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Abstract  

It is still difficult to make accurate diagnosis of biliary atresia (BA) by sonographic gallbladder 

images particularly in rural area lacking relevant expertise. To provide an artificial intelligence 

solution to help diagnose BA based on sonographic gallbladder images, an ensembled deep learning 

model was developed based on a small set of sonographic images. The model yielded a patient-level 

sensitivity 93.1% and specificity 93.9% (with AUROC 0.956) on the multi-center external validation 

dataset, superior to that of human experts. With the help of the model, the performance of human 

experts with various levels would be improved further. Moreover, the diagnosis based on smartphone 

photos of sonographic gallbladder images through a smartphone app and based on video sequences 

by the model still yielded expert-level performance. Our study provides a deep learning solution to 

help radiologists improve BA diagnosis in various clinical application scenarios, particularly in rural 

and undeveloped regions with limited expertise.  
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Abbreviations 

BA = biliary atresia 

EDLM = ensembled deep learning model  

KPE = Kasai portoenterostomy 

AI = artificial intelligence 

CNNs = convolutional neural networks  

AUC = area under receiver operating characteristic curve 

CAM = class activation map 

 

Introduction 

Biliary atresia (BA) is a rare disease of infancy that affects varying lengths of both intrahepatic 

and extrahepatic bile ducts 1, about 1 in 5000-19000 infants all over the world 2, 3, 4, 5, 6. It is the most 

common cause for liver transplantation in infants younger than one year old 7. Optimal clinical 

outcome often needs timely diagnosis and Kasai portoenterostomy (KPE) surgery before two months 

old, which is associated with longer native liver survival 8, 9, 10. However, early identifying BA 

remains challenging in infants with cholestasis. Researchers have endeavored to screen the direct 

bilirubin concentration 11 or stool color 4, 10 in newborns and infants for early identification of BA 

and showed good results (with sensitivities of 97.1% ~100%). Recently, serum matrix 
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metalloproteinase-7 was reported as an effective diagnostic biomarker for BA, with sensitivity of 

94%~98.7% 12, 13. However, these tests are high resource-consumed and might be impractical in 

many countries and areas with underdeveloped healthcare conditions.  

     Ultrasound examination, due to its radiation-free and low-cost noninvasive property, is still the 

most-widely used method for initial detection of BA in jaundiced infants particularly in developing 

Asian countries like China and India 14, 15, 16, 17. Gallbladder abnormality is one of the most popular 

sonographic features used to identify BA 18, 19, 20, 21. As previously reported, gallbladder 

abnormalities can yield both sensitivities and specificities higher than 90% in experienced hand for 

the diagnosis of BA 22. However, it is still difficult to make a correct diagnosis by ultrasound 

examination mainly due to the lack of expertise in both diagnosis and management of BA in most 

hospitals particularly located in underdeveloped regions. Consequently, a substantial proportion of 

potential BA patients are often misdiagnosed followed by inappropriate treatments, and the average 

age of BA patients at KPE surgery was delayed to older than 70 days in China 23. 

To improve the accuracy of BA diagnosis especially for underdeveloped countries or regions, 

one potentially promising way is to make use of the artificial intelligence (AI) techniques. Among 

the AI techniques, deep learning models, particularly the convolutional neural networks (CNNs), 

have been shown superior or comparable to human experts in many medical data analysis tasks, such 

as the diagnosis of skin cancers, localization and identification of polyps, and lung cancer screening 

24, 25, 26, 27, 28, 29. However, as far as we know, no AI model has been developed for diagnosis of BA, 

partially because it is very time-consuming to collect enough number of medical data for BA, while 

deep learning models are often built on large-scale data. Considering the fact that ultrasound 

examination is very common in both primary and tertiary hospitals in China, any well-developed AI 
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model based on sonographic gallbladder images for diagnosis of BA would alleviate the shortage of 

expertise in primary hospitals and may largely improve the diagnosis accuracy for the rare disease. 

The purpose of this study is to develop a ensembled deep learning model(EDLM) for 

automatically and accurately identifying BA in infants with conjugated hyperbilirubinemia, based on 

limited number of sonographic gallbladder images collected from multicenter, and to help doctors 

improve their diagnosis of BA.  

