to those who show 170 

more severe symptoms (pre-hospitalisation). Those who are hospitalised first occupy a non-IC bed 171 

(acute bed) after which they can either move into IC, recover or die. Those in IC can either recover or 172 

die at an increased rate compared to those in acute beds. This model does not capture those deaths 173 

which occur outside of hospital as a result of COVID-19.   174 
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Contact patterns under national interventions 175 

We assume the population is stratified into pre-defined age groups with age-176 

specific mixing pattern represented by a contact matrix 𝑴 with an element of 𝒎𝒊𝒋 177 

representing the contacts between someone of age group 𝒊 ∈ 𝑮 with someone in age 178 

group 𝒋 ∈ 𝑮. The baseline contact matrix (with no interventions in place) is taken from 179 

the POLYMOD survey conducted in the United Kingdom [22]. The contact pattern may 180 

also be influenced by a range of interventions (social distancing was encouraged on 181 

15th March 2020, schools were closed and lockdown occurred on 23rd March 2020). 182 

We implement these interventions by assuming that the percentage of 0-18-year olds 183 

attending school after the 23rd March 2020 was 5% (reducing all contacts between 184 

school age individuals by 95%) and that social distancing reduced all contacts by 0-185 

50%. We take the element-wise minimum for each age group’s contact with another 186 

age group from all active interventions (distancing, schools/lockdown). A study on 187 

post-lockdown contact patterns (CoMix [11]) is used to inform contacts after lockdown 188 

(first survey 24th March 2020, with an average of 73% reduction in daily contacts 189 

observed per person compared to POLYMOD).  190 

Moving between contact matrices of multiple interventions was implemented by 191 

assuming a phased, linear decrease. After lockdown we vary a parameter (endphase) 192 

to capture the time taken to fully adjust (across the population, on average) to the new 193 

measures (allowed to vary from 1 to 31 days). This assumption represents the time 194 

taken for individuals to fully adapt to new measures (and household transmission), 195 

and is in line with data on the delay in the control of COVID-19 (reductions in hospital 196 

admissions and deaths after lockdown) [23]. The parameter endphase can be 197 
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interpreted as accounting for the time taken to adjust to all interventions (and not just 198 

lockdown). 199 

 200 

The force of infection 201 

The age-specific force of infection 𝝀𝒈, depends on the proportion of the population who 202 

are infectious (asymptomatic 𝑨𝒈 and symptomatic 𝑰𝒈	only) and probability of 203 

transmission 𝜷: 204 

𝜆" = 	𝛽a𝑚*"
*∈,

c
𝐴*
𝑁"

+
𝐼*
𝑁"
e (2) 205 

The basic reproduction number R0 206 

The basic reproduction number 𝑅- of COVID-19 is estimated to be 2.79 ± 1.16 [24]. 207 

We include this estimate within our model by calculating the maximum eigenvalue of 208 

the contact matrix 𝑴, and allowing the transmission parameter to vary such that 𝑅- is 209 

equal to the maximum eigenvalue of 𝑴 multiplied by the infectious period 𝜇 and the 210 

transmission parameter 𝛽. This gives the value for the initial basic reproduction 211 

number 𝑅-, which changes as the contact patterns change as lockdown and other 212 

interventions are implemented. 213 

 214 

Parameter estimates and data sources 215 

Model parameters are detailed in Table 1. We used available published literature to 216 

inform parameter estimates. We used the following publicly-available metrics for 217 

model fitting: regional cumulative cases in SW England (tested and confirmed case in 218 

hospital), and deaths (daily/cumulative counts) from the Public Health England 219 

COVID-19 dashboard [14], and ONS weekly provisional data on COVID-19 related 220 
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deaths [25]. The case data is finalised prior to the previous five days, so we include all 221 

data until 14th May 2020, based on data reported until 18th May 2020. The mortality 222 

data from ONS does not explicitly state the number of COVID-19 related deaths 223 

occurring in hospital, but they do report this value nationally (83.9% of COVID-19 224 

deaths in hospital, as of 17th April 2020). We assume that this percentage applies to 225 

the SW data and re-scale the mortality to 83.9% to represent an estimate of total 226 

deaths in hospital. 227 

 228 

Model calibration 229 

Using the available data (Table 1), we define ranges for all parameters in our model 230 

and sample all parameters simultaneously between these minimum and maximum 231 

values assuming uniform distributions using Latin Hypercube Sampling (statistical 232 

method for generating random parameters from multidimensional distribution), for a 233 

total of 100,000 simulations. We used maximum likelihood estimation on total 234 

cumulative cases and cumulative deaths with a Poisson negative log likelihood 235 

calculated and summed over all observed and predicted points. For		𝑖 observed cases 236 

