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Summary Paragraph 
Despite social distancing and shelter-in-place policies, COVID-19 continues to spread in the 
United States. A lack of timely information about factors influencing COVID-19 spread and 
testing has hampered agile responses to the pandemic. We developed How We Feel, an extensible 
web and mobile application that aggregates self-reported survey responses, to fill gaps in the 
collection of COVID-19-related data. How We Feel collects longitudinal and geographically 
localized information on users’ health, behavior, and demographics. Here we report results from 
over 500,000 users in the United States from April 2, 2020 to May 12, 2020. We show that self-
reported surveys can be used to build predictive models of COVID-19 test results, which may aid 
in identification of likely COVID-19 positive individuals. We find evidence among our users for 
asymptomatic or presymptomatic presentation, as well as for household and community exposure, 
occupation, and demographics being strong risk factors for COVID-19. We further reveal factors 
for which users have been SARS-CoV-2 PCR tested, as well as the temporal dynamics of self-
reported symptoms and self-isolation behavior in positive and negative users.  These results 
highlight the utility of collecting a diverse set of symptomatic, demographic, and behavioral self-
reported data to fight the COVID-19 pandemic.  

Main Text  
The rapid global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the 
novel virus causing coronavirus disease 2019 (COVID-19)1–3, has created an unprecedented public 
health emergency. In the United States, efforts to slow the spread of disease have included, to 
varying extents, social distancing, home-quarantine and treating infected patients, mandatory 
facial covering, closure of schools and non-essential businesses, and testing-trace-isolate 
measures4,5. The COVID-19 pandemic and ensuing response has produced a concurrent economic 
crisis of a scale not seen for nearly a century6, exacerbating the effect of the pandemic on different 
socioeconomic groups and producing adverse health outcomes beyond COVID-19. As a result, 
there is currently intense pressure to safely wind down these measures. Yet, in spite of widespread 
lockdowns and social distancing throughout the US, many states continue to exhibit steady 
increases in the number of cases7. In order to understand where and why the disease continues to 
spread, there is a pressing need for real-time individual-level data on COVID-19 infections and 
tests, as well as on the behavior, exposure, and demographics of individuals at the population scale 
with granular location information. These data will allow medical professionals, public health 
officials, and policy makers to understand the effects of the pandemic on society, tailor 
intervention measures, efficiently allocate testing resources, and address disparities.  
  
One approach to collecting this type of data on a population scale is to use web- and mobile-phone 
based surveys that enable large-scale collection of self-reported data. Previous studies, such as 
FluNearYou, have demonstrated the potential for using online surveys for disease surveillance8. 
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Since the start of the COVID-19 pandemic, several different applications have been launched 
throughout the world to collect COVID-19 symptoms, testing, and contact-tracing information9. 
Studies in the UK and Israel have reported large cohorts of users and demonstrated some ability 
to detect and predict the spread of disease10–12. Existing tools, however, focus primarily on 
COVID-19 symptoms. There is a strong need to investigate exposure, demographic and behavioral 
factors that affect the chain of transmission, understand the factors for who have been tested,  and 
study the degree of presence of asymptomatic, presymptomatic, mildly symptomatic cases13. 
   
To overcome these limitations, we developed How We Feel (HWF, http://www.howwefeel.org) 
(Fig. 1a-d), a web and mobile-phone application for collecting de-identified self-reported COVID-
19-related data. Rather than targeting suspected COVID-19 patients or existing study cohorts, 
HWF aims to collect data from users representing the population at large. Users are asked to share 
information on demographics (gender, age, race/ethnicity, household structure, ZIP code), 
COVID-19 exposure, and pre-existing medical conditions. They then self-report daily how they 
feel (well or not well), any symptoms they may be experiencing, test results, behavior (e.g., use of 
face coverings), and sentiment (e.g., feeling safe to go to work) (Fig. 1c, Extended Data Fig. 1). 
To protect privacy, users are not identifiable beyond a randomly-generated number that links 
repeated logins on the same device. A key feature of the app is the ability to rapidly release revised 
versions of the survey as the pandemic evolves. In the first month of operation, we released three 
iterations of the survey with increasingly expanded sets of questions (Fig. 1b).  
  
