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Abstract 

Radiomic features are quantitative data calculated from routine medical images and have shown great 
potential for disease phenotyping and risk stratification in cancer. Patients with systemic sclerosis (SSc), a 
multi-organ autoimmune disorder, have a similarly poor prognosis (10-year survival of 66%), due to 
interstitial lung disease (ILD) as the primary cause of death. Here, we present the analysis of 1,355 stable 
radiomic features extracted from computed tomography scans from 156 SSc-ILD patients, which describe 
distinct disease phenotypes and show prognostic power in two independent cohorts. We derive and 
externally validate a first quantitative radiomic risk score, qRISSc that accurately predicts progression-free 
survival in SSc-ILD and outperforms current clinical stratification measures. Correlation analysis with lung 
proteomics, histology and gene expression data in a cross-species approach demonstrates that qRISSc 
reverse translates into mice and captures the fibrotic remodeling process in experimental ILD. 
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Introduction 
“Radiomics'' is a field of research which describes the in-depth analysis of tissue phenotypes by automated 
and computational retrieval of high-dimensional quantitative imaging features from medical images1,2. This 
approach challenges the current practice of subjective and mostly qualitative visual image analysis and 
extends it beyond traditional image semantics3. The value of these quantitative radiomic features lies in their 
ability to capture comprehensive, imaging-based characteristics, including tissue intensity, shape, and 
texture. These features mostly cannot be perceived by eye, and, as such, contain distinct and 
complementary information compared to clinical, laboratory, or functional data3. By integrating with 
appropriate data mining techniques, radiomics has demonstrated great potential for evidence-based 
decision support in personalized medicine1,2. In different types of cancer, specific radiomic features have 
emerged as promising prognosticators for clinical outcome and drug response4–8.  Radiomic features have 
further been shown to reflect the underlying tumor biology as assessed by correlation with tissue-based 
genomic or proteomic data6,8–10, supporting the hypothesis that macroscopic radiomic features allow tracing 
back to microscopic tissue characteristics1. While radiomics research has been initiated and is most 
advanced in oncology, including lung cancer4,6,9,10, its potential has not yet been explored in-depth for non-
malignant lung diseases11–15, which account for one out of six deaths worldwide and are the third leading 
cause of mortality16. 
Interstitial lung disease (ILD) is an umbrella term for a group of chronic parenchymal lung disorders with 
different etiologies, in which fibrosis of the lung interstitium is the common pathophysiological end-stage. 
Idiopathic pulmonary fibrosis (IPF) and ILD associated with systemic sclerosis (SSc) are the most prevalent 
and severe subtypes17,18. SSc is a rare autoimmune connective tissue disease with multi-organ involvement 
and a global incidence of 10–50 cases per million people per year19. ILD, which can develop early in the 
disease course20, is the leading cause of death accounting for 35% of disease-specific mortality21,22.  
A major challenge in the management of SSc-ILD patients is the large inter-individual heterogeneity on a 
clinical and molecular level23–25. Whereas approximately 46% of SSc-ILD patients will develop progressive 
disease with need of treatment, others will remain stable for years even without therapeutic intervention26. 
In addition, the progression rate i.e. time to and pace of progression, varies tremendously26. This high 
variability in patient-specific disease trajectories warrants valid prognostic biomarkers for individual risk 
stratification. 
Medical imaging, particularly high resolution computed tomography (HRCT), is an integral part of the 
standard-of-care of SSc-ILD patients, as it is non-invasive and allows longitudinal monitoring of the entire 
lung pathology with high sensitivity27–31. Pulmonary function tests (PFTs)32 are another commonly used 
diagnostic tool, although they lack disease specificity and fail as a stand-alone screening method in early 
SSc-ILD with preserved lung volumes despite radiologically proven parenchymal disease33–35. Extent of lung 
fibrosis on HRCT (threshold of 20%) and/or presence of a restrictive ventilation defect (Forced Vital Capacity 
(FVC)% predicted < 70%) have been associated with poor SSc-ILD outcome36,37 and are currently most 
often used for staging and risk stratification in clinical practice. Recent data challenge this convention 
demonstrating that even patients with mild SSc-ILD (lung fibrosis extent on HRCT <10%, FVC 80-100%) 
frequently developed progressive ILD with reduced survival26. 
The lack of prognostic and independently validated biomarkers38,39, which could be met by the recent 
advances in image acquisition, processing, and high-throughput image analysis, have prompted the herein 
presented study. 
Here, we report four key findings: 1) We confirm the reproducibility of radiomic features with respect to tissue 
segmentation and identify 1,355 stable radiomic features for SSc-ILD. 2) By using unsupervised clustering, 
we discover two distinct patient clusters based on radiomic profiling that describe different SSc-ILD 
phenotypes and provide crucial information on differences in (progression-free) survival. 3) We derive and 
validate a prognostic radiomic risk score for SSc-ILD progression, qRISSc, that allows accurate prediction 
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of progression-free survival outperforming current SSc-ILD risk stratification tools in two independent, well-
characterized patient cohorts. Lastly, we provide insights into the biological basis of qRISSc by correlation 
analysis with molecular data including whole-lung tissue proteomics, histological and gene expression data 
in a cross-species approach, which shows that qRISSc is reverse translatable to mice and specifically 
reflects the underlying fibrotic remodeling processes in (experimental) ILD.  

Results 

Study Design and Datasets 
In this study, we retrospectively investigated two independent prospective cohorts of SSc-ILD patients 
including 90 patients (76.7% female, median age 57.5 years) from the University Hospital Zurich and 66 
patients (75.8% female, median age 61.0 years) from the Oslo University Hospital. A third dataset, derived 
from an experimental cohort of 30 mice with bleomycin-induced lung fibrosis, a widely acknowledged 
preclinical model for ILD40, was used for association studies with biological features, including proteomic, 
histological, and gene expression data. For every subject, we defined and extracted 1,386 radiomic features 
(Supplementary File 1) from CT images including 17 intensity, 137 texture, and 1,232 wavelet features using 
our in-house developed radiomics software Z-Rad. A detailed description of the study workflow is available 
in Figure 1. A summary of patients’ demographics and clinical characteristics at baseline for both study 
cohorts is given in Supplementary Table 1.  
 

 
Figure 1: Study workflow. Our in-house developed radiomics software Z-Rad was applied to three different datasets, 
including two independent cohorts of SSc-ILD patients from 1) the University Hospital Zurich (derivation cohort) and 2) 
the Oslo University Hospital (validation cohort), and one experimental ILD cohort, composed of 30 bleomycin-treated 
mice for association studies with biological features (i.e. proteomic, histological, and gene expression data). For every 
subject, in total, 1,386 radiomic features were extracted from segmented CT images, including 17 intensity, 137 texture, 
and 1,232 wavelet features. Filtering of robust radiomic features (ICC ≥ 0.75), unsupervised clustering, and construction 
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of the quantitative radiomic ILD risk score (qRISSc) for progression-free survival in SSc-ILD were performed in the 
Zurich cohort. Independent and external validation of the built qRISSc was performed using the Oslo cohort.  

Identification of robust radiomic features in SSc-ILD 
Stability and reproducibility of radiomic features is a prerequisite for building generally applicable prognostic 
and predictive radiomic models41. Operator variability in the tissue segmentation process can largely affect 
radiomic feature values by introducing errors in the calculation of features and can thus impact prediction 
accuracy6,42,43. In the context of SSc-ILD, robustness of radiomic features against semi-automated lung 
delineation has not yet been evaluated. Hence, we first assessed the intra- and inter-operator feature 
stability by intraclass correlation (ICC) analysis in a subgroup of SSc-ILD patients from the Zurich cohort (n 
= 15, Fig. 2).  
Overall, excellent agreement and overlap in the semi-automatically delineated lung structures between the 
different operators was observed (Fig. 2a), confirming the reproducibility and validity of our lung 
segmentation protocol. Accordingly, the vast majority of radiomic features (97.8%) was found to be robust 
with only a few features having lower ICC values than 0.7544 in the inter-operator (2.2%, n = 30, Fig. 2b) 
and intra-operator (0.3%, n = 4, Fig. 2c) analysis resulting in a final set of 1,355 robust radiomic features for 
SSc-ILD. 

 
Figure 2: Assessment of radiomic feature robustness against inter-and intra-operator variability in the semi-
automated lung segmentation process. (a) Representative transversal HRCT image showing the lung delineation 
structures of the three different examiners (examiner 1: green and magenta, examiner 2: yellow, examiner 3: cyan) for 
the intra- and inter-operator ICC analyses. (b) Boxplots showing the distribution of the ICC coefficient per radiomic 
feature category for inter-operator ICC analysis and (c) intra-operator ICC analysis. In (b, c), the bright red line indicates 
the threshold defined for the ICC analyses (ICC = 0.75; corresponding to good reproducibility44). The pie charts 
summarize the respective percentage and total numbers of robust (ICC ≥ 0.75) and non-robust (ICC < 0.75) radiomic 
features.  