𝑋* (from data), and 𝑖 predicted cases 𝑌* (from simulations of the model), we select the 237 

best 100 parameter sets which maximise the log-likelihood ∑		𝑋* log(𝑌*) − 𝑌* 	from the 238 

total sample of 100,000 simulations. The best 100 samples were taken as part of a 239 

bias-variance trade-off (Supplementary Information, Sensitivity analysis), and the 240 

qualitative inferences would not change with other choices of sample size. For each 241 

data point (taken from cases and deaths) we calculate this log-likelihood, and weight 242 

each according to the square-root of the mean of the respective case or death data. 243 
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This ensures that we are considering case and death data equally within our likelihood 244 

calculations. 245 

Symbol Description Uniform prior (min and max) or point estimate 

𝟏/𝜼 Duration of the non-infectious 
exposure period 5.1 days [26] 

𝜹 Percentage of infections which 
become symptomatic 82.1% [27]; Vary between 73.15 – 91.05% 

𝟏/𝝁 
Duration of symptoms whilst not 

hospitalised (independent of 
outcome) 

Vary between 2 – 14 days 

𝟏/𝝆 Duration of stay in acute bed 
(independent of outcome) Vary between 2 – 14 days 

𝜸𝒈 
Percentage of symptomatic 

cases which will require 
hospitalisation 

0-4 = 0.00%, 5-17 = 0.0408%, 18-29 = 1.04%, 
30-39 = 2.04-7.00%, 40-49 = 2.53-8.68%, 
50-59 = 4.86-16.7%, 60-69 = 7.01-24.0%, 

70+ = 9.87-37.6% [16] 

𝟏/𝝍 Duration of stay in IC bed 
(independent of outcome) 3 – 11 days [28] 

𝝐 
Percentage of those requiring 
hospitalisation who will require 

IC 
Vary between 0 – 30% 

𝝎𝒈 Percentage of those requiring IC 
who will die 

0-4 = 0.00%, 5-17 = 0.00%, 18-29 = 18.1%, 
30-39 = 18.1%, 40-49 = 24.7%, 
50-59 = 39.3%, 60-69 = 53.9%, 

70+ = 65.3% [28] 

𝜿 
Percentage of those requiring 

acute beds (but not IC) who will 
die 

Vary between 5 – 35% 

school 
Percentage of 0-18-year olds 

attending school after 
23/03/2020 

Assume 5% 

distancing 
Percentage reduction in contact 

rates due to social distancing 
after 15/03/2020 

Vary between 0 – 50% 

lockdown 
Percentage reduction in contact 

rates due to lockdown after 
23/03/2020 

Retail/recreation: Bristol 86% Bath 90% Plymouth 
85% Gloucs 84%, Somerset 82%, Devon 85%, 

Dorset 84% [29] 
Transit stations: Bristol 78% Bath 71% Plymouth 
65% Gloucs 69%, Somerset 67%, Devon 66%, 

Dorset 63% [29] 
Vary between 63 - 90% 

𝑹𝟎 
Initial reproductive number of 

COVID-19 1.63 – 3.95 [24] 

Table 1: Parameter estimates used in the model and their sources. The distributions of unknown 246 

parameters are shown in Figure S1 for the best 100 fits. 247 
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Model outputs  248 

For each of the 100 best parameter sets we run the model until 11th May 2020 and 249 

output the cumulative cases and deaths in the SW. We output the predicted proportion 250 

of the population who are infectious and who have ever been infected over time. 251 

Finally, we estimate the daily and cumulative patterns of admission to and discharge 252 

from hospital (intensive care and acute) and cumulative mortality from COVID-19.   253 