The app was launched on April 2, 2020 in the United States. As of May 12, 2020, the app had 
502,731 users in the United States, with 3,661,716 total responses (Fig. 1b) (Extended Data Table 
1). 74% of users responded on multiple days, with an average of 7 responses per user (Extended 
Data Fig. 2). Each day, ~5% of users who accessed the app reported feeling unwell (Fig. 1b). The 
user base was distributed across all 50 states and several US territories, with the largest numbers 
of users in more populous states such as California, Texas, Florida, and New York (Fig. 1d). 
Connecticut had the largest number of users per state, as the result of a partnership with the 
Connecticut state government (Fig. 1d). Users were required to be 18 years of age or older and 
were 42 years old on average (mean: 42.0; SD: 16.3), including 18.4% in the bracket of 60+, which 
has experienced the highest mortality rate from COVID-19 (Fig. 1e)14,15. Users were primarily 
female (82.7%) (Fig. 1f) and white (75.5%, excluding 20.3% with missing data) (Fig. 1g).  
  
A major ongoing problem in the US is the overall lack of testing across the country16 and disparities 
in test accessibility, infection rates, and mortality rates in different regions and communities17,18.  
In the absence of population-scale testing, it will be critical during a reopening to allocate limited 
testing resources to the groups or individuals most likely to be infected in order to track the spread 
of disease and break the chain of infection. We therefore first examined who in our userbase is 
currently receiving testing. We analyzed 4,759 users who took the Version 3 (V3) survey and who 
were PCR tested for SARS-CoV-2 (out of 272,392 total users) (Fig. 2a, Extended Data Fig. 3a). 
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Of these, 8.8% were PCR positive. The number of tests reported by test date displays a similar 
trend to the estimated number of tests across the US, suggesting that our sampling captures the 
increase in test availability (Fig. 2a). The number of PCR tests per HWF user is highly correlated 
with external estimates of per-capita tests by state (Fig. 2b, Extended Data Fig. 3b, Pearson 
correlation 0.77)19.  
 
We first examined via logistic regression which factors either collected in the survey or inferred 
from US Census data by user ZIP code were associated with receiving a SARS-CoV-2 PCR test, 
regardless of test result. As expected, we observed that a higher fraction of tested users from states 
with higher per-capita test numbers, according to the COVID Tracking Project19 (Extended Data 
Fig. 3b). Healthcare workers (OR: 2.94; 95% CI: [2.75, 3.15]) and other essential workers (OR: 
1.39; 95% CI: [1.28, 1.52]) were more likely to have received a PCR test compared to users who 
did not report those professions (Fig. 2c). Users who reported experiencing fever, cough, or loss 
of taste/smell (among other symptoms) had higher odds of being tested compared to users who 
never reported these symptoms (Fig. 2c). The majority of these symptoms are listed as common 
for COVID-19 cases by the Centers for Disease Control and Prevention (CDC) (Fig. 2c, starred)20. 
A less common symptom, reporting a tight feeling in one’s chest, was also associated with 
receiving a PCR-based test (OR: 2.27, 95% CI: [1.93, 2.66]). These results suggest that the most 
commonly reported symptoms are being used as screening criteria for determining who receives a 
test, potentially missing individuals with less common symptom presentations. This group could 
include those who are at high risk for infection but do not meet the testing eligibility criteria.  
 
To obtain a global view of self-reported symptom patterns, we applied an unsupervised manifold 
learning algorithm to visualize how symptoms were correlated across users (Methods). As 
expected, we found that symptom presentation separated broadly by feeling well versus feeling 
unwell (Fig. 2d, Extended Data Fig. 4). Users who felt unwell were concentrated in a single cluster 
indicating similar overall symptom profiles, which was characterized by high proportions of 
common COVID-19 symptoms as defined by the CDC20 (Fig. 2e), and contained the vast majority 
of responses from users with both positive (+) and negative (–) SARS-CoV-2 PCR tests (Fig. 2f). 
Thus COVID-19 symptoms tend to overlap with symptoms for other diseases and do not 
necessarily predict positive test results.  
  