Unsupervised clustering of radiomic features identified two distinct SSc-ILD patient 
clusters 
Having confirmed the robustness of radiomic features in SSc-ILD, we next explored the radiomic 
phenotypes of the 90 SSc-ILD patients from the Zurich cohort with unsupervised k-Means clustering in order 
to identify homogeneous imaging-based groups without any a priori assumption. We then examined their 
associations with clinical baseline parameters and patient outcome among the obtained clusters. 
Using the final set of 1,355 robust features, cluster analysis revealed two distinct patient clusters based on 
their radiomic profiles with good bootstrap (n = 1,000) cluster stability (Jaccard coefficient for cluster 1: 0.90 
and for cluster 2: 0.82, wherein 1 indicates perfect stability; Fig. 3a and b). The two clusters exhibited 
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different baseline characteristics (Fig. 3 and Supplementary Tab. 2) with patients from cluster 2 (n = 31) 
having a significantly worse restrictive ventilation defect than patients in cluster 1 (n = 59) as evidenced by 
significantly lower lung function parameters (p < 0.001, Fig. 3c to e). In addition, patients from cluster 2 
performed significantly worse in the 6-min walk test, a measure of the exercise capacity of the patient, and 
showed lower oxygen saturation at the beginning and end of the test, shorter walk distance, and more 
severe exertion (Fig. 3g to j). There was also a significant association of cluster 2 with the presence of 
pulmonary hypertension (p = 0.001, Fig. 3a), which was consistent with the significantly higher mean systolic 
pulmonary artery pressure (PAPsys; measured by right heart catheterization and/or echocardiography) in 
subjects belonging to this cluster (Fig. 3f). Cluster 2 was further significantly enriched for certain visual 
HRCT patterns such as honeycombing (p = 0.004) and the radiological usual interstitial pneumonia (UIP) 
subtype (p = 0.01, Fig. 3a). Yet, the clusters were not found to be associated with the different radiomic 
feature classes (Fig. 3a).  
Most notably, radiomics clusters did not stratify patients according to classical definitions of ILD severity, 
including limited and extensive disease extent as defined by HRCT analysis (<20%, or ≥20%) or PFTs 
(FVC% predicted ≥70% or <70%), respectively, although significant associations with both disease 
classifiers were detected (p = 0.002 and p < 0.001, respectively). Furthermore, there was no difference in 
general disease characteristics, including age, gender distribution, SSc disease duration, active 
immunomodulatory therapy, extent of skin involvement, and autoantibody profiles between the two clusters 
(Fig. 3a and Supplementary Tab. 2), suggesting that radiomic profiles capture lung disease-specific 
phenotypic differences among SSc-ILD patients. 
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Figure 3: Unsupervised k-Means clustering of radiomic data from SSc-ILD patients. (a) Heatmap summarizing 
the k-Means clustering results (Zurich cohort, n = 90). Prior to clustering, radiomic features were z-scored. Associations 
between the two identified radiomic clusters with baseline clinical parameters (above) and visual ILD patterns depicted 
on HRCT (below) are shown. (b) k-Means cluster plot indicating two stable clusters (cluster 1:  0.90, in blue and cluster 
2: 0.82, in yellow). (c-e) Boxplots comparing baseline lung function parameters between the two clusters, including 
FVC% predicted (c), DLCO% predicted (d) and FEV1% predicted (e). Boxplot showing the distribution of the systolic 
pulmonary artery pressure (PAPsys) per cluster. (g-j) Boxplots indicating the results from the 6-min walk test, including 
6-min walk distance (6-MWD, g), Borg scale of perceived exertion (h, scale 0-10, 0 = no exertion, 1 = very weak, 2 = 
weak, 3 = moderate, 5 = strong, 7 = very strong, 10 = extreme exertion). Abbreviations: SSc = systemic sclerosis, P(A)H 
= pulmonary (arterial) hypertension, FVC = forced vital capacity, FEV1 = forced expiratory volume in 1 second, DLCO 
= diffusing capacity for carbon monoxide, F = female, M = male, DIP = diffuse interstitial pneumonia, NSIP = nonspecific 
interstitial pneumonia, UIP = usual interstitial pneumonia, GGO = ground glass opacification. 
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We then assessed whether the two identified patient clusters also differed in terms of their clinical outcome 
by survival analysis with Kaplan-Meier estimator. Consistent with their worse disease phenotype, patients 
of cluster 2 also showed a higher probability of faster disease progression and a decrease in progression-
free survival defined by either the time to a relative decline of ≥ 15% in FVC% predicted (p = 0.001, HR = 
3.52, 95% CI = (1.66-7.45), Fig. 4a) or the time to decline assessed by a recently proposed FVC-DLCO 
composite index45 (p = 0.005,  HR = 2.73, 95% CI = (1.36 - 5.50), Fig. 4b). In addition, a marginal association 
with overall survival was detected, suggesting a higher risk of all-cause death for patients of cluster 2 (p = 
0.07, HR = 2.37, 95% CI = (0.97 - 5.98), Fig. 4c). This demonstrates that radiomic features do not only 
capture ILD-specific phenotypic differences but also contain important prognostic information. 
In summary, unsupervised clustering of the radiomic profiles distinguished and characterized distinct SSc-
ILD phenotypes and provided crucial information on differences in (progression-free) survival.   
 
 

 
Figure 4: Associations of radiomic clusters with clinical outcome. (a, b) Kaplan Meier curves for progression-free 
survival (PFS) defined as either the time to relative FVC decline ≥ 15% (a) or the time to the FVC-DLCO composite 
index (b, FVC-DLCO composite index = relative decrease in FVC% predicted of ≥15%, or a relative decline in FVC% 
predicted of ≥10% combined with DLCO% predicted of ≥15% according to 45). (c) Kaplan Meier curves for overall 
survival (OS) defined as the time to all-cause death. The Hazard ratios (HR) with 95% confidence intervals and p value 
of the univariate Cox regression are shown. 
 

Quantitative radiomic risk score predicted progression-free survival in SSc-ILD 
The high inter-individual variability in the clinical course of SSc-ILD warrants valid prognostic biomarkers for 
personalized management, which so far are lacking. Tools to guide treatment decisions, i.e. watch & wait 
in stable ILD versus immunomodulation in progressive ILD, based on individual risk stratification would have 
tremendous clinical impact. Having found that radiomic features are able to distinguish between “high” and 
“low risk” clusters of SSc-ILD patients for ILD progression, we next assessed the potential to build prognostic 
radiomic signatures allowing risk stratification without the need of extracting all radiomic features.  
To this end, we derived a quantitative radiomics score following a similar design as recently proposed by 
Lu et al.8 for risk stratification in ovarian cancer. The Zurich cohort was used for score construction and 
independent validation was performed on an external out-of-sample dataset consisting of 66 SSc-ILD 
patients from Oslo. Following the approach by Lu et al.8, we first removed radiomic features without 
predictive power using univariate Cox regression analyses for progression-free survival based on our 
primary study endpoint defined as the time to a relative FVC% decline ≥ 15%. With this approach, in total, 
32 prognostic radiomic features were retained. In a second step, we applied cross-validated LASSO 
penalized regression to the retained features and selected all features with a non-zero LASSO coefficient. 
This resulted in j = 26 features, including four intensity, nine texture and 13 wavelet-filtered features. To 
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construct the final quantitative radiomic risk score for progression-free survival in SSc-ILD (qRISSc), we 
calculated the weighted sum of the selected radiomic features,  𝑞𝑅𝐼𝑆𝑆𝑐 = ∑ α	*𝑓*

,
*-.  with α being the feature 

weight and f being the values of z-transformed radiomic features. Due to the rather low sample size of our 
derivation cohort (n = 75), which is within the expected range for this rare disease, we did not perform 
weighting of score features by LASSO coefficient as originally done by Lu et al.8 to avoid overestimation of 
the effect sizes. Instead, we followed a maximum-likelihood approach assigning equal feature weights of αi 

=  .
,
 to calculate qRISSc. Based on the Zurich cohort, we determined an optimal cut-off for qRISSc (cut-off 

value = 0.21) that best split SSc-ILD patients into high- and low-risk groups, with high-risk patients having 
a higher probability of earlier lung function decline than low-risk patients (median progression-free survival 
time = 48.0 months vs. 82.30 months; Fig. 5a).  
To validate the score, we then independently applied qRISSc using the same cut-off value on the external 
out-of-sample dataset from Oslo. Notably, in this independent dataset, patients stratified by qRISSc were 
also significantly different in their progression-free survival with a median progression-free survival time of 
41.7 months in the high-risk versus 88 months in the low-risk group (p = 0.03, HR = 5.14, 95% CI = (1.14 - 
23.20) Fig. 5d), thus validating the score. 
We next compared the prognostic potential of qRISSc to existing clinical SSc-ILD stratification tools, 
including subgrouping of patients based on disease extent on HRCT (<20% or ≥20% fibrosis) or the FVC% 
predicted threshold of <70%, respectively35. In both the external validation cohort from Oslo and the 
derivation cohort from Zurich, neither fibrosis extent on HRCT nor the FVC%-based patients’ risk 
stratification was prognostic for future lung function decline in univariate analysis, overall indicating the 
superiority of qRISSc over current state-of-the art prognostic measures (Fig. 5b and c and 5e and f). 
To evaluate the prognostic power of qRISSc, we calculated the concordance index (C-index) for the survival 
analysis, which is the equivalent to the area under the receiver operating characteristic curve46. In both the 
training and validation cohort, qRISSc showed good prognostic performance with a C-index of 0.67 
(standard error = 0.05; p < 0.001) and 0.71 (standard error = 0.07; p = 0.03), respectively. Of note, in both 
study cohorts, qRISSc was also marginally associated with the other two clinical outcome parameters, 
including the FVC-DLCO composite index (Zurich cohort: p = 0.002, Oslo cohort: p = 0.06) and overall 
survival (Zurich cohort: p = 0.001, Oslo cohort: p = 0.11). 
qRISSc-stratified high- and low-risk patients’ groups also revealed distinct differences in their clinical 
baseline parameters (Fig. 5g, Supplementary Tabs. 4 and 5). High-risk patients consistently presented with 
a more severe ILD phenotype with worse lung function parameters at baseline compared to low risk patients 
in both study cohorts (Fig. 5g). A high-risk score was further associated with the presence of pulmonary 
hypertension, the extent of fibrosis on HRCT (Supplementary Tabs. 4 and 5), and certain visual ILD HRCT 
patterns including honeycombing, traction bronchiectasis and UIP radiological subtype (Fig. 5g). 
Interestingly, no differences were observed in general SSc disease characteristics and patient 
demographics including age, sex, disease duration, and extent of skin involvement (Supplementary Tabs. 
4 and 5).   
Since radiomic features are greatly affected by image acquisition and reconstruction protocols41, we also 
assessed the influence of the different scan parameters, including convolution kernel, slice thickness, and 
type of CT scanner used in this study (Supplementary Tab. 6) on the distribution of qRISSc. 
Multidimensional scaling (MDS) of combined SSc-ILD patients from Zurich and Oslo cohort revealed that 
qRISSc did not separate groups according to different imaging sites and scan parameters, including 
differences in slice thickness (range 0.6 to 3 mm), reconstruction kernels, and scanner types 
(Supplementary Fig. 1). 
In  conclusion, we derived and validated a quantitative radiomic risk score for SSc-ILD progression, qRISSc, 
which accurately predicted progression-free survival and outperformed currently existing prognostic 
measures in an out-of-sample, external patient cohort, confirming the prognostic value of radiomic features 
and highlighting the potential of radiomic feature-based clinical scores for risk stratification in SSc-ILD. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.09.20124800doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20124800