 254 

Results and outputs 255 

From 100,000 simulated parameter sets, we selected the best 100 baseline model fits 256 

on the basis of agreement to the calibration data on daily confirmed COVID-19 cases 257 

and weekly mortality due to COVID-19 in SW England. The distribution of the best 258 

fitting values are shown in Figure S1a (and the priors in Figure S1b). All results are 259 

shown with median and 95% credible intervals (95%CrI). 260 

 261 

On 11th May 2020, the reported cumulative number of individuals with (lab confirmed) 262 

COVID-19 was 7,116 in SW England [14], and the most recent report on total 263 

cumulative deaths showed that 2,306 had died from COVID-19 (as of 8th May 2020) 264 

[25].  265 

 266 

Estimating the total proportion of individuals in South West England 267 

with COVID-19 268 

Figure 2 shows the projected numbers of exposed, recovered and infectious 269 

(asymptomatic and symptomatic infections) until lockdown measures were lessened 270 

on the 11th May 2020. On this date, the model predicts that a total of 5,793 (95%CrI 271 
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2,003 – 12,051) were infectious (0.10% of the total SW England population, 95%CrI 272 

0.04 – 0.22%). The model also predicts that a total of 189,048 (95%CrI 141,580 – 273 

277,955) have had the virus but recovered (either asymptomatically or 274 

symptomatically), which is 3.4% (95%CrI 2.5 – 5.0%) of the SW population (not 275 

infectious and not susceptible to reinfection).  276 

 277 

Figure 2: The predicted median size of the exposed (E), infectious (I) and recovered classes (R), along 278 

with the size of asymptomatic and symptomatic individuals on each day in SW England until 11th May 279 

2020.  Blue and red vertical lines represent the date the government introduced social distancing and 280 

school closures/lockdown, respectively.281 
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Estimating the total COVID-19 hospitalised patients in acute and 282 

intensive care beds 283 

The total number of patients in acute (non-intensive care) hospital beds across SW 284 

England was projected to be 701 (95%CrI 169 – 1,543) and the total number of 285 

patients in intensive care hospital beds was projected to be 110 (95%CrI 8 – 464) on 286 

the 11th May 2020 (Figure 3). Note that these ranges are quite large due to the 287 

uncertainty in the data and as more data becomes available these predictions will 288 

change.  289 

 290 

Figure 3: The predicted number of hospitalised patients in acute and intensive care beds in the SW 291 

until 11th May 2020. The number of daily incoming patients diagnosed with COVID-19 are shown in 292 

orange (from SW daily case data [14]), 95% credible intervals are shown in light grey, 50% in dark grey 293 

and the median value of the fits is highlighted in black. The shaded region indicates the prediction of 294 

the model from the data. Blue and red vertical lines represent the date the government introduced social 295 

distancing, and school closures/lockdown, respectively. 296 

 297 

Estimating the reproduction number under interventions 298 
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Figure 4 shows the model prediction for the reproduction (“R”) number over time until 299 

11th May 2020, when lockdown measures were relaxed. All interventions (social 300 

distancing, school closures/lockdown) had a significant impact on the reproductive 301 

number for COVID-19 in the South West of England. We predict that prior to any 302 

interventions R was 2.6 (95%CrI 2.0 – 3.2), and the introduction of social distancing 303 

reduced this number to 2.3 (95%CrI 1.8 – 2.9). At the minimum, R was 0.6 (95%CrI 304 

0.5 – 0.7) after all prior interventions were enacted and adhered to (social distancing, 305 

school closures and lockdown). 306 

 307 

Figure 4: The effect of interventions on estimates of R (y-axis) over time until the 11th May 2020.  308 
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 309 

Discussion 310 

We have developed a deterministic ordinary differential equation model of the 311 

epidemic trajectory of COVID-19 focussing on acute and IC hospital bed capacity 312 

planning to support local NHS authorities, calibrating to SW-specific data. The model 313 

is age-structured and includes time-specific implementation of current interventions 314 

(following advice and enforcement of social distancing, school closures and lockdown) 315 

to predict the potential range of COVID-19 epidemic trajectories. 316 

Using the publicly-available data on cases and deaths, combined with the early 317 

estimates of parameters from early epidemics in other settings, we predict that on the 318 