This overlap suggests that commonly used symptoms may not be sufficient criteria for evaluating 
COVID-19 infection. It has previously been reported that many people infected with SARS-CoV-
2 are asymptomatic, mildly symptomatic, or in the presymptomatic phase of their presentation21–
23 and therefore unaware that they are infected.  In our dataset, on the day of their test, most users 
(73%) that tested PCR positive for SARS-CoV-2 reported feeling unwell with the common 
symptoms listed by the CDC (dry cough, shortness of breath, chills/shaking, fever, muscle/joint 
pain, sore throat, loss of taste/smell). However, 11.5% of positive users reported feeling unwell 
and exclusively reported symptoms not listed as common for COVID-19 by the CDC on the day 
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of their test and, and 15.4% reported feeling no symptoms at all (Fig. 2g). Because of the 
commonly used symptom and occupation based screening criteria for receiving a PCR test and 
under-testing, this total of 36.9% likely underestimates the true fraction of asymptomatic, 
presymptomatic, and mildly symptomatic cases, which in Wuhan, China was estimated to be 
~80%13. A large number of asymptomatic cases were also observed in serological studies24,25.  
48.9% of users testing negative for SARS-CoV-2 reported feeling unwell with most common 
COVID-19 symptoms, compared to an expected false negative rate of 20-30% for PCR-based tests 
of symptomatic patients26, again suggesting symptom presentation overlap with other diseases 
(Fig. 2g). 
 
We investigated the symptoms that were most predictive of COVID-19 by exploring the 
distribution and dynamics of symptoms in PCR test (+) and (–) users around the test date. PCR 
test (+) users reported higher rate of common COVID-19 symptoms, including dry cough, fever, 
loss of appetite, and loss of taste and/or smell, than PCR test (–) users (Fig. 2h). Many PCR-tested 
users longitudinally reported symptoms in the app in an interval extending ±2 weeks from their 
test date (Extended Data Fig. 5). We used these data to examine the time course of symptoms 
among those who tested positive. In the days preceding a test, dry cough, muscle pain, and nasal 
congestion were among the most commonly reported symptoms. Reported symptoms peaked in 
the week following a test and declined thereafter (Fig. 2i). Taking the ratio of the symptom rates 
at each point in time between PCR test(+) and (–) users showed that the most distinguishing feature 
in users who tested positive was loss of taste and/or smell, as has been previously reported10 (Fig. 
2j).  
 
We next investigated medical and demographic factors associated with testing PCR positive for 
acute SARS-CoV2 infection, focusing on 3,829 users who took the V3 survey within ±2 weeks of 
their reported PCR test date (315 positive, 3,514 negative) (Fig. 3a, Extended Data Tables 2–6). 
These users are a subset of all the users who reported taking a test in the V3 survey, as some 
reported test results were outside this time window.  To correct for selection bias of receiving a 
PCR test when studying the risk factors of a positive test result, we incorporated probability of 
receiving PCR tests as inverse probability weights (IPW) into our logistic model of PCR test result 
status (+/–) (Methods)27. As with the analysis of who received a test, the reported symptoms, loss 
of taste and/or smell was most strongly associated with a positive test result (OR: 33.17, 95% CI: 
[17.3, 67.94]). Other symptoms associated with testing positive included fever (OR: 6.27, 95% CI: 
[2.82, 13.70]) and cough (OR: 4.45, 95% CI: [2.83, 6.99]). Women were less likely to test positive 
than men (OR: 0.55, 95% CI: [0.38, 0.80]), and both Hispanic/Latinx users (OR: 2.59, 95% CI: 
[1.67, 3.97]) and African-American/black users (OR: 2.35, 95% CI: [1.25, 4.18]) were more likely 
to test positive than white users, highlighting potential racial disparities involved with COVID-19 
infection risk. The odds of testing positive were also higher for those in high density neighborhoods 
(OR: 1.85, 95% CI: [1.15, 3.07]). Healthcare workers (OR: 1.92, 95% CI: [1.36, 2.73]) and other 
essential workers (OR: 1.69, 95% CI: [1.13, 2.52]) also had higher odds of testing positive 
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compared to non-essential workers. Pregnant women were substantially more likely to test positive 
(OR: 6.30, 95% CI: [2.45, 14.68]). We note that this is a preliminary result based on a small sample 
of 48 pregnant women included in this analysis (9 test-positive, 39 test-negative) and will be 
reassessed as the app accumulates more users. Performing this analysis with and without correction 
for selection bias produced similar results (Fig. 3a).  
 