9 

 

 
Figure 5: Prognostic performance of qRISSc compared to standard SSc-ILD staging systems, and associations 
of qRISSc with clinical parameters at baseline. (a-c) Kaplan Meier curves of (a) the constructed quantitative radiomic 
ILD risk score (qRISSc), (b) the HRCT threshold and (c) the FVC% predicted threshold for progression-free survival 
(PFS) defined as the time to relative FVC decline ≥ 15% in the derivation (Zurich) cohort (n = 75). (d-f) Kaplan Meier 
curves of (d) the constructed quantitative radiomic ILD risk score (qRISSc), (e) the HRCT threshold and (f) the FVC% 
predicted threshold for progression-free survival (PFS) in the validation (Oslo) cohort (n = 51 with complete survival 
information). (g) Significant associations of qRISSc with clinical baseline parameters in both, the derivation (Zurich) 
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cohort (n = 75) and validation (Oslo) cohort (n = 66). For (a-f), the Hazard ratios (HR) with 95% confidence intervals 
and p value of the univariate Cox regression are shown. For (g), Fisher's exact test was used for comparison of 
categorical and Mann-Whitney U for comparison of numerical variables, respectively.  

Defining the pathophysiological basis of the quantitative radiomic risk score 
Finally, we aimed to define the biological basis and to reveal possible associations of qRISSc with the 
underlying ILD pathophysiology. Current pathogenic models suggest that SSc-ILD is triggered by repeated 
epithelial and microvascular injury initiating inflammation with activation of innate and adaptive immune 
responses, which results in myofibroblast activation and increased deposition of extracellular matrix (ECM) 
ultimately causing the disruption of the lung architecture, functional impairment and even respiratory 
failure47. 
Lung biopsies are only very rarely performed in SSc-ILD patients48 and patient-derived tissue samples for 
molecular analysis are scarce. Since, consequently, imaging-matched human biosamples were not 
available for this study, we conducted a cross-species correlation approach, using the mouse model of 
bleomycin-induced lung fibrosis as a model system for SSc-ILD. Bleomycin-induced lung fibrosis is the most 
extensively used and best characterized preclinical animal model for ILD as it resembles many aspects of 
the human ILD pathophysiology including epithelial cell apoptosis, inflammatory cell infiltrates, and 
extracellular matrix (ECM) deposition49,50. In addition, we have recently confirmed that also radiomic 
signatures largely translate between experimental ILD in bleomycin-treated mice and ILD in SSc patients51. 
Analogously to SSc-ILD patients, we extracted the complete set of radiomic features from segmented micro-
CT images of bleomycin-treated mice (n = 30), applied z-transformation and built the equally weighted sum 
of the 26 previously selected radiomic score features to construct qRISSc in mice. We firstly compared the 
quantitative score values obtained in mice and our two patients’ cohorts to ensure that qRISSc is (reverse) 
translatable from SSc-ILD patients to mice. We found a very similar score distribution between all three 
datasets derived from mice and the two patient cohorts, confirming the suitability of this animal model as a 
preclinical “radiomic surrogate” for human ILD (Fig. 6a).  
Next, we performed pathway enrichment analysis for significantly qRISSc-correlated proteins (rho ≥ |0.3|, 
p<0.05) derived from whole-lung tissue proteomics to reveal associations of qRISSc with molecular 
pathways and processes related to ILD using Reactome52 and GO:Biological Process53 databases. In total, 
we found 634 out of 5,311 identified proteins (11.94%) that significantly correlated with qRISSc (Fig. 6d). 
Pathway enrichment analysis of those proteins revealed that pathways related to fibrosis development, 
particularly pathways associated with ECM organization and formation were most significantly associated 
with qRISSc (Fig. 6f and g). Consistently, the enriched biological processes that significantly correlated with 
qRISSc were also largely linked to pro-fibrotic remodeling processes underlying ILD, including processes 
related to protein polymerization and ECM assembly (Fig. 6e).  
Among the highly and significantly qRISSc-correlated proteins were multiple ECM proteins, such as collagen 
5α1, (CO5A1, rho = 0.48), collagen 7α1 (CO7A1, rho = 0.55),  collagen 12α1 (COCA1, rho = 0.46), collagen 
15α1 (COFA1, rho = 0.48),  collagen 18α1 (COIA1, rho = 0.47), filamin-C (FLNC, rho = 0.66), and elastin 
(ELN, rho = 0.63) as well as proteins required for ECM assembly and crosslinking, including members of 
the lysyl oxidase family, such as LOXL1 (rho = 0.56) and LOXL2 (rho = 0.68), or peroxidasin (PXDN, rho = 
0.64). In addition, proteins involved in TGF-β activation, including latent-transforming growth factor beta-
binding protein 2 (LTBP2: rho = 0.50) and integrin β6 (ITB6, rho = 0.55), were strongly correlated with 
qRISSc (Fig. 6g). 
To complement the proteomic analysis, we additionally performed whole-slide digital histopathological and 
gene expression analysis of established major fibrotic and inflammatory markers50,54,55 (Fig. 6b and c). In 
line with the proteomic data, qRISSc was also significantly correlated with fibrotic markers on histological 
level with a higher qRISSc value corresponding to a higher fibrosis score (Ashcroft score56, rho = 0.55), and 
increased expression of αSMA, a marker for activated fibroblasts (rho = 0.38). Consistently, qRISSc also 
showed significant association with the expression of fibrotic genes, including collagen 1α1 (Col1a1, rho = 
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-0.62), collagen 3α1 (Col3a1, rho = -0.59), and fibronectin 1 (Fn1, rho = -0.65), where a lower ΔCt value 
and thus negative correlation indicates higher gene expression. Most notably, neither on histological nor on 
gene level, qRISSc correlated with inflammatory markers, such as the number of CD45+ inflammatory cells 
in tissue sections, interleukin 6 (Il6), and monocyte chemoattractant protein 1 (Mcp1) mRNA expression 
(Fig. 6b and c). Collectively, this suggests that qRISSc specifically reflects the underlying fibrotic remodeling 
processes in (experimental) ILD. The fact that we observed a similar score distribution between 
experimental and human ILD demonstrated that qRISSc was reverse translatable from humans to mice, 
pointing out the potential value of the bleomycin-induced lung fibrosis model as a preclinical “radiomic 
surrogate” for human ILD.  
 
 

 
Figure 6. Correlation analysis of qRISSc with molecular data in experimental ILD. (a) Score distribution across the 
three datasets, demonstrating a similar qRISSc distribution between mice of the bleomycin-induced lung fibrosis model 
(n = 30) and SSc-ILD patients (Zurich, n = 75; Oslo, n = 66). (b) Representative histological images of bleomycin-treated 
mice with low and high qRISSc that were stained for the myofibroblast marker alpha smooth muscle actin (αSMA, upper 
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panel), the pan-leukocyte marker CD45 (middle panel) and picrosirius red to visualize collagen fibers (PSR, collagen = 
red, lower panel). Sections of the entire right caudal lobe (scale bar = 1 mm) with higher magnification views (100x 
magnification, scale bar = 100 μm) are shown. (c) Correlation matrix for qRISSc with histological parameters 
(percentage of αSMA and CD45 positivity, and Ashcroft score), and messenger RNA (mRNA) expression of 
inflammatory (Il6, Mcp1) and fibrotic (Col1a1, Col3a1, Fn1) genes. A lower ΔCt value and thus negative correlation 
indicates higher gene expression. The Spearman correlation coefficient rho is shown. Non-significant associations are 
depicted in white. (d) Volcano plot for qRISSc-correlated proteins. Proteins with rho ≥ |0.3| and p < 0.05 are highlighted 
in red. (e) Bar plot of the top 10 (based on p-value) biological processes associated with qRISSc. (f) Bar plot of the top 
10 (based on p-value) pathways associated with qRISSc. (g) Heatplot indicating the top enriched proteins per molecular 
pathway. For (e-g), the most important associations are highlighted in purple. For pathway analyses, only proteins with 
rho ≥ |0.3| and p < 0.05 were considered. 