11th May 2020 a total of 5,793 (95%CrI 2,003 – 12,051) were infectious, which equates 319 

to 0.10% (95%CrI 0.04 – 0.22%) of the total SW population. In addition, we find that 320 

the model predicts a total of 189,048 (95%CrI 141,580 – 277,955) have had the virus 321 

but recovered, which is 3.4% (95%CrI 2.5 – 5.0%) of the SW population. 322 

We also estimate that the total number of patients in acute hospital beds in SW 323 

England on 11th May 2020 was 701 (95%CrI 169 – 1,543) and in IC were 110 (95%CrI 324 

8 – 464), while the R number has decreased from 2.6 (95%CrI 2.0 – 3.2) to 0.6 325 

(95%CrI 0.5 – 0.7) after all interventions were enacted and fully adhered to. 326 

The fits generally agree well with both the daily case data, and the cumulative 327 

count of deaths in the SW, although the model overestimates the case data at early 328 

stages, and underestimates later on (which can see seen in Figure S2a, and a scatter 329 

plot of expected versus observed outputs in Figure S2b). This could be because we 330 

are using formal fitting methods, or from the under-reporting of cases in the early 331 

epidemic. 332 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.10.20084715doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.10.20084715
http://creativecommons.org/licenses/by-nd/4.0/


 

The primary strength of this study is that we have developed generalisable and 333 

efficient modelling code incorporating disease transmission, interventions and hospital 334 

bed demand which can be adapted for use in other regional or national scenarios, with 335 

the model available on GitHub for open review and use 336 

(github.com/rdbooton/bricovmod). We have worked closely with the NHS and at 337 

Clinical Commissioning Group (CCG) level to ensure the model captures key clinical 338 

features of disease management in SW hospitals and provides output data in a format 339 

relevant to support local planning. We combined local clinical expertise with detailed 340 

literature searches, to ensure reasonable parameter ranges and assumptions in the 341 

presence of high levels of parameter uncertainty.  342 

The main challenge of this work is in balancing the urgent need locally for 343 

prediction tools which are up to date (i.e. not relying on the national trends to inform 344 

capacity planning), versus more exhaustive and robust methods for model 345 

comparison. The latter of which uses existing models and more time-consuming (but 346 

more robust) data fitting methods [30,31]. However, we believe that release of this 347 

paper and sharing of model code will facilitate multidisciplinary collaboration, rapid 348 

review and support future model comparison and uncertainty analyses [31]. 349 

 As with all models of new infections there are significant parameter 350 

uncertainties. Rapidly emerging literature is exploring a wide range of biological and 351 

epidemiological factors concerning COVID-19, but due to the worldwide nature of 352 

these studies, often parameter bands are wide and may be context specific. For 353 

example, early estimates of the basic reproduction number ranged from 1.6 to 3.8 in 354 

different locations [32,33], with an early estimate of 2.4 used in UK model projections 355 

[8]. In addition, the information which informs our parameter selection is rapidly 356 
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evolving as new data is made available, sometimes on a daily basis. From our initial 357 

analysis, we identified the following parameters as critical in determining the epidemic 358 

trajectory within our model – the percentage of infections which become symptomatic, 359 

the recovery time for cases which do not require hospital, the period between acute 360 

and IC occupancy, the length of stay in IC, the probability of transmission per contact 361 

and the gradual implementation of lockdown rather than immediate effect. Other 362 

parameters (such as the percentage reduction in school-age contacts from school 363 

closures) did not seem to influence the dynamic trajectory as strongly – and thus we 364 

assume point estimates for these parameters. However, for example assuming that 365 