Motivated by previous studies that reported high cluster transmissions occurred in families in 
China and Japan28,29, we explored household and community exposures as risk factors for users 
testing PCR positive. The odds of testing positive were much higher for those who reported within-
household exposure to someone with confirmed COVID-19 than for those who reported no 
exposure at all (Methods) (OR: 19.10, 95% CI: [12.30, 30.51]) (Fig. 3a, Extended Data Table 5). 
This is stronger than comparing the odds of positive among those who reported exposure outside 
their household versus no exposure at all (OR: 3.61, 95% CI: [2.54, 5.18]). Further, the odds of 
testing PCR positive are much higher for those exposed in the household versus exposed outside 
their household or not exposed at all, after adjusting for similar factors (OR: 10.3, 95% CI: [6.7, 
15.8]) (Extended Data Table 7). These results are consistent with previous findings that indicate a 
very high relative risk associated with within-household infection29–33. This is compatible with 
finding that other closed areas with high levels of congregation and close proximity, such as 
churches34, food processing plants35, and nursing homes36, have shown similarly high risk of 
transmission.  
 
Developing models to predict who is likely to be SARS-CoV-2(+) from self-reported data has been 
proposed as a means to help overcome testing limitations and identify disease hotspots10,11. We 
used data from the 3,829 users who used the app within ±2 weeks of their reported PCR test results 
to develop a set of prediction models that were able to distinguish positive and negative results 
with a high degree of predictive accuracy on cross-validated data (Fig. 3b). We used the machine 
learning method XGBoost, which outperformed other classification methods (Extended Data Fig. 
6). We considered: (1) a symptoms-only model, which included only the most common COVID-
19 symptoms listed by the CDC; (2) an expanded model, which further incorporated other features 
observed in the survey; and (3) a minimal-features model, which retained only the four most 
predictive features (loss of taste and/or smell, exposure to someone with COVID-19, exposure in 
the household to someone with confirmed COVID-19, and exposure to household members with 
COVID-19 symptoms) (Methods, Extended Data Tables 8–11). The symptoms-only model 
achieved a cross validated AUC (area under the ROC curve) of 0.76 using data before and after a 
test, and AUC 0.69 using just the pre-test data. Expanding the set of features to include other 
survey questions substantially improved performance (cross-validated AUC 0.92 all data, 0.79 pre-
test). In the minimal-features model, we were able to retain high accuracy (cross-validated AUC 
0.87 all data, AUC 0.80 pre-test) despite only including 4 questions, one of which was a symptom 
and three referring to potential contact with known infected individuals. Restricting the observed 
inputs to the 1,613 users (89 positive, 1,524 negative) who answered the survey in the 14 days 
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prior to being tested limited the sample size and reduced the overall accuracy, but the relative 
performance of the models was similar (Fig. 3b).  
 
The fact that a fraction of SARS-CoV-2(+) users report no symptoms or only less common 
symptoms (Fig. 2g) raises the possibility that many infected users might behave in ways that could 
spread disease, such as leaving home while unaware that they are infectious. In spite of widespread 
shelter-in-place orders during the sample period, we found extensive heterogeneity across the US 
in the fraction of users reporting leaving home each day, with 61% of the responses from April 24 
– May 12 indicating the user had left home that day (Fig. 4a). The majority (77%) of these users 
reported leaving for non-work reasons, including exercising; 19% left for work (Fig. 4b). Of people 
who left home, a majority but not all users reported social distancing and using face protection 
(Fig. 4c). This incomplete shutdown, and lack of total social and physical protective measures, 
coupled with insufficient isolation of infected cases, may contribute to continued disease spread.  
 