Discussion 
As the major cause of morbidity and mortality in SSc, ILD remains a challenge for researchers and 
physicians although targeted therapies are becoming increasingly available57. The lack of validated 
prognostic biomarkers39 opposes individualized patient management. Traditionally, molecular data derived 
from tissue biopsies, including genomic and proteomic data have been explored for precision medicine 
approaches. However, the invasiveness of tissue biopsies, the unsuitability for longitudinal assessments, 
the high risk of non-representative sampling due to spatial disease heterogeneity and also the high costs 
associated with molecular profiling have largely limited the implementation in clinical practice. This applies 
even more to SSc-ILD, where lung biopsies are only conducted in exceptional cases, and are not required 
for establishing the diagnosis48. With our radiomics study, we aimed to advance the development of 
personalized medicine approaches in SSc-ILD by providing a non-invasive, cost-effective and reproducible 
way of evaluating phenotypic information derived from HRCT as a base for individualized risk stratification. 
In this study, we identified and analyzed 1,355 stable and reproducible HRCT-derived radiomic features 
from 156 SSc-ILD patients. Using unsupervised clustering and supervised prediction modelling we showed 
that radiomic profiles can quantify lung-specific phenotypic differences based on image intensity, texture, 
and wavelet transformation and that they have prognostic power. We further derived and validated a first 
quantitative radiomic risk score for SSc-ILD progression, qRISSc, that adequately predicted progression-
free survival in two independent cohorts. For this, we adapted the recently proposed methodology for 
radiomics-based score design from Lu et al.8, which was originally developed for risk stratification and drug 
response prediction in epithelial ovarian cancer.  The same methodology for feature selection and score 
building was very recently also adapted by Vaidya et al. and successfully applied to non-small cell lung 
cancer for prediction of added benefit from adjuvant chemotherapy and disease-free survival58. Herein, we 
demonstrated that this approach is also applicable outside of the cancer field and can be transferred to a 
non-malignant lung disease emphasizing the general applicability and great value of radiomics and 
radiomics-derived scores to support and complement clinical decision making. 
In both study cohorts, radiomics-based high-risk stratification was consistently associated with a more 
severe ILD phenotype at baseline, presence of pulmonary hypertension and certain visual ILD HRCT 
patterns including honeycombing, traction bronchiectasis and UIP radiological subtype, all of which have 
been discussed as potential risk factors in SSc-ILD39,59. The fact that we did not observe correlations with 
other suggested clinical risk factors such as e.g. diffuse cutaneous SSc subset, older age, male sex, and 
anti-topoisomerase 1-positivity32,60, underlines that radiomic features capture lung-specific information 
independent of demographic and clinicoserological characteristics. Proposed prognostic factors and/or 
models for SSc-ILD vary among studies and patient cohorts39,59. At present, disease extent on HRCT and 
FVC <70% at first presentation are the most commonly used markers for risk stratification and guidance of 
treatment decision in clinical practice35–37. Our study showed that both stratification tools failed to predict 
progression-free survival in two independent cohorts. The superior performance of radiomics might arise 
from the added value of more detailed and in-depth information on lung pathology. Tissue heterogeneity is 
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reflected on different spatial levels comprising e.g. the radiological, macroscopic, cellular, and the molecular 
level. In “radiomic terms”, tissue heterogeneity is best described by texture features, which are built upon 
density-based assessments. They identify different patterns in the image by describing voxel intensities and 
their spatial arrangement61. In our study, most features in qRISSc (e.g. “coarseness”, “cluster tendency”, 
“sum of variance”) belonged to the radiomics class of texture features or of wavelet transformations thereof. 
Our results are in accordance with previous studies, where texture features seemed to outperform first order 
(intensity) features for prognostic purposes6,8,10.  
The hypothesis that radiologic (radiomic) phenotype characteristics may reflect the underlying 
pathophysiology was supported in our study, where we used a cross-species approach integrating imaging 
with molecular data to define the biological basis of qRISSc. In experimental ILD, the radiomics-derived 
signature was closely linked to specific fibrotic remodeling processes in particular those related to ECM 
assembly and biosynthesis, yet did not correlate with inflammation as assessed by proteomic, histological, 
and immunohistochemical analyses. The fibrotic pathway activation ties in with the worse outcome of the 
high-risk group of SSc-ILD patients identified by qRISSc and may provide a rationale for favoring anti-fibrotic 
over immunomodulating or anti-inflammatory therapeutic strategies in these patients57. The ability of 
radiomic markers to specifically reflect the entire lung pathology non-invasively is particularly attractive in a 
complex multi-organ disease with high molecular heterogeneity such as SSc62. The good transferability of 
radiomics signatures between experimental ILD in bleomycin-treated mice and human SSc-ILD is supported 
by our previous study51 and by the similar distribution of qRISSc between all three datasets. In addition, the 
comparability of both imaging and molecular changes in experimental ILD induced by bleomycin with human 
ILD49,51,54,55,63 support the suitability of this animal model as preclinical “radiomic surrogate” for human ILD. 
The fact that radiomic features, including qRISSc, were reverse translatable from humans to mice 
demonstrates that well characterized and representative animal models could prove valuable to test defined 
hypotheses in radiomics research, particularly for studying links with pathophysiology in rare diseases with 
low numbers of patients and limited access to biosamples. 
There are some limitations to our study, which mainly arise from its retrospective design and the rather low 
numbers of subjects involved. This is balanced by the high quality of the data from two independent, 
prospectively followed SSc cohorts from academic expert sites64, where patients with this rare disease are 
seen with regular and standardized follow-up visits. Due to the modest sample size of our derivation cohort 
(n = 75), we lacked power to assess variable importance (measured by coefficients from LASSO) and 
assigned equal importance to each feature following a maximum-likelihood approach to construct qRISSc. 
Notably, despite this fact, we could fit a significant univariate model with good prognostic power on the 
independent and external validation dataset, demonstrating the reproducibility and validity of the score. 
Future studies on larger cohorts are needed to determine feature importance and to perform proper 
weighting of score features, which will in turn enable us to further optimize the predictive ability of qRISSc. 
Concerns about the reproducibility of radiomic features arise from their dependency on image acquisition 
and reconstruction methodologies as well as the intra-/inter-observer variability during image 
segmentation65,66. In our study, radiomic features, including qRISSc proved to be highly stable against semi-
automated lung segmentation. In addition, no batch-effects in relation to different CT scanner types, scan 
and reconstruction protocols across two inhomogeneous cohorts of patients from independent sites 
occurred. This emphasizes the translational potential of our results and is a strong argument for the future 
clinical application of radiomics. Since radiomic analysis can be performed on information extracted from a 
patient’s routine HRCT scan, radiomic scores, such as qRISSc could provide easy and readily accessible 
means to identify patients at higher risk of progression, who require closer monitoring and immediate 
therapeutic intervention.  
For ultimate validation as a prognostic tool for risk stratification in SSc-ILD prospective multi-center studies 
and/or the analysis of retrospective randomized clinical trial datasets are required. Ideally, in these settings 
the performance of qRISSc in combination with suggested clinical risk factors and in comparison to other 
proposed clinical and functional composite scores for SSc-ILD should be assessed45,67–69. Within this 
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context, the comparison of the prognostic accuracy and power of qRISSc with other HRCT-based 
quantitative imaging scores27,70,71 would also be of great interest. Ultimately, qRISSc should be validated as 
potential tissue surrogate by proteomic analysis of human SSc-ILD lung biopsies, which, however, is 
complicated by the scarce availability of tissue samples and the underlying molecular heterogeneity. To 
further explore the potential of qRISSc, future follow-up studies are needed, addressing its predictive power 
for drug response, its potential to enrich study populations for clinical trials, and most importantly, its 
applicability to other (fibrosing) subtypes of ILD, particularly IPF.  
In summary, by integrating unsupervised cluster analysis and supervised prediction modelling, we 
demonstrated that radiomic features and radiomics-derived scores provide important phenotypic and 
prognostic information with great potential for risk stratification in SSc-ILD. In a cross-species approach, we 
further showed that radiomic signatures can be reverse translated from human to experimental ILD offering 
a valuable test system for radiomics research, which is particularly attractive for rare diseases with low 
numbers of patients and scarce availability of biosamples. 
In conclusion, as a non-invasive, repeatable and cost-effective way of acquiring phenotypic and prognostic 
information derived from standard-of-care HRCT images, we provide a template approach which is 
potentially applicable to other forms of ILD and non-malignant lung diseases.  

Methods 

Patient Cohorts and Clinical Data 
In this study, 90 patients (76.7% female, median age 57.5 years) from the University Hospital Zurich’s 
(derivation cohort) and 66 patients (75.8% female, median age 61.0 years) from the Oslo University 
Hospital’s prospective SSc patient cohorts (external validation cohort) were included. Both centers are part 
of the EUSTAR (European Scleroderma Trial and Research) network72. Patients were retrospectively 
selected based on the following criteria: 

(1) Fulfillment of diagnosis of early/mild SSc according to the Very Early Diagnosis of Systemic 
Sclerosis (VEDOSS) criteria73, or established disease according to the 2013 American College of 
Rheumatology//European league against rheumatism (ACR/EULAR) classification criteria74, 

(2) Presence of ILD on HRCT at first (baseline) visit as determined by a senior radiologist, and  
(3) Availability of a baseline HRCT scan with the following settings:  

(a) Slice thickness between 0.6 and 3 mm,  
(b) One of the following lung kernels available (B60f, B70f, Bl64d, LUNG),  
(c) Filtered-back projection as reconstruction algorithm, and  
(d) CT image acquired in full inspiration.  