 

Results 

Internal evaluation of the ensemble deep learning approach 

The ensemble deep learning approach was firstly evaluated in a 5-fold cross validation manner 

on the training cohort. Specifically, the training cohort was partitioned into five complementary 

subsets of an equivalent number of patients. Then, every time four of the subsets were used as a 

training dataset to train an ensembled deep learning model, and the ensembled model was then 

applied to predict the category of each image in the remaining one (testing) subset. Such a process 

was repeated five times, each time using a unique subset as the testing dataset.  

At both the image level and the patient level, the EDLMoutperformed the two experts in 

diagnosing BA, with the image-level sensitivity 88.2% ,specificity 89.8%, and accuracy 89.4% of the 

model versus the sensitivity 93.8%, specificity 53.7%, and accuracy 63.7% of the most experienced 

expert, and the patient-level sensitivity 93.3% and specificity 85.2% of the model versus the 

sensitivity 90% and specificity 57.6% of the most experienced expert (Table 1). The ROC curves of 

the model at both levels also confirmed its superior performance over human experts (Figure 1). 
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Robustness of the AI models to various scanning conditions 

Considering that the trained deep learning model could be employed to various hospitals in 

which ultrasound scanning conditions may be different from that of the data for model training, the 

ensemble deep learning approach was also evaluated in terms of its robustness to screening 

machines, transducer frequencies and scanning period.  

In the training cohort, images were retrospectively divided into three subsets based on whether 

the images were obtained from machines of brand Mindray, Supersonic, or the others (including 

TOSHIBA, Siemens, Samsung, HITACHI, ALOKA, Philips, GE and Esaote); or into two subsets 

based on whether the images were obtained by transducers of frequencies ≥14MHz or by transducers 

of frequencies <14MHz; or into two subsets based on whether the images were obtained before year 

2018 or thereafter. For each scanning factor, with every unique subset of images as the validation 

dataset and the remaining subset(s) as the training dataset, the sensitivity of the trained EDLM was 

roughly in between those of two human experts (supplementary Tables S1, S2 and supplementary 

Figures S1, S2), supporting that the ensembled deep learning models were robust enough to be 

employable to different medical centers and for different screening machines. Furthermore, when 

using images of mediocre quality (with frequency＜14MHz, scanning period ≤2018, supersonic + 

others or Mindary + others) to train the model and using the remaining subset(s) of good quality for 

validation, we found that the diagnostic performance of the model was higher than that when the 

training set and the testing set were reversed (AUROC 0.931 versus 0.835 for transducer frequency, 

0.900 versus 0.832 for screening time, 0.950 and 0.807 versus 0.787 for screening machine, 

respectively at image level) (supplementary Table S1), which indicated that the quality of the image 

used for intelligent diagnosis should be as good as possible.  
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External validation of the EDLM 

More strictly, the effectiveness of the EDLM was evaluated by external validation with 

ultrasound images obtained from the other six hospitals. The EDLM yielded an image-level accuracy 

92.3%, sensitivity 88.6%, specificity 93.7%, positive predictive value 84.6%, and negative predictive 

value 94.5%, respectively, clearly outperforming the three experts whose diagnosis sensitivities are 

69.5%,77.1% and 87.3%, and specificities are 90.2%,  83.5% and 90.2%, respectively (Table 2, 

rows 1 to 4). The superior performance of the model can be also seen from the ROC curve of the 

EDLM(Figure 2A). Specially, 12 images of BA were misdiagnosed as non-BA by all three experts 

but were accurately identified by the EDLM. 