95% of school-age contacts are reduced as a direct result of school closures is 366 

perhaps an overestimate, and future modelling work should address these 367 

uncertainties and their impacts on the epidemic trajectory of COVID-19 (but in this 368 

case, this value was somewhat arbitrary, and the assumption was used in the absence 369 

of school-age contact survey data).  More research is urgently needed to refine these 370 

parameter ranges and to validate these biological parameters experimentally. 371 

We have also assumed that there is no nosocomial transmission of infection 372 

between hospitalised cases and healthcare workers, as we do not have good data for 373 

within-hospital transmission. However frontline healthcare staff were likely to have 374 

been infected early on in the epidemic [34], which could have implications for our 375 

predicted epidemic trajectory. Our model also assumes a closed system, which may 376 

not strictly be true due to continuing essential travel. But given that up until 11th May, 377 

travel restrictions are very severe due to lockdown measures [5], any remaining inter-378 

regional travel is likely to have minimal effects on our model outputs. 379 
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Similar to most other COVID-19 models, we use a variant on a susceptible-380 

exposed-infectious-recovered (SEIR) structure [8–10,16,30,35,36]. We do not 381 

spatially structure the population as in other UK modelling [9,10], but we do include 382 

age-specific mixing based on POLYMOD data [22], and the post-lockdown CoMix 383 

study [11]. We also explicitly measure the total asymptomatic infection, and the total 384 

in each of the clinically relevant hospital classes (acute or IC), which is a strength of 385 

our approach. Future models could also take into account local bed capacity within 386 

hospitals (including Nightingale centres) and accommodate the effect of demand 387 

outstripping supply leading to excess deaths, inclusive of non-hospital-based death 388 

such as is occurring within care homes. As with all modelling, we have not taken into 389 

account all possible sources of modelling misspecification. Some of these 390 

misspecifications will tend to increase the predicted epidemic period, and others will 391 

decrease it. One factor that could significantly change our predicted epidemic period 392 

is the underlying structure within the population leading to heterogeneity in the average 393 

number of contacts under lockdown e.g. key workers have high levels of contact but 394 

others are able to minimise contacts effectively, this might lead to an underestimate of 395 

ongoing transmission, but potentially an overestimate of the effect of releasing 396 

lockdown. We also know that there are important socio-economic considerations in 397 

determining people’s ability to stay at home and particularly to work from home [37].  398 

Early UK modelling predicted the infection peak to be reached roughly 3 weeks 399 

from the initiation of severe lockdown measures, as taken by the UK government in 400 

mid-March [8]. A more recent study factoring spatial distribution of the population 401 

indicated the peak to follow in early April due to 𝑅- reducing to below 1 in many settings 402 

in weeks following lockdown [9]. Other modelling indicated that deaths in the UK would 403 
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peak in mid-late April; furthermore, that the UK would not have enough acute and IC 404 

beds to meet demand [38]. While modelling from the European Centre for Disease 405 

Prevention and Control estimated peak cases to occur in most Euopean countries in 406 

mid-April [20], these estimations were largely at a national level. Due to the expected 407 

lag of other regions behind London, these estimated peaks are likely to be shifted 408 

further into the future for the separate regions of the UK, and as shown by our model 409 

occurred in early- to mid-April. This is also likely to be true for future peaks which may 410 

result from relaxing lockdown. 411 

Outside of the UK, similar modelling from France [35] (which went into lockdown 412 

at a similar time the UK on 17th March), predicted the peak in daily IC admissions at 413 

the end of March. Interestingly however, when dissected by region, the peak in IC bed 414 

demand varied by roughly 2 weeks. Swiss modelling similarly predicted a peak in 415 

hospitalisation and numbers of patients needing IC beds in early April, after lockdown 416 

implementation commenced on 17th March [36]. US modelling [39] disaggregated by 417 

State, also highlights the peak of excess bed demand varies geographically, with this 418 

peak ranging between the 2nd week of April, through to May dependent on the State 419 

under consideration. The modelling based in France also cautioned that due to only 420 

5.7% of the population having been infected by 11th May when the restrictions would 421 

be eased, the population would be vulnerable to a second epidemic peak thereafter 422 

[35]. 423 

The ONS in England estimated that an average of 0.25% of the population had 424 

COVID-19 between the 4th and 17th May 2020 (95% confidence interval: 0.16 – 0.38%) 425 

[40], which is greater than the 0.10% (95%CrI 0.04 – 0.22%) we found with our model 426 