For each patient, baseline demographic and clinical parameters, including age, sex, SSc disease duration 
and subset, extent of skin involvement, autoantibody status, presence of pulmonary hypertension according 
to right heart catheterization or echocardiography as judged by the local investigators, and pulmonary 
function test (PFT) parameters were retrieved from the local patients’ records. The recorded PFT 
parameters (expressed as % predicted values) included forced vital capacity (FVC), forced expiratory 
volume in 1 second (FEV1), and diffusing capacity for carbon monoxide (DLCO). Data from the 6-minute 
walk test (6-MWT), including walk distance, oxygen saturation (% SpO2) before and after the test, and Borg 
scale of perceived exertion (Borg CR-10)75, were only available for the derivation cohort. Detailed 
information about the patients’ demographics and clinical characteristics at baseline for both study cohorts 
are provided in Supplementary Table 1. 
The follow-up period was defined as the time interval between baseline visit and the last available follow-up 
visit for every patient. The mean follow-up time for the derivation cohort was 66.1 (± 30.1) months and 43.9 
(± 30.9) months for the external validation cohort. All outcome events occurring in this period were 
considered in this study. As clinical outcomes for SSc-ILD we selected 1) progression-free survival and 2) 
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overall survival, which were defined as the time from the date of the HRCT to the date of first occurrence of 
ILD progression or all-cause death, respectively. Primary endpoint for progression-free survival was the 
progression of ILD defined as a relative decline in FVC% predicted from baseline to follow-up of ≥ 15%. As 
a secondary and exploratory endpoint, we used a recently proposed FVC-DLCO composite index, in which 
progression is defined as either a relative decrease in FVC% predicted of ≥15%, or a relative decline in 
FVC% predicted of ≥10% combined with DLCO% predicted of  ≥15%45. 
The study was approved by the local ethics committees (approval numbers: pre-BASEC-EK-839 (KEK-no.-
2016-01515), KEK-ZH-no. 2010-158/5, BASEC-no. 2018-02165) and written informed consent was 
obtained from every patient.  

HRCT Image Acquisition and Visual CT Analysis 
The settings used for the acquisition of HRCT images are summarized in Supplementary Table 6. All HRCT 
images were assessed for the presence of characteristic visual features of ILD, including ground glass 
opacification (GGO), reticular changes, traction bronchiectasis, emphysema, and honeycombing. In 
addition, the radiological subtype (usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia 
(NSIP), or diffuse interstitial pneumonia (DIP)) was determined. Further, the extent of lung fibrosis on HRCT, 
defined as presence of reticular changes and/or honeycombing, was categorized as either <20% or ≥ 20% 
in relation to the total lung volume. All visual analyses were performed by a senior radiologist (T.F.) using a 
standard picture archiving and communication system workstation (Impax, Version 6.5.5.1033; Agfa-
Gevaert, Mortsel, Belgium) and a high definition liquid crystal display monitor (BARCO; Medical Imaging 
Systems, Kortrijk, Belgium). 
 
CT Segmentation and Extraction of Radiomic Features 
The left and right lung lobes of each patient were semi-automatically segmented by 2 readers (J.S., M.B.) 
using the “region grow” function (lower threshold -950 HU, upper threshold: -300 HU) of MIM software 
(version 6.9.2, MIM Software Inc., Cleveland, Ohio, United States). Manual corrections were applied when 
computationally defined tissue borders did not coincide with the actual lung borders. In addition, pulmonary 
hilar vessels and atelectatic lung areas were carefully excluded from the regions of interest.  
Radiomic analysis was performed on merged structures of both lung lobes using the in-house developed 
software Z-Rad based on Python programming language 2.7. For radiomics analysis, CT images were 
resized to isotropic voxels of 2.75 mm and discretized to a fixed bin size of 50 HU. In total, 1,386 radiomic 
features were calculated per lung (HU limits: -1000 HU to 200 HU), corresponding to the following radiomic 
feature classes: 

(1) Intensity or histogram features (n = 17), 
(2) Texture features (n = 137) of the Gray Level Co-occurrence Matrix (n = 52; GLCM), the    

Neighborhood Gray Tone Difference Matrix (n = 5; NGTDM), the Gray Level Run Length Matrix (n 
= 32); GLRLM), the Gray Level Size Zone Matrix (n = 16; GLSZM), the Gray Level Distance Matrix 
(n = 16; GLDZM) and the Neighboring Gray Level Dependence Matrix (n = 16; NGLDM), and  

(3) Wavelet features (n = 1,232).  
The first class of radiomic features relates to the histogram or distribution of voxel intensities using first-
order statistics (e.g. mean, standard deviation, skewness and kurtosis) and as such quantifies tissue 
intensity characteristics. The second category including texture features describes the intra-tissue 
heterogeneity by calculating the statistical, spatial inter-relationship between neighboring voxel intensities 
41. The third group of features, the wavelet features, calculates the intensity and texture features after 
wavelet decompositions of the original image using eight different coiflet filters (high-pass to low-pass filters) 
thereby focusing the features on different frequency ranges6 .  
A list of all radiomic features is provided in Supplementary File 1. Radiomic feature definitions were based 
on the Imaging Biomarker Standardization Initiative report by Zwanenburg et al.61. 
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Assessment of Radiomic Feature Stability 
Intraclass correlation (ICC) analysis was performed to assess the stability of radiomic features against intra- 
and inter-operator variability in the semi-automated segmentation process. For inter-operator ICC analysis, 
three examiners (J.S., M.B., C.B.), and for intra-operator ICC analysis one examiner (J.S.) twice, 
independently contoured 15 randomly selected SSc patients from the derivation (Zurich) cohort, and 
radiomic features were extracted from the multiple delineation structures. The ICC coefficient for every 
radiomic feature was quantified using two-way mixed effect models and applying the “consistency” method 
(ICC(3,1)) according to 76 using “irr” package of R. Only features with good reproducibility defined as ICC ≥ 
0.7544 were considered in further analyses.  

Unsupervised Clustering 
To identify groups of patients with similar radiomic feature patterns, unsupervised clustering was performed. 
After confirmation of data clusterability by visual assessment of cluster tendency (VAT) and calculation of 
the Hopkin’s statistic H (with H > 0.5 indicating clusterability)77, k-Means clustering algorithm78 was applied 
to the z-scored radiomic data. Only robust radiomic features (ICC ≥ 0.75) entered the cluster analyses. The 
optimal number of clusters was determined by varying the number of k-clusters between 2 and 10, and 
selecting the optimal k with respect to best visual separation and stability as determined by Jaccard 
bootstrapping (n = 1,000 iterations).  

Building a Quantitative Radiomic Risk Score for SSc-ILD 
The Zurich cohort was used as a derivation cohort to build and train the radiomic risk score for ILD 
progression. Patients with no survival data were excluded from the analysis, resulting in a final dataset of 
75 patients. For score building, we adapted a recently described approach by Lu et al8 for z-scored, radiomic 
features. Following Lu and colleagues, we selected radiomic features in two steps: 1) Cox regression, and 
2) penalized LASSO regression using “cox” family with 10-fold cross validation. In the first step, we applied 
univariate Cox regression per radiomic feature considering only features with FDR of p < 0.005. Features 
selected in step 1) underwent further reduction by LASSO. Only features with non-zero coefficients were 
retained. Since limited by the modest sample size of the derivation cohort, we did not perform weighting of 
score features according to the coefficients from LASSO regression and assigned the same importance to 
each feature by dividing each standardized feature by the total number of features j and constructed the 
final radiomic score from those features as follows: 𝑞𝑅𝐼𝑆𝑆𝑐 = ∑ α	*𝑓*

,
*-.  with α = .

,
	being the feature weight 

and f being the values of z-transformed radiomic features.  
After having selected features in steps 1) and 2) we searched for the significant cut-off value for Cox 
regression by applying the “cox” function from the “cutoff” package of R. Due to the modest sample size, 
we searched for two groups, i.e. “low” and “high” risk patients’ composed of at least 25% of subjects for the 
minority group. From the proposed pairs of cut-offs, we selected the one that was significant after correction 
for multiple testing. Once a score was built, we fitted a univariate Cox regression model on the external 
validation cohort (Oslo). We reported the concordance index (C-index) as the general assessment of the 
quality of the model, the p-value of the whole model, and the hazard ratio (HR) with 95% confidence intervals 
for the quantitative radiomic risk score. The C-index is equivalent to the area under the curve in ROC 
analysis and can also be used in Cox regression analysis46. Kaplan-Meier plots were used to visualize the 
Cox regression results.  

Association Analyses with Clinical Baseline Characteristics and Outcome Measures 
Association analyses were performed to explore associations of identified patient groups (k-Means clusters 
and risk groups) with clinical baseline parameters and prognostic outcome measures (progression-free 
survival and overall survival). 
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Fisher's exact test was used for comparison of categorical, and Mann-Whitney U for comparison of 
continuous clinical variables, respectively. 
Kaplan Meier curves and univariate Cox regression were performed to compare progression-free survival 
and overall survival between the identified patients’ groups for an observation period of up to 90 months. 

Association Analyses with Biological Data 
To reveal possible associations of the radiomic risk score with the underlying pathophysiology of ILD, 
correlation analysis with histological, proteomics and quantitative PCR data was performed. Since lung 
biopsies are only very rarely performed in SSc-ILD and thus matched patient tissue samples have not been 
available for molecular analyses, we conducted a cross-species correlation approach, using the mouse 
model of bleomycin-induced lung fibrosis as model system for SSc-ILD. For this animal model, we have 
recently confirmed the transferability of radiomics signatures between mice and humans51.  

Animal Model of Experimental ILD 

To model human SSc-ILD, we applied the well-established preclinical model of bleomycin-induced lung 
fibrosis as described previously54,55. In brief, 30 female, 8-week-old C57BL/6J-rj (Janvier Labs, Le Genest-
Saint-Isle, France) were randomized and intratracheally instilled with 2 U/kg bleomycin sulfate (BLM, Baxter 
15,000 I.U., pharmacy of the canton Zurich, Switzerland) to induce ILD. For molecular and histological 
analyses, mice were sacrificed with carbon dioxide and subsequently transcardially perfused with ice-cold 
phosphate-buffered saline (PBS) solution to remove residual blood. All animal experiments were approved 
by the cantonal veterinary office (approval number ZH235-2018) and performed in strict compliance with 
the Swiss law for animal protection.  