When using the majority vote over the predicted classes of multiple images for each patient, the 

EDLM achieved an accuracy 93.6%, sensitivity 93.1%, specificity 93.9%, positive predictive value 

88.8%, and negative predictive value 96.3% (Table 2, row 8). Another way to obtain patient-level 

performance is from the diagnosis of a single image for each patient, where the single image was 

chosen from the multiple images of the patient by a radiologist based on the imaging quality (e.g., 

less blurry, better view of gallbladder, etc). Such single-image diagnosis by the EDLM achieved an 

accuracy 91.6%, sensitivity 87.3%, specificity 93.9%, positive predictive value88.1%, and negative 

predictive value 93.4% (Table 2, row 15). Both the majority vote and the single-image based 

diagnosis at the patient level by the EDLM outperformed the diagnosis performance of all the three 

human experts, as seen in Table 2 (rows 9 to 11 and rows 16 to 18) and in the ROC curve (Figure 2B 

and Figure 2C).  
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Combining the diagnosis of theEDLM and expert 

Considering the potentially serious consequence of delayed treatment for infants with BA, it is 

desirable to improve the sensitivity of diagnosis while keeping the specificity at a high level. One 

possible way to achieve such a goal is to combine the diagnosis of human expert with that of the 

deep learning model. Here on the external validation dataset, each patient was diagnosed with BA if 

either the expert or the EDLM thought so. With such combined diagnosis, the sensitivities of three 

human experts at image level were improved substantially (Expert C, increased from 77.1% to 

95.3%; Expert D, increased from 69.5% to 93.2%; Expert E, increased from 87.3% to 95.8%), 

although the specificities of their diagnosis decreased moderately (Expert C, decreased from 83.5% 

to 80.5%; Expert D, decreased from 90.2% to 86.1%; Expert E, decreased from 90.2% to 86.1%) 

(Table 2, rows 5 to 7). Similar findings were found when tested at patient level with multiple images 

and at patient level with a single image (Table 2, rows 12 to 14 and rows 19 to 21). These findings 

suggest that the combined approach outperforms not only each expert but also the EDLM, as 

confirmed from the ROC curve in Figure 2D (also see supplementary Figure S3), particularly in 

reducing the misdiagnosis of BA. 

 

Diagnosis based on smartphone photos of sonographic images by the EDLM 

     In reality, the sonographic machines used for medical examination in hospitals are often not 

connected to the internet, and it may not be convenient or allowed to extract the original ultrasound 

images from the machine system. To avoid such obstacle when applying the deep learning model in 

more medical centers particularly from rural areas, one simple solution is to take a photograph of the 

sonographic image by a smartphone and then send the photo to a remotely located AI system for 
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intelligent diagnosis. However, the image quality of the photograph would be inevitably affected by 

this imaging process, e.g., with more noise included or shape and texture of gallbladder regions 

deformed (Figures 3A Right, 3B Right). Therefore, it would be desirable if the deep learning model 

can still work well when applied to the analysis of such smartphone photos.  

To evaluate the robustness of the EDLM in this case, one original image per patient (as 

mentioned above for the single-image diagnosis) from the external validation dataset was pictured by 

a smartphone (HUAWEI P10, Rear Camera: 12 million pixels) (Figures 3A, 3B), with the original 

image information kept as much as possible during picturing (e.g., by making camera viewing 

direction perpendicular to the machine screen). Smartphone photos were saved in the JPEG format. 

As done for the original images, the region of gallbladder was extracted from each photograph and 

then fed into the EDLM for intelligent diagnosis. Although the EDLM was trained with the original 

clean images of the training cohort, the diagnosis of the smartphone images by the model resulted in 

an accuracy 86.9%, sensitivity 89.2%, and specificity 85.7% (Table 2, row 22). The AUC value 

(0.902) is slightly lower than that tested with the original images (AUC=0.930), but the ROC curve 

(Figure 3C) together with the prediction performance (Table 2, row 22) suggests that such diagnosis 

is still comparable to all three human experts who diagnosed based on the original clean images.  

Considering the promising external validation result based on smartphone photos, a smartphone 

app has been developed and released (Figure 4), from which users can freely upload photos of 

ultrasound images and interactively locate the gallbladder regions. The software would send photos 

to and collect prediction results from a cloud platform running the EDLM. An initial prospective 

study(sonographic gallbladder images were from multicenters photographed by different 

radiologists) with 71 BA patients and 103 non-BA patients (one photo per patient) showed that the 
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app performed similarly well, with an accuracy 85.6%, sensitivity 85.9%, specificity 85.4%, and 

AUC value (0.856). The small variation in performance between the prospective study and the above 

external validation is probably due to the uncontrolled picturing conditions in the prospective study, 

where different users may use different smartphones in varying lighting environments. Such 

smartphone app provides the opportunity to help clinicians improve their diagnosis performance 

particularly for hospitalsin rural area. 