(on 11th May 2020), but with some overlap. In addition, the ONS estimated that 6.78% 427 
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(95%CrI 5.21 – 8.64%) tested positive for antibodies to COVID-19 up to 24th May 2020 428 

in England [41], and Public Health England estimated that approximately 4% (2 – 6%) 429 

tested positive for antibodies to COVID-19 between the 20th and 26th April 2020 in 430 

the SW [42]. Comparing to our model, 3.4% (95%CrI 2.5 – 5.0%) had recovered on 431 

the 11th May 2020 (2 weeks later), demonstrating that our model estimates may be 432 

within sensible bounds, and further highlighting the need for more regional estimates 433 

of crucial epidemiological parameters and seroprevalence. We have assumed that 434 

individuals are not susceptible to reinfection within the model timeframe, however in 435 

future work it will be important to explore this assumption. It is not known what the long 436 

term pattern of immunity to COVID-19 will be [43], and this will be key to understanding 437 

the future epidemiology in the absence of a vaccine or effective treatment options. 438 

With this in mind, our findings demonstrate that there are still significant data 439 

gaps – and in the absence of such data, mathematical models can provide a valuable 440 

asset for local and regional healthcare services. This regional model will be used 441 

further in the SW as the pandemic evolves and could be used within other healthcare 442 

systems in other geographies to support localised predictions. Controlling intervention 443 

measures at a more local level could be made possible through monitoring and 444 

assessment at the regional level through a combination of clinical expertise and local 445 

policy, guided by localised predictive forecasting as presented in this study.  446 
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Supplementary information 629 

Table S1: Demography of SW England compared to the UK. 630 

 631 

 632 

 633 

 634 

 635 

 636 

  637 

Age group 
Population size SW 

England 

Percent population 

size SW England 

Percent population 

size UK 

0-4 296,357 5.3% 6.0% 

5-18 805,965 14.4% 15.4% 

18-29 806,885 14.4% 15.4% 

30-39 654,469 11.7% 13.4% 

40-49 684,872 12.2% 12.8% 

50-59 782,317 14.0% 13.4% 

60-69 671,294 12.0% 10.5% 

70+ 897,576 16.0% 13.1% 
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Key assumptions used in the model 638 

 639 

i. Closed, static population size with no immigration or emigration due to 640 

the model being run over a short period of time, and current travel restrictions which 641 

should prevent significant movement of individuals in and out of the South West. 642 

ii. No nosocomial transmission. 643 

iii. Recovered individuals are not susceptible to reinfection within the timeframe of 644 

the model horizon. 645 

iv. Trajectory of model outputs is assuming that there is no easing of lockdown situation 646 

over the timeframe of the model horizon. 647 

v. There is no restriction on number of hospital (IC and acute) beds available. 648 

vi. Asymptomatic and symptomatic are equally infectious and recover at the same rate. 649 

vii. 95% reduction in 0-18-year old contacts from school closures 650 

viii. Range of 0 - 50% reduction in contacts from social distancing and range of 63 - 90% 651 

reduction in contact rates due to lockdown 652 

ix. The reduction of any given contact rate is taken to be the minimum from lockdown, 653 

school closures and social distancing.  654 

x. R_0 is sampled between 2.79 +/- 1.16 and the infectious period and transmission 655 

probability are chosen to achieve this 656 

xi. Proportion symptomatic which require hospitalisation depends on age, with increased 657 

risk for older age groups 658 

xii. Proportion in IC who will die depends on age, with increased risk for older age 659 

groups 660 

xiii. The percentage of infections which become symptomatic is 73.15 - 91.05% 661 

xiv. The percentage of those requiring hospital who will require IC 0 - 30% 662 

xv. The percentage of those requiring acute beds (but not IC) who will die 5 - 35% 663 

 664 
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 665 

Figure S1a: The distribution of the best 100 parameters selected for in the Latin Hypercube Sampling 666 

and likelihood fitting from 100,000 simulations.  667 

 668 
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 669 

Figure S1b: The distribution of the uniform priors in the Latin Hypercube Sampling from 100,000 670 

samples.  671 

 672 
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 673 

Figure S2a: Fitting performance of the model. The cumulative case numbers and hospital deaths for 674 