Proteomic Data 

For proteomic analyses, frozen left lung lobes (blood-free) collected from PBS-perfused BLM-treated mice 
were homogenized in 8M urea/100mM Tris (pH 8.0) buffer supplemented with protease inhibitors using the 
FastPrep system (MP Biomedicals). After reduction and alkylation, and overnight protein precipitation with 
ice-cold acetone, 10 ug of the cleaned protein mixture were digested into peptides using a two-step digestion 
protocol (LysC for 2 h at 37 °C followed by Trypsin at room temperature overnight) and then subjected to 
liquid-chromatography-based tandem mass spectrometric analysis (LC-MS/MS). For LC-MS/MS, mouse 
samples were randomly allocated to the analysis by loading 800 ng onto a pre-column (C18 PepMap 100, 
5 µm, 100 A, 300 µm i.d. x 5 mm length) at a flow rate of 50µL/min with solvent C (0.05% TFA in 
water/acetonitrile 98:2). 
After loading, peptides were eluted in back flush mode onto a home packed analytical Nano-column 
(Reprosil Pur C18-AQ, 1.9 µm, 120 A, 0.075 mm i.d. x 500 mm length) using an acetonitrile gradient of 5% 
to 40% solvent B (0.1% Formic Acid in water/acetonitrile 4,9:95) in 180 min at a flow rate of 250 nL/min. 
The column effluent was directly coupled to a Fusion LUMOS mass spectrometer (Thermo Fisher, Bremen; 
Germany) via a nano-spray ESI source. Data acquisition was done in data dependent mode with precursor 
ion scans recorded in the orbitrap with resolution of 120’000 (at m/z=250) parallel to top speed HCD 
fragment spectra of the most intense precursor ions in the Linear trap for a cycle time of 3 seconds. Mass 
spectrometry data was processed by MaxQuant software and set parameters are available in 
Supplementary Table 7. MaxQuant experimental design was such that the two repeated injections were 
combined, and match between runs allowed between all samples 

Histological and Immunohistochemical Data 

Formalin-fixed paraffin-embedded lung sections (4 µm thick) from all BLM-treated mice were stained with 
Hematoxylin and Eosin (HE) for the examination of the overall tissue architecture and the presence of 
cellular infiltrates, and stained with Picrosirius Red (PSR) to visualize collagen deposition using standard 
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protocols. Furthermore, specific immunohistochemical stainings for the pan-leukocyte marker CD45, and 
the myofibroblast marker alpha-smooth muscle actin (αSMA) were performed as described in 54,55. Whole 
slide images of histological and immunohistological stainings were obtained with the AxioScan.Z1 slide 
scanner (Zeiss, Feldbach, Switzerland) in bright-field mode using a Plan-Apochromat 20x/0.8 M27 objective. 
Stainings were automatically quantified on whole slide images using the open-source Orbit Image Analysis 
software (License: GPLv3; Actelion Pharmaceuticals Ltd) as described in 79,80. Furthermore, for 
histopathological scoring of pulmonary fibrosis, the Ashcroft score 56 was applied on PSR stained lung 
sections by two experienced blinded examiners (J.S., M.B.) as previously described 50. 

Gene Expression Data 

Total RNA was isolated from perfused cranial lobes of the right mouse lung with the RNeasy Tissue Mini Kit 
from Qiagen (Hombrechtikon, Switzerland), reverse-transcribed into complementary DNA, and messenger 
RNA (mRNA) expressions of inflammatory (Il6, Mcp1)  and fibrotic (Col1a1, Col3a1, Fn1) genes were 
analyzed by SYBR Green quantitative real-time PCR as described in 54. mRNA expression was expressed 
as ΔCt values (Ct (gene-of-interest) - Ct (reference gene)) with 60S acidic ribosomal protein P0 (Rplp0) as 
a reference gene, with a lower ΔCt indicating higher target gene expression. A list of primers used in this 
study is provided in Supplementary Table 8.  

Micro-CT imaging, Radiomics Analysis and Score Calculation in Mice 

CT images were acquired in free-breathing mice with prospective respiratory gating on a state-of-the-art 
micro-CT scanner (Skyscan 1176; Bruker-microCT, Kontich, Belgium) under isoflurane anesthesia. The 
following scan parameters were used: tube voltage 50 kV, tube current 500 μA, filter AI 0.5 mm, averaging 
(frames) 3, rotation step 0.7 degrees, sync with event 50 ms, X-ray tube rotation 360 degrees, resolution 35 
μm, and slice thickness 35 μm. Images were reconstructed with NRecon reconstruction software (v.1.7.4.6; 
Bruker) using the built-in filtered-back projection Feldkamp algorithm and applying misalignment 
compensation, ring artefact reduction, and a beam hardening correction of 10% to the images.  
Analogous to the radiomics analysis in patients, mouse lungs were segmented, resized to isotropic voxels 
(150 μm) and discretized to a fixed bin size of 50 HU, and all 1,386 radiomic features were extracted (HU 
limits: -1000 HU to 200 HU). For calculation of the quantitative radiomic ILD risk score, as for patients, the 
respective radiomic features were z-transformed and summed up.   

Correlation Analysis and Pathway Enrichment Analysis 
For correlation analysis with major inflammatory and fibrotic markers on tissue level, Spearman's rank 
correlation coefficient rho was calculated between the quantitative radiomic ILD risk score and the different 
biological features. 
For pathway enrichment analyses, rho was calculated between qRISSc and the LFQ intensity value of every 
protein that was identified in at least 50% of mice in the proteomics analyses, and only proteins with p < 
0.05 and rho ≥ |0.3| entered further analyses. The resulting list of proteins, and their coding genes, were 
used as input for the pathway analysis using the ‘ClusterProfiler’ package of Bioconductor. Protein names 
were converted to gene IDs using the UniProt mapping tool (https://www.uniprot.org/uploadlists/). We 
investigated pathway enrichment searching against “Reactome” and “GO Biological Process” databases 
and retained results after adjustment (p < 0.05).   

Statistical Analyses 
All statistical analyses were conducted in R using the following packages: "ggplot2", "tidyverse", "ggsci", 
"corrplot", "readxl", "clusterSim", "dplyr", "readxl", "survival", "glmnet", "cutoff", "survminer", "cluster", "fpc", 
"factoextra", "clustvarsel", "clustertend". For all analyses, a p-value of ≤ 0.05 was considered statistically 
significant. 
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Supplementary Figure 1: Impact of different CT image acquisition and reconstruction settings on radiomic feature 
values and qRISSc.  
Multidimensional scaling of z-transformed radiomic profiles of all robust radiomic features (left panel) or only qRISSc features 
(right panel) combined for all SSc-ILD patients from the Zurich (n = 90) and Oslo cohort (n = 66) for (a) the different CT scanner 
types, (b) different lung reconstruction kernels, and (c) different slice thicknesses.  
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Supplementary Tables 
 
Supplementary Table 1: Summary of patients’ demographics and clinical baseline characteristics for the two study 
cohorts.   
Continuous variables are described as median ± interquartile range and categorical variables are presented as absolute counts 
with relative frequencies (percent). Abbreviations: UIP = usual interstitial pneumonia, NSIP = nonspecific interstitial pneumonia, 
DIP = diffuse interstitial pneumonia, PAPsys = systolic pulmonary artery pressure, FVC = forced vital capacity, FEV1 = forced 
expiratory volume in 1 second, DLCO = diffusing capacity for carbon monoxide, 6-MWT = 6-min walk test 
 

Characteristics Zurich cohort (n=90) Oslo cohort (n=66) 

Age (years) 57.5 ± 17.8 61.0 ± 18.8 

Sex  
  Male  
  Female 

 
21 (23.3%) 
69 (76.7%) 

 
16 (24.2%) 
50 (75.8%) 

SSc disease duration (years)* 5.0 ± 8.2 5.3 ± 9.2 

SSc subset (LeRoy 1988) 
  Limited cutaneous SSc 
  Diffuse cutaneous SSc 
  No skin involvement   

 
41 (45.6%) 
42 (46.7%) 
  7 (7.8%) 

 
37 (56.1%) 
29 (43.9%) 
  0 (0.0%) 

Skin involvement 
  Limited cutaneous 
  Diffuse cutaneous 
  No skin involvement 
  Only sclerodactyly 

 
31 (34.4%) 
43 (47.8%) 
  9 (10.0%) 
  7 (7.8%) 

 
37 (56.1%) 
29 (43.9%) 
  0 (0.0%) 
  0 (0.0%) 

Autoantibodies 
  Anti-centromere positive 
  Anti-topoisomerase I positive 
  Anti-RNA polymerase III positive 
  Anti-PMScl positive 

 
13 (14.4%) 
41 (45.6%) 
  7 (7.8%) 
18 (20.0%) 

 
  7 (10.6%) 
24 (36.4%) 
  8 (12.1%) 
  4 (6.1%) 

FVC (% predicted) 
  FVC ≥ 70% predicted 
  FVC < 70% predicted 

87.5 ± 33.9  
64 (71.1%) 
24 (26.7%) 

85.0 ± 36.0 
44 (66.7%) 
15 (22.7%) 

DLCO (% predicted) 66.5 ± 29.4  61.0 ± 29.0  

FEV1 (% predicted) 88.7 ± 31.2  77.0 ± 26.5 

Pulmonary hypertension☨ 20 (22.2%) 6 (9.1%) 