 

Diagnosis based on sonographic videos by the EDLM 

In practice, human radiologists make diagnosis not based on observing one or a few static 

sonographic images but by dynamically observing the gallbladder region with real time US scanning. 

Also, it would be inconvenient for radiologists to select one or a few static images and then draw 

bounding boxes surrounding the gallbladder before sending the images to the intelligent diagnosis 

system. Therefore, it would be ideal if the intelligent diagnosis system can make fully automatic 

diagnosis just based on the recorded video sequence of sonographic images. To achieve this goal, we 

trained an auto segmentation model(see supplementary materials) and an initial prospective study 

was performed with a collection of 34 sonographic videos obtained from 34 infants (17 with BA and 

17 without BA). The diagnostic performance of EDLM was compared with performance of three 

human experts, each of whom independently made diagnosis by reviewing videos and were blinded 

to other clinical information. 

Based on the fully automatic diagnosis process (figure 5), 16 out of the 17 BA videos were 

correctly diagnosed containing BA (sensitivity 94.1%), and 16 out of the 17 non-BA or healthy 

videos were correctly diagnosed containing no BA (specificity 94.1%). Compared to the diagnosis 
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performance from the experts (Table 2, last 3 rows), the EDLM is comparable to three experts. More 

evaluations showed that the diagnosis performance of the EDLM changes little when varying the 

model hyperparameters, such as changing the percent of the selected images from 20% to 10% and 

changing the percent of diagnosed BA images from 10% to 30%, suggesting strong robustness of 

theEDLM. 

 

Initial attempt to interpret AI diagnosis 

One widely-used method to explore black-box of AI diagnosis is the class activation map 

(CAM) which can provide the attended image region(s) for each specific prediction from the model 

30. Based on the attended region from CAM, people may infer why the model makes the current 

prediction for each image (e.g., "because the model focused on the gallbladder region and therefore 

used the visual features within this region to make the decision"). If the attended region obtained by 

CAM covers or partly covers the regions used by human experts for diagnosis ("Consistent" in 

supplementary Table S3), it may improve the sense of trust in the AI model for the current diagnosis. 

Otherwise, if the attended region obtained by CAM does not cover any region of interest used by 

experts ("Inconsistent" in supplementary Table S3), this may indicate that the AI model does not use 

appropriate visual features to make current (either correct or incorrect) decision. Of all the external 

validation images, detailed inspection showed that 98.1% were consistent in decision making 

between the EDLM and human experts. Of the correctly diagnosed external validation images, 

97.9% were consistent (Supplementary Table S3, row 3; also see Figure 6A) and 2.1% were 

inconsistent (Supplementary Table S3, row 3; Figure 6B); Of the incorrectly diagnosed external 

validation images, 100% were consistent (Supplementary Table S3, row 6; Figure 6C). 
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Discussion 

    In this multicenter study, we trained and validated a state-of-the-art EDLM based on 

sonographic gallbladder images for the diagnosis of BA. The EDLM outperformed human experts on 

both internal training and external validation cohorts. Moreover, combined with the prediction of the 

EDLM, the sensitivities of human experts in identifying patients with BA were substantially 

improved from 69.5%~87.3% to 93.2%~95.8% in image-level diagnosis, and were even better than 

that of the EDLM alone. A higher sensitivity would lead to fewer misdiagnosis and hence benefit 

patients with suspected BA in clinical practice. Hence, all these findings indicate that the EDLM 

could not only be used to help diagnose BA in primary hospitals lacking experts, but also help 

experienced experts to further improve their performance in the diagnosis of BA. 