Given the large number of people leaving home each day, it is important to understand the behavior 
of people who are potentially infectious and therefore likely to spread SARS-CoV-2. To this end, 
we further analyzed the behavior of people both reporting to be PCR test (+) or (–). There was an 
abrupt large increase in users reporting staying home after receiving a positive test result (Fig. 
4d,e). Many, but not all, PCR test(+) users reported staying home in the 2-7 days after their test 
date (7% still went to work), whereas 23% of untested and 26% of PCR test(–) left for work (Fig. 
4d,e). Similarly, 3% of PCR test(+) users reported going to work without a mask, in contrast with 
untested (12.7%) and PCR test(–) (10%) users (Fig. 4f). Positive individuals reported coming into 
close contact with a median of 1 individual over 3 days in contrast to individuals who tested 
negative or were untested, who typically came in close contact with a median of 4 people within 
3 days (Fig. 4g). Regression analysis suggested that healthcare workers (OR: 9.6, 95% CI: [7.6, 
12.1]) and other essential workers (OR: 7.0, 95% CI: [5.4, 9.1]) were much more likely to go to 
work after taking a positive or negative test, and PCR positive users were more likely to stay home 
(OR: 0.1, 95% CI: [0.1, 0.2]) (Fig. 4h, Extended Data Table 12). 
 
We find evidence among our users for several factors that could contribute to continued COVID-
19 spread despite widespread implementation of public health measures. These include a 
substantial fraction of users leaving their homes on a daily basis across the US, users who claim 
to not socially isolate or return to work after receiving a PCR test(+), self-reports of asymptomatic, 
mildly symptomatic, or presymptomatic presentation, and a much higher risk of infection for 
people with within-household exposure. That said, we note several limitations of this study. The 
HWF user base is inherently a non-random sample of voluntary users of a smartphone app, and 
hence our results may not fully generalize to the broader US population. Our results are based on 
self-reported survey data, hence may suffer from misclassification bias—particularly those based 
on self-reported behaviors. Moreover, a relatively small percentage of the US population has been 
prioritized for PCR testing, so any analysis of test results (or tested users) may be subject to 
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selection bias. While we have attempted to correct for these biases via the inverse probability 
weighting approach (Methods), some residual bias may persist if there remain some unobserved 
factors related to underlying disease status and receiving a test.  
 
Although there is enormous economic pressure on states, businesses, and individuals to be able to 
return to work as quickly as possible, our findings highlight the ongoing importance of social 
distancing, mask wearing, large-scale testing of both symptomatic and asymptomatic people, and 
potentially even more  rigorous ‘test-trace-isolate’ approaches37–40 as implemented in 
Massachusetts, New York, and New Jersey to bend the infection curve37–40. Applying predictive 
models on a population scale will be vitally important to provide an “early warning” system for 
timely detection of a second wave of infections in the US and for guiding an effective public policy 
response. At an individual level, our data show that adding information beyond symptoms, such 
as household and community exposure, occupation, and demographics, is vital for identifying 
infected individuals from self-reported data. As testing resources are expected to continue to be 
limited, HWF results could be used to identify which groups should be prioritized, or potentially 
to triage individuals for molecular testing based on predicted risk. HWF’s integration of 
behavioral, symptom, exposure, and demographic data provides a powerful platform to address 
emerging problems in controlling infection chains, rapidly assist public health officials and 
governments with developing evidence-based guidelines in real time, and stop the spread of 
COVID-19.  
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Figures 

 