PAPsys (mmHg) 26.0 ± 10.8 15.0 ± 20.0 

6 min walk distance (m) 511.0 ± 161.0 n/a 

SpO2 before 6-MWT (%) 96.0 ± 2.0 n/a 

SpO2 after 6-MWT (%) 95.0 ± 7.0 n/a 

Borg scale (unit; range 0-10)) 3.0 ± 2.0 n/a 

Extent of lung fibrosis on CT 
  < 20% 
  ≥ 20%  

 
50 (55.6%) 
40 (44.4%) 

 
30 (45.5%) 
36 (54.5%) 

Ground glass opacification 33 (36.7%) 42 (63.6%) 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.09.20124800doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20124800


 

 

Reticular changes 86 (95.6%) 51 (77.3%) 

Tractions 49 (54.4%) 27 (40.9%) 

Honeycombing 23 (25.6%) 16 (24.2%) 

Bullae   3 (3.3%)   4 (6.1%) 

Radiological subtype 
  NSIP 
  UIP 
  DIP 
  Unclassifiable 

 
76 (84.4%) 
12 (13.3%) 
  1 (1.1%) 
  1 (1.1%) 

 
33 (50.0%) 
28 (42.4% 
  0 (0.0%) 
  5 (7.6%) 

Immunomodulatory therapy§ 51 (56.7%) 28 (42.4%) 

*Disease duration of SSc was calculated as the difference between the date of baseline CT and the date of manifestation of 
the first non-Raynaud’s symptom. 
☨Pulmonary hypertension was assessed by echocardiography or right heart catheterization. 
§Immunomodulatory therapy included prednisone, methotrexate, rituximab, cyclophosphamide, mycophenolate mofetil, 
hydroxychloroquine, tocilizumab, imatinib, azathioprine, adalimumab, leflunomide, cyclosporine. 
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Supplementary Table 2: Associations of the identified patients’ clusters based on their radiomic profile with clinical 
baseline parameters for the Zurich cohort.  
Continuous variables are described as median ± interquartile range and categorical variables are presented as absolute values 
with relative frequencies (percent). P-values of univariate comparisons of baseline characteristics between the two clusters are 
shown. Fisher's exact test was used for comparison of categorical, and Mann-Whitney U for comparison of continuous 
variables, respectively. Abbreviations: UIP = usual interstitial pneumonia, NSIP = nonspecific interstitial pneumonia, DIP = 
diffuse interstitial pneumonia, PAPsys = systolic pulmonary artery pressure, FVC = forced vital capacity, FEV1 = forced 
expiratory volume in 1 second, DLCO = diffusing capacity for carbon monoxide, 6-MWT = 6-min walk test 
 

Characteristics Cluster 1 (n=59) Cluster 2 (n=31) p value 

Age (years) 58.0 ± 17.0 57.0 ± 16.9  0.69 

Sex  
  Male  
  Female 

 
14 (23.7%) 
45 (76.3%) 

 
   7 (22.6%) 
 24 (77.4%) 

1 

SSc disease duration (years)* 5.0 ± 8.0 4.3 ± 8.3 0.51 

SSc subset (LeRoy 1988) 
  Limited cutaneous SSc 
  Diffuse cutaneous SSc 
  No skin involvement   

 
30 (50.8%) 
26 (44.1%) 
  3 (5.1%) 

 
11 (35.5%) 
16 (51.6%) 
  4 (12.9%) 

0.23 

Skin involvement 
  Limited cutaneous 
  Diffuse cutaneous 
  No skin involvement 
  Only sclerodactyly 

 
20 (33.9%) 
27 (45.8%) 
  5 (8.5%) 
  7 (11.9%) 

 
11 (35.5%) 
16 (51.6%) 
  4 (12.9%) 
  0 (0.0%) 

0.22 

Autoantibodies 
  Anti-centromere positive 
  Anti-topoisomerase I positive 
  Anti-RNA polymerase III positive 
  Anti-PMScl positive 

 
10 (16.9%) 
28 (47.5%) 
  4 (6.8%) 
14 (23.7%) 

 
  3 (9.7%) 
13 (41.9%) 
  3 (9.7%) 
  4 (12.9%) 

 
0.53 
0.66 
0.69 
0.28 

FVC (% predicted) 
  FVC ≥ 70% predicted 
  FVC < 70% predicted 

97.0 ± 26.0  
54 (91.5%) 
  4 (6.8%) 

65.5 ± 22.2 
10 (32.3%) 
20 (64.5%) 

< 0.001 

DLCO (% predicted) 75.0 ± 24.0  48.0 ± 25.5  < 0.001 

FEV1 (% predicted) 95.8 ± 19.0  65.5 ± 25.5  < 0.001 

Pulmonary hypertension☨ 7 (1.9%) 13 (41.9%) 0.001 

PAPsys (mmHg) 24.0 ± 7.0  32.0 ± 18.0 < 0.001 

6 min walk distance (m) 543.5 ± 109.2  407.0 ± 173.0 < 0.001 

SpO2 before 6-MWT (%) 97.0 ± 1.2  96.0 ± 3.0   0.01 

SpO2 after 6-MWT (%) 96.0 ± 3.0  88.5 ± 9.8  < 0.001 

Borg scale (unit; range 0-10) 2.0 ± 2.0 4.0 ± 3.0 < 0.001 

Extent of lung fibrosis on CT 
  < 20% 
  ≥ 20% 

 
40 (67.8%) 
19 (32.2%) 

 
10 (32.3%) 
21 (67.7%) 

0.002 

Ground glass opacification 18 (30.5%) 15 (48.4%) 0.11 

Reticular changes 58 (98.3%) 28 (90.3%) 0.26 
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Tractions 30 (50.8%) 19 (61.3%) 0.37 

Honeycombing  9 (15.3%) 14 (45.2%) 0.004 

Bullae  1 (1.7%)   2 (6.5%) 0.24 

Radiological subtype 
  NSIP 
  UIP 
  DIP 
  Unclassifiable 

 
54 (91.5%) 
  4 (6.8%) 
  0 (0.0%) 
  1 (1.7%) 

 
22 (71.0%) 
  8 (25.8%) 
  1 (3.2%) 
  0 (0.0%) 

 
0.01 

Immunomodulatory therapy§ 29 (49.2%) 22 (71.0%) 0.07 

*Disease duration of SSc was calculated as the difference between the date of baseline CT and the date of manifestation of 
the first non-Raynaud’s symptom. 
☨Pulmonary hypertension was assessed by echocardiography or right heart catheterization. 
§Immunomodulatory therapy included prednisone, methotrexate, rituximab, cyclophosphamide, mycophenolate mofetil, 
hydroxychloroquine, tocilizumab, imatinib, azathioprine, adalimumab, leflunomid, cyclosporine. 
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Supplementary Table 3. Radiomic features used to construct the quantitative radiomic risk score for SSc-ILD (qRISSc). 
A full list of all radiomics features including standardized feature names is provided in Supplementary File 1. Abbreviations: 
GLCM = Gray Level Co-occurrence Matrix, NGTDM = Neighborhood Gray Tone Difference Matrix, GLRLM = Gray Level Run 
Length Matrix, GLDZM = Gray Level Distance Matrix and NGLDM = Neighboring Gray Level Dependence Matrix  
 

Feature ID Feature Name Feature Class Feature Subclass Wavelet Filter LASSO Coeff. 

V3 COV Intensity Intensity Unfiltered 15.14 

V10 iqr Intensity Intensity Unfiltered 14.41 

V12 mad Intensity Intensity Unfiltered 17.86 

V13 rmad Intensity Intensity Unfiltered -42.79 

V26 variance Texture GLCM Unfiltered -11.36 

V29 sum_variance Texture GLCM Unfiltered 0.01 

V40 autocorrelation Texture GLCM Unfiltered -5.41 

V41 clust_tendency Texture GLCM Unfiltered 11.66 

V66 M_autocorrelation Texture mGLCM Unfiltered -0.29 

V84 len_sshge Texture GLRLM Unfiltered -9.68 

V86 len_lshge Texture GLRLM Unfiltered -19.25 

V102 M_len_lshge Texture mGLRLM Unfiltered -2.40E-03 

V146 NGLDM_hgse Texture NGLDM Unfiltered 59.55 

V588 GLDZM_sizeVar_n.3 Wavelet GLDZM HLH -0.30 

V641 idiff_n.4 Wavelet GLCM HLL 1.84 

V665 M_homogenity_n.4 Wavelet mGLCM HLL -2.79 

V686 coarseness.4 Wavelet NGTDM HLL 0.96 

V687 neighContrast.4 Wavelet NGTDM HLL  0.03 

V840 coarseness.5 Wavelet NGTDM LHH -0.83 

V994 coarseness.6 Wavelet NGTDM LHL 1.03 

V998 strength6 Wavelet NGTDM LHL 1.26 

V1082 skewness.7 Wavelet Intensity LLH 1.55 

V1235 COV.8 Wavelet Intensity LLL 6.60 

V1236 skewness.8 Wavelet Intensity LLL 8.60 

V1242 iqr.8 Wavelet Intensity LLL 16.99 

V1302 coarseness.8 Wavelet NGTDM LLL 0.38 
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Supplementary Table 4: Associations of the patients’ risk groups based on qRISSc with clinical baseline parameters 
for the derivation (Zurich) dataset.  
Continuous variables are described as median ± interquartile range, and categorical variables are presented as absolute values 
with relative frequencies (percent). P-values of univariate comparisons of baseline characteristics between the two risk groups 
are shown. Fisher’s exact test was used for comparison of categorical, and Mann-Whitney U for comparison of continuous 
variables, respectively. Abbreviations: UIP = usual interstitial pneumonia, NSIP = nonspecific interstitial pneumonia, DIP = 
diffuse interstitial pneumonia, PAPsys = systolic pulmonary artery pressure, FVC = forced vital capacity, FEV1 = forced 
expiratory volume in 1 second, DLCO = diffusing capacity for carbon monoxide, 6-MWT = 6-min walk test 
 