We also evaluated the EDLM with gallbladder photos taken by a smartphone. Although the 

image quality of smartphone photos was inevitably downgraded compared to the original clean 

images, surprisingly, the model still performed well, with similar accuracy but higher sensitivity than 

the experts. Another prospective study with the developed and released smartphone app showed 

similar diagnosis performance. This opens an opportunity of remote and convenient online diagnosis 

especially for rural and underdeveloped regions without experts. In China, sonographic machines for 

medical diagnosis are usually not allowed to connect to the internet. However, the expert-level 

performance of the EDLM on the smartphone app, together with the nation-wide mobile networks 

and low-price smartphones, would make it easy and convenient for clinical staff even in remote 

underdeveloped areas to upload gallbladder photos with smartphones for online and real-time 

diagnosis consultancy. Such photo-based online consultancy would largely improve the diagnosis 
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accuracy particularly for those radiologists with less experience or from underdeveloped regions.  

In addition, an initial video-based intelligent diagnosis showed that theEDLM, together with 

automatic selection of relevant images and localization of gallbladder regions, can more accurately 

diagnose BA than human experts. Such video-based diagnosis avoids the manual effort in image 

selection and gallbladder region localization by radiologists, and could be potentially embedded into 

the existing diagnostic ultrasound system for fully automated diagnosis of BA during medical 

examination.  

The initial attempt to interpret the model’s predictions showed that the model also attended to 

the gallbladder regions during diagnosis as human experts did. However, among a small proportion 

of the correct diagnoses, the model made decisions just based on the visual features outside the 

gallbladder regions. There were 2.1% of inconsistency among correctly diagnosed external 

validation images, which indicates the model can make a correct diagnosis by recognizing features 

other than gallbladders in some circumstances. This suggests that there might exist certain non-

gallbladder features associated with BA. More investigation is necessary to explore the potentially 

novel biomarkers for the diagnosis of BA.               

Deep learning models are usually powered by a large scale of dataset 31. However, BA is a rare 

disease with low incidence, making it challenging to obtain large dataset as for other diseases 26, 27, 28, 

29. To alleviate the potential over-fitting issue due to limited training dataset, we applied a few 

number of effective strategies for model training, including the ensemble learning, data 

augmentation, class weight for the imbalanced dataset between the BA and the non-BA classes, 

dropout of neurons during learning, and transfer learning from a pre-trained deep learning model 

based on large-scale natural images. Experiments showed that these strategies largely improved the 
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generalizability of the deep learning model particularly when evaluated on the external validation 

dataset, suggesting that such strategies may be adopted in prospective studies relevant to medical 

image classification.  

In most of this study, the gallbladder region in each image need to be manually located with a 

form of bounding box provided by radiologists, which inevitably would increase burden on human 

experts during diagnosis. This issue can be avoided by automatically detecting the region of 

gallbladder from each image, which is feasible based on the recently developed deep learning models 

like Faster R-CNN 32 and will be part of the future work. Furthermore, the initial investigation of 

model interpretation told us, if there were vascular or intestinal gas interference around the 

gallbladder, the model might mistakenly identify these interfering tissues as gallbladder and made a 

diagnosis partly based these non-gallbladder regions. Automatic precise localization of gallbladder 

could make the AI model focus on the correct gallbladder region and therefore potentially further 

improve the performance of intelligent diagnosis. This may be achieved by the recently developed 

deep learning based semantic image segmentation models like the U-Net 33 and DeepLab 34. The 

more automatic precise localization of gallbladder regions would also enable more accurate video-

based intelligent diagnosis. In addition, recent study 35 showed that the AI performance could be 

improved when using three-dimensional sonographic data. Therefore, one possible future work is to 

use sonographic volume data to potentially further improve the performance of the deep learning 

model.  

In conclusion, we developed an EDLM that outperforms human experts in diagnosis of BA 

based on a relatively small-scale sonographic gallbladder images acquired from five different 

hospitals. The generalization capability of the model was confirmed with an external validation 
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dataset obtained from another six hospitals. Moreover, this model is potentially deployable in 

multiple application scenarios, such as remote diagnosis based on a smartphone app to conveniently 

help the unexperienced radiologists in primary hospitals, diagnosis based on the combined 

predictions from the model and human radiologists to further improve the diagnosis sensitivity even 

for experienced radiologists in tertiary hospitals. To the best of our knowledge, this is the first deep 

learning model for the diagnosis of BA based on sonographic gallbladder images. Since there are still 

lots of underdeveloped regions lacking sufficient healthcare support and experts for diagnosing BA 

all over the world, the application of the EDLM in clinical practice would benefit those jaundiced 

infants with suspected BA.  