Figure 1: The How We Feel Application and User Base. 
a, The How We Feel (HWF) app: longitudinal tracking of self-reported COVID-19-related data. b, 
Responses over time, as well as percentage of users reporting feeling unwell, with releases of major updates 
to survey indicated. c, Information collected by the HWF app. d, Users by state across the United States. e, 
Age distribution of users. Note: users had to be older than 18 to use the app. f, Distribution of self-reported 
sex. g, Distribution of self-reported race or ethnicity. Users were allowed to report multiple races. 
“Multiracial” = the user indicated more than one category. “Other” includes American Indian/Alaskan 
Native and Hawaiian/Pacific Islander, as well as users who selected “Other”. 
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Figure 2: SARS-CoV-2 PCR Testing and Symptoms. 
a, Stacked bar plot of user-reported test results over time, overlaid with official number of tests across US 
based on COVID Tracking Project data. b, Left: Map of per-capita test rates across the United States. Right: 
Map of COVID-19 tests per number of users by state.  c, Associations of professions and symptoms with 
receiving a SARS-CoV-2 PCR test, adjusted for demographics and other covariates (Methods). Common 
symptoms listed by the CDC are starred. d-f, UMAP visualization of 667,651 multivariate symptom 
responses among HWF users that reported at least one symptom. Coloring indicates: d, responses according 
to users feeling well; e, the reported number of COVID-19 symptoms listed by the CDC; and f, the COVID-
19 test result among tested users. g, Proportion of positive COVID-19 patients (red) and negative COVID-
19 patients (blue) experiencing either CDC-common symptoms (dark), only non-CDC symptoms (light), 
or no symptoms (grey) on the day of their test. h, Histogram of reported symptoms among COVID-19 
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tested users. i, Longitudinal self-reported symptoms from users that tested positive for COVID-19. Dates 
are centered on the self-reported test-date. j, Ratio of symptoms comparing users that test positive versus 
test negative for COVID-19.  
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Figure 3: SARS-CoV-2 PCR Test Result Associations and Predictions.  
a, Factors associated with respondents receiving and reporting a positive test result, as determined through 
logistic regression. Left: results from unweighted model. Right: results from model incorporating 
propensity scores via inverse probability weights (IPW). Reference categories are indicated where relevant, 
and when not indicated, the reference is not having that specific feature. Log odds ratios and their 
confidence intervals are plotted, with red indicating positive association and blue indicating negative 
association. Darker colors indicate confidence intervals that do not cover 0. Population density and 
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neighborhood household income were imputed from user demographics. L = lower bound, U = upper bound 
of 95% confidence intervals. b, Prediction of positive test results using ±2 weeks of data from test date, 
using 5-fold cross validation, shown as receiver operating characteristic (ROC) curves. The XGBoost model 
was trained on different subsets of questions: CDC Symptom Questions = using just the subset of COVID-
19 symptoms listed by the CDC. All Survey Questions = using the entire survey. 4 Question survey = using 
a reduced set of 4 questions that were found to be highly predictive. Numerical values are AUC = area 
under the ROC curve.  
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Figure 4: Behavioral Factors Potentially Contributing to COVID-19 
Spread. 
a, Proportion of responses indicated users leaving home across US (map) or overall (inset pie chart). b, 
Percentage of responses of users reporting work or other reason for leaving home. c, Reported protective 
measures taken per response taken by users upon leaving home. d, Time course of proportion of SARS-
CoV-2 PCR tested positive (+) or negative (–) users staying home, leaving for work, and leaving for other 
reasons. e-f, Proportion SARS-CoV-2 PCR tested (+) or (–), or untested (U), going to work (e), going to 
work without a mask (f) in the 2-7 days post test for T = tested, or 3 weeks since last check in for U = 
untested . Healthcare workers and other essential workers are compared to non-essential workers as the 
baseline. g, Average reported number of contacts per 3 days in the 2-7 days after their test date.  OR = odds 
ratio, LB = lower bound, UB = upper bound, CI = confidence interval, T = tested, P = positive, U = untested. 
h, Logistic regression analysis of factors contributing to users going to work in the 2-7 days after their 
COVID-19 test. 
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Additional Material 
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