COVID-19 in SW England until lockdown measures were gradually lifted (11th May 2020), based on 675 

case data and death data (orange).  95% credible intervals of our model projections are shown in light 676 

grey, 50% in dark grey and the median value of the model is highlighted in black. The shaded region 677 

indicates the prediction of the model from the data. We did not consider the effects of lockdown being 678 

lifted, and our transmission rates are fitted to both before lockdown and after lockdown. Blue and red 679 

vertical lines represent the dates when social distancing and school closures/lockdown were introduced 680 

nationally, respectively.  681 

 682 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.10.20084715doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.10.20084715
http://creativecommons.org/licenses/by-nd/4.0/


 

 683 

Figure S2b: The expected (model) versus observed (data) for the median of 100 fits, and all 100 fits 684 

for counts of daily case numbers. The model tends to overestimate the case data at earlier stages of 685 

the epidemic and underestimate at later stages of the epidemic. 686 

 687 

 688 

 689 

  690 
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Sensitivity analysis  691 

The choice of the final sample size m=100 taken from 100k samples is based on a 692 

bias-variance trade-off with lower m giving a better model fit but higher m allowing 693 

more predictions to be included. The choice of m is not of practical significance for the 694 

median and 95% credible intervals of the main outcome measures of the model – bed 695 

modelling - as shown in the below table. 696 
 Median (95% CrI) value on 11th May 2020 

Size of final sample size from 
100k samples 

Total recovered Total infectious Total in acute beds Total in IC beds 

50 191k (143k – 276k) 5k (2k – 10k) 579 (152 – 1424) 107 (14 – 497) 

100 189k (142k – 278k) 6k (2k – 12k) 701 (169 – 1543) 110 (8 – 464) 

200 189k (141k - 276k) 6k (2k – 16k) 709 (171 – 1564) 105 (5 – 454) 

500 191k (132k – 289k) 7k (2k – 20k) 690 (171 – 1644) 109 (5 – 426) 

 697 

Increasing m does slightly increase the estimate of the infectious population (total 698 

infectious). This is explained by including models with slightly higher R value, i.e. R is 699 

biased upwards as we move further away from the best answer. The bias is small 700 

compared to the modelling uncertainty. 701 
 Median (95% CrI) of parameter 

Size of final 
sample size from 

100k samples 

R 𝛿 1/𝜇 1/𝜌 1/𝜓 𝜖 𝜅 endphase 

50 2.5 (2.1 - 3.1) 82 (74 – 90%) 3.9 (2.6 – 
5.8) 

6.3 (2.4 – 
13.1) 

6.5 (2.6 – 
13.8) 

19 (4 – 
28%) 

29 (19 – 
34%) 

21.3 (11.1 – 
30.0) 

100 2.6 (2.1 - 3.2) 82 (74 – 90%) 4.3 (2.5 – 
6.0) 

7.7 (2.3 – 
13.3) 

6.7 (2.5 – 
13.8) 

16 (2 – 
30%) 

28 (19 – 
34% 

19.7 (10.8 – 
30.0) 

200 2.6 (2.1 - 3.3) 82 (74 – 91%) 4.5 (2.4 – 
6.7) 

7.8 (2.3 – 
13.6) 

6.7 (2.4 – 
13.8) 

16 (1 – 
30%) 

28 (17 – 
34%) 

18.5 (8.6 – 
30.3) 

500 2.7 (2.1 - 3.5) 82 (74 – 90%) 5.0 (2.5 – 
8.3) 

7.3 (2.4 – 
13.6) 

7.2 (2.5 – 
13.8) 

17 (1 – 
29%) 

28 (15 – 
35%) 

18.3 (6.4 – 
30.3) 

 702 
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The inverse of 𝜇 and 𝜓 becomes bigger (as it is related to the selection of R), as the 703 

sample size becomes larger. This then reduces the parameters endphase, 	704 

𝜅, and 𝜖 in order to account for this bias in R. 705 

 706 

We choose to report values for m=100 samples as part of the bias-variance trade-off. 707 

The bias is small for this choice, with R close to unbiased and the confidence 708 

intervals capture all of the significant variation components. The qualitative 709 

inferences would not change with any of the above choices of m and uncertainty has 710 

been well captured. 711 
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