 

Materials and Methods  

Patients and data collection 

This multicenter study was approved by the institutional Clinical Research Ethics Committee of 

the First Affiliated Hospital of Sun Yat-sen University, and written informed parental consent was 

obtained before collecting the sonographic images from each patient. Prospective research of this 

study was also registered at www.chictr.org.cn (ChiCTR1800017428).  

Infants younger than 5 months old with hyperbilirubinemia (serum direct bilirubin level >17.1 

umol/L and the ratio of direct to total bilirubin level >20%) 36 and suspected of BA were initially 

selected from 11 hospitals between January 2010 and June 2019 (Figure 7). The exclusion criteria for 

patients are as follows: (1) the final diagnosis was unclear; (2) jaundice was caused by bile duct 

obstruction to which abdominal mass compression gave rise; (3) the patient had a history of 

abdominal surgery; (4) the visualization of gallbladder was indeterminate. For the patients satisfying 
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(4), the diagnosis is highly suggestive of biliary atresia and referral to the experienced center for 

further examination would be recommended. In order to expand the sample size, we also randomly 

selected some infants from the same 11 hospitals who did not have any known liver diseases and 

were considered as non-BA with a normal transcutaneous bilirubinometer test. Finally, a total of 

1100 patients with suspected BA and 339 infants without jaundice were enrolled. Of the 1100 

patients with suspected BA, 432 infants had BA and 668 infants had non-BA. All diagnoses were 

confirmed by intraoperative cholangiography under laparoscopy, percutaneous ultrasound-guided 

cholecystocholangiography, liver biopsy or follow up. 

For each infant, sonographic gallbladder images were acquired either prospectively or 

retrospectively. The prospective image acquisition need to satisfy the following criteria: (1) images 

were acquired after the patient fasted for at least 2 hours ; (2) gallbladder was detected by high-

frequency transducers (> 7 MHz); (3) a complete outline of the gallbladder long axis was included; 

(4) there was no mark or caliper within the image; (5) the depth of the image is less than 5 cm; (6) 

the image resolution is large enough (often larger than 300-by-300 pixels); (7) at least 2 independent 

gallbladder images were obtained from each patient. When images were acquired retrospectively, at 

least the criteria (1), (2), (3), (4) and (6) need to be satisfied. 

All images that were potentially available were reviewed by a senior sonography expert 

(L.Y.Z.) and those with poor quality were excluded. We finally retrospectively and prospectively 

obtained 3705 sonographic gallbladder images (925 from 330 patients with BA, 2780 from 811 

patients without BA) from the principal hospital and 4 collaborating hospitals as training cohort, and 

prospectively obtained 841 sonographic gallbladder images (236 images from 102 patients with BA, 

and the other 605 images from 196 patients without BA) from the remaining 6 collaborating 
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hospitals as external validation cohort (Supplementary Table S4). Considering that each image 

includes irrelevant regions (e.g., dark regions close to image boundaries and text information around 

the top regions), a bounding box containing the entire gallbladder was manually drawn with the free 

software ImageJ (version 1.52a) by two radiologists (W.Y.Z. and W.H.G.), and then a senior doctor 

(L.Y.Z.) double checked and ensured the bounding box was selected appropriately.  

 

Diagnosis by Human Experts 

In order to evaluate the efficacy of the deep learning approach, the performance of human 

experts was provided in advance for direct comparison between the AI model and humans. To obtain 

the patient-level diagnosis performance, each random-ordered patient’s image data in the training 

cohort was presented and diagnosed as either BA or non-BA independently by two human experts 

(J .X.L. and C.Y.), and each patient’s image data in the external validation cohort was presented and 

diagnosed independently by the other three human experts (Z.J.W., D.C. and X.X.D.), both only 

based on all the available (often 1-3) images for each patient diagnosis. All five experts had more 

than 10 years of experience with pediatric ultrasound. Similarly, to obtain the image-level diagnosis 

performance, each image without any patient ID information was presented randomly and diagnosed 

independently by the same experts as for the patient-level diagnosis. All these five experts have not 

read any of the patient images before attending this study and had no access to any other patient 

information (e.g., clinical history, other imaging results, etc.) during their diagnosis. 

 

Ensembled deep learning framework 

In this study, two types of effective AI techniques called deep convolutional neural networks 
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(CNNs) and ensemble learning were adopted and combined together for intelligent diagnosis of BA. 

Multiple (e.g., 5 here) CNNs were trained with the training cohort and then the output predictions of 

these CNNs were averaged to predict the class label of each image in the validation dataset, resulting 

in an EDLM (Figure 8A). Specifically, the training cohort was randomly separated into five 

complementary subsets (i.e., 5-folds), each containing the images of an equivalent number of 

patients. Then, each CNN was trained with four subsets and the training was stopped when the 

performance of the CNN started to decrease on the remaining subset. The subset used to determine 

time point to stop the training of each CNN was unique (e.g., subset 5 for first CNN, and subset 1 for 

second CNN), which also means that the combination of four subsets for training each CNN was also 

unique (e.g., subset 1-4 for first CNN, and subsets 2-5 for second CNN). In this way, we not only 

solved the issue about when to stop training a CNN, but also make the five trained CNNs a bit more 

diverse from each other, where the diversity among CNNs would improve the generalization ability 

of the ensembled model as confirmed in the empirical evaluation. The adopted CNN model Se-

ResNet (Supplementary Figure S4) and the training of each Se-ResNet (Figure 8B) were described in 

detail in the supplementary material. 

 

Measurements of the diagnostic performance 

The performance of each EDLM was evaluated on the test (validation) dataset, with the test 

dataset varied for different purposes (as seen in the Results section). By comparing the predicted 

classes from the model with the ground-truth classes obtained in advance over all the test images, the 

sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), 

and the area under the ROC curve (AUC) of the ensembled model were calculated. At the image 
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level, the ROC curve of the EDLM was generated by varying the threshold for the output prediction 

of the model, where the threshold was used to binarize the model’s continuous output. Different 

thresholds could lead to different binary predictions of the model for each image and therefore result 

in different sensitivities and specificities on the test dataset. Similarly at the patient level, a specific 

threshold would lead to the specific binary predictions for the (often multiple) images of each 

patient, and therefore result in one specific binary prediction for each patient after the majority 

voting over the multiple binary predictions of the images from the same patient. Then, by varying the 

thresholds, one ROC curve would be generated based on the sequence of sensitivities and 

specificities at the patient level. In addition, for comparison, the above measures except the AUC 

were also obtained for each human expert based on their diagnosis results and the ground-truth 

classes for the test images. 
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Tables 

Table 1. The diagnostic performance of the ensembled deep learning model and two human experts 

on the internal cross-validation dataset. 

  AUROC Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

PPV (%) NPV (%) 

 

Image-level 

AI Model 0.952 88.2 89.8 89.4 74.1 95.8 

Expert A NA 76.3 91.0 87.4 73.9 92.0 

Expert B NA 93.8 53.7 63.7 40.3 96.3 

 

Patient-level 

AI Model 0.953 93.3 85.2 87.6 72.0 96.9 

Expert A NA 65.8 96.8 87.8 89.3 87.4 

Expert B NA 90.0 57.6 67.0 46.8 93.4 

Note_PPV= Positive predictive value; NPV= Negative predictive value. 
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Table 2. The diagnostic performance of the ensembled deep learning model, three experts, and the 

human-model combination on the external validation dataset and the comparison of the model and 

three experts based on sonographic videos. 

  AUROC Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

PPV 

(%) 

NPV 

(%) 

 

 

 

 

 

Image-level 

AI Model 0.942 88.6 93.7 92.3 84.6 94.5 

C NA 77.1 83.5 91.7 64.5 90.3 

D NA 69.5 90.2 84.4 73.5 88.3 

E NA 87.3 90.2 89.4 77.7 94.8 

C + Model NA 95.3 80.5 84.7 65.6 97.8 

D + Model NA 93.2 86.1 88.1 72.4 97.0 

E + Model NA 95.8 86.1 88.8 72.9 98.1 

 

 

 

 

Patient-level 

(Diagnosed with all 

images) 

AI Model 0.956 93.1 93.9 93.6 88.8 96.3 

C NA 88.2 78.1 81.5 67.7 92.7 

D NA 81.4 87.2 85.2 76.9 90.0 

E NA 89.2 89.8 89.6 82.0 94.1 

C + Model NA 96.1 75.5 82.6 67.1 97.4 

D + Model NA 97.1 83.2 87.9 75.0 98.2 

E + Model NA 98.0 85.2 89.6 77.5 98.8 

 

 

 

Patient-level 

(Diagnosed with single 

image) 

AI Model  0.930 87.3 93.9 91.6 88.1 93.4 

C NA 76.5 81.8 80.5 69.6 87.1 

D NA 70.6 92.3 84.9 82.8 85.8 

E NA 83.3 87.4 86.6 77.4 91.1 

C + Model NA 95.1 81.6 86.2 72.9 97.0 

D + Model NA 92.2 87.4 89.6 80.3 95.6 

E + Model NA 96.1 86.2 89.6 78.4 97.7 

Smartphone image AI Model 0.902 89.2 85.7 86.9 76.5 93.9 

 

 

Video* 

AI Model  NA 94.1 94.1 94.1 94.1 94.1 

C NA 100 58.8 79.4 70.8 100 

D NA 82.3 100 91.2 100 85.0 

E NA 94.1 94.1 94.1 94.1 94.1 

Note_PPV= Positive predictive value; NPV= Negative predictive value. 

*34 sonographic videos were obtained from 34 infants (17 with BA and 17 without BA). 
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Figure legends 

 

 

 

(A) 

 

(B) 

Fig. 1. The ROC curves of the ensembled deep learning models for the diagnosis of biliary 

atresia on the internal cross-validation dataset with two human experts' performance for 

comparison. (A) The ROC curve of the model at image level. (B) The ROC curve of the model at 

patient level. The performance of the two experts were represented by individual solid circle, which 

is under the ROC curve and therefore suggests inferior performance to the ensembled deep learning 

model. The blue star mark represents the performance of the model with the default threshold (0.5) to 

binarize predictions of the model. 
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(A) 

 

(B) 

 

(C) 

 

(D) 

Fig. 2. The performance of the ensembled deep learning model, human experts, and the 

combinations of model and humans for the diagnosis of biliary atresia on the external 

validation dataset. (A)the ROC curve of the model at image level. (B) the ROC curve of the model 

at patient level base on majority vote. (C) the ROC curve of the model at patient level based on 

single image with best image quality for each patient. (D) the performance of the combined deep 

learning model and human expert (circles) at image level. The circles are above the ROC curve of 

the deep learning model, suggesting the superior performance of the human-AI combination. The 

blue star mark represents the performance of the model with the default threshold (0.5) to binarize 

predictions of the model. 
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(A) 

 

(B) 

 

(C) 

Fig. 3. Diagnosis based on smartphone photos of sonographic images by the deep learning 

model. (A) an exemplar original image from a patient with BA (Left) and the smartphone photo of 
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the image (Right). (B) an exemplar original image from a patient without BA (Left) and the 

smartphone photo of the image (Right). (C) the ROC curve of the model for the diagnosis of BA on 

the smartphone images of external validation dataset, with three human experts' performance on the 

original clean external validation dataset for comparison. 
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Fig.4. The interface for each step of the smartphone app based on the ensembled deep learning 

model. 
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Fig.5. The diagnostic process for each sonographic gallbladder video 
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(A) 

 

(B) 

 

(C) 

Fig. 6. The attended regions during diagnosis by the ensembled deep learning model (with 

reddish regions corresponding to more attention in the heatmap on each row). (A) the image 

diagnosed correctly by the model, and the region of interest was consistent between the model and 
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human expert. (B) the image diagnosed correctly by the model, and the region of interest was 

inconsistent between the model and human expert. (C) the image diagnosed incorrectly by the model, 

and the region of interest was consistent between the model and human expert. 
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Fig.7. Flow chart of the study. 
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(A) 

 

(B) 

Fig.8. The ensembled deep learning approach for this study. (A) the ensembled deep learning 

framework. (B) the training process for each individual CNN model. 
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