Characteristics Low risk (n=54) High risk (n=21) p value 

Age (years) 56.5 ± 16.8 56.0 ± 18.0 0.87 

Sex  
  Male  
  Female 

 
14 (25.9%) 
40 (74.1%) 

 
   5 (23.8%) 
 16 (76.2%) 

1 

SSc disease duration (years)* 4.3 ± 6.6 5.0 ± 9.3 0.92 

SSc subset (LeRoy 1988) 
  Limited cutaneous SSc 
  Diffuse cutaneous SSc 
  No skin involvement   

 
27 (50.0%) 
23 (42.6%) 
  4 (7.4%) 

 
  9 (42.9%) 
10 (47.6%) 
  2 (9.5%) 

0.80 

Skin involvement 
  Limited cutaneous 
  Diffuse cutaneous 
  No skin involvement 
  Only sclerodactyly 

 
18 (33.3%) 
24 (44.4%) 
  6 (11.1%) 
  6 (11.1%) 

 
  9 (42.9%) 
10 (47.6%) 
  2 (9.5%) 
  0 (0.0%) 

0.48 

Autoantibodies 
  Anti-Centromere positive 
  Anti-Topoisomerase I positive 
  Anti-RNA polymerase III positive 
  Anti-PMScl positive 

 
12 (22.2%) 
28 (51.9%) 
  3 (5.6%) 
12 (22.2%) 

 
  0 (0.0%) 
  9 (42.9%) 
  3 (14.3%) 
  4 (19.0%) 

 
0.02 
0.61 
0.34 
1 

FVC (% predicted) 
  FVC ≥ 70% predicted 
  FVC < 70% predicted 

97.4 ± 28.5  
48 (88.9%) 
  6 (11.1%) 

65.0 ± 18.0 
  6 (28.6%) 
15 (71.4%) 

< 0.001 

DLCO (% predicted) 74.4 ± 24.2  51.0 ± 25.0  < 0.001 

FEV1 (% predicted) 95.8 ± 21.0  65.0 ± 27.0  < 0.001 

Pulmonary hypertension☨ 3 (5.6%) 10 (47.6%) < 0.001 

PAPsys (mmHg) 24.0 ± 6.8 31.0 ± 12.5  < 0.001 

6 min walk distance (m) 543.0 ± 118.0  421.0 ± 126.5 0.002 

SpO2 before 6MWT (%) 97.0 ± 1.0  96.0 ± 3.2  0.09 

SpO2 after 6MWT (%) 96.0 ± 3.0  85.5 ± 5.2 < 0.001 

Borg (unit; range 0-10) 2.0 ± 2.0 5.5 ± 3.2 < 0.001 

Extent of lung fibrosis on CT 
  < 20% 
  ≥ 20% 

 
40 (74.1%) 
14 (25.9%) 

 
  5 (23.8%) 
16 (76.2%) 

< 0.001 

Ground glass opacification 17 (31.5%)   9 (42.9%) 0.42 

Reticular changes 52 (96.3%) 19 (90.5%) 1 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.09.20124800doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20124800


 

 

Tractions 21 (38.9%) 16 (76.2%) 0.003 

Honeycombing  5 (9.3%) 11 (52.4%) < 0.001 

Bullae  2 (3.7%)   1 (4.8%) 1 

Radiological subtype 
  NSIP 
  UIP 
  DIP 
  Unclassifiable 

 
51 (94.4%) 
  2 (3.7%) 
  0 (0.0%) 
  1 (1.9%) 

 
14 (66.7%) 
  6 (28.6%) 
  1 (4.8%) 
  0 (0.0%) 

0.002 

Immunomodulatory therapy§ 30 (55.6%) 14 (66.7%) 0.44 

*Disease duration of SSc was calculated as the difference between the date of baseline CT and the date of manifestation of 
the first non-Raynaud’s symptom. 
☨Pulmonary hypertension was assessed by echocardiography or right heart catheterization. 
§Immunomodulatory therapy included prednisone, methotrexate, rituximab, cyclophosphamide, mycophenolate mofetil, 
hydroxychloroquine, tocilizumab, imatinib, azathioprine, adalimumab, leflunomid, cyclosporine. 
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Supplementary Table 5: Associations of the patients’ risk groups based on qRISSc with clinical baseline parameters 
for the external and independent validation (Oslo) cohort.  
Continuous variables are described as median ± interquartile range, and categorical variables are presented as absolute values 
with relative frequencies (percent). P-values of univariate comparisons of baseline characteristics between the two risk groups 
are shown. Fisher’s exact test was used for comparison of categorical, and Mann-Whitney U for comparison of continuous 
variables, respectively. Abbreviations: UIP = usual interstitial pneumonia, NSIP = nonspecific interstitial pneumonia, DIP = 
diffuse interstitial pneumonia, PAPsys = systolic pulmonary artery pressure, FVC = forced vital capacity, FEV1 = forced 
expiratory volume in 1 second, DLCO = diffusing capacity for carbon monoxide, 6-MWT = 6-min walk test 
 

Characteristics Low risk (n=47) High risk (n=19) p value 

Age (years) 58.0 ± 22.0 64.0 ± 19.0 0.59 

Sex  
  Male  
  Female 

 
12 (25.5%) 
35 (74.5%) 

 
   4 (21.1%) 
 15 (78.9%) 

1 

Disease duration (years)* 4.3 ± 9.1 6.1 ± 9.1 0.33 

SSc subset (LeRoy 1988) 
  Limited cutaneous SSc 
  Diffuse cutaneous SSc 
  No skin involvement   

 
26 (55.3%) 
21 (44.7%) 
  0 (0.0%) 

 
11 (57.9%) 
  8 (42.1%) 
  0 (0.0%) 

1 

Skin involvement 
  Limited cutaneous 
  Diffuse cutaneous 
  No skin involvement 
  Only sclerodactyly 

 
26 (55.3%) 
21 (44.7%) 
  0 (0.0%) 
  0 (0.0%) 

 
11 (57.9%) 
  8 (42.1%) 
  0 (0.0%) 
  0 (0.0%) 

1 

Autoantibodies 
  Anti-Centromere positive 
  Anti-Topoisomerase I positive 
  Anti-RNA polymerase III positive 
  Anti-PMScl positive 

 
  5 (10.6%) 
17 (36.2%) 
  8 (17.0%) 
  3 (6.4%) 

 
  2 (10.5%) 
  7 (36.8%) 
  0 (0.0%) 
  1 (5.3%) 

 
1 
1 
0.05 
1 

FVC (% predicted) 
  FVC ≥ 70% predicted 
  FVC < 70% predicted 

92.0 ± 25.5  
36 (76.6%) 
  6 (12.8%) 

60.0 ± 20.0 
  8 (42.1%) 
  9 (47.4%) 

< 0.001 
 
 

DLCO (% predicted) 66.0 ± 17.5  35.0 ± 20.0 < 0.001 

FEV1 (% predicted) 82.0 ± 22.0  64.0 ± 18.0  0.001 

Pulmonary hypertension☨ 1 (2.1%) 5 (26.3%) 0.01 

PAPsys (mmHg) 15.0 ± 20.0  35.0 ± 17.5 0.13 

6 min walk distance (m) n/a n/a n/a 

SpO2 before 6MWT (%) n/a n/a n/a 

SpO2 after 6MWT (%) n/a n/a n/a 

Borg (unit; range 0-10)) n/a n/a n/a 

Extent of lung fibrosis on CT 
  < 20% 
  ≥ 20% 

 
30 (63.8%) 
17 (36.2%) 

 
  0 (0.0%) 
19 (100.0%) 

< 0.001 

Ground glass opacification 33 (70.2%) 9 (47.4%) 0.10 

Reticular changes 34 (72.3%) 17 (89.5%) 0.20 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.09.20124800doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20124800


 

 

Tractions 12 (25.5%) 15 (78.9%) < 0.001 

Honeycombing   6 (12.8%) 10 (52.6%) < 0.001 

Bullae   2 (4.3%)   2 (10.5%) 0.57 

Radiological subtype 
  NSIP 
  UIP 
  DIP 
  Unclassifiable 

 
26 (55.3%) 
17 (36.2%) 
  0 (0.0%) 
  4 (8.5%) 

 
  7 (36.8%) 
11 (57.9%) 
  0 (0.0%) 
  1 (5.3%) 

0.16 

Immunomodulatory therapy§ 16 (34.0%) 12 (63.2%) 0.05 

*Disease duration of SSc was calculated as the difference between the date of baseline CT and the date of manifestation of 
the first non-Raynaud’s symptom. 
☨Pulmonary hypertension was assessed by echocardiography or right heart catheterization. 
§Immunomodulatory therapy included prednisone, methotrexate, rituximab, cyclophosphamide, mycophenolate mofetil, 
hydroxychloroquine, tocilizumab, imatinib, azathioprine, adalimumab, leflunomid, cyclosporine. 
 
  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.09.20124800doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20124800


 

 

Supplementary Table 6: Summary of HRCT image acquisition parameters for the two study cohorts.  
For slice thickness and tube voltage, data are presented as median and range of minimal and maximal values. 
 

CT parameter Discovery (Zurich) cohort (n=90) Validation (Oslo) cohort (n=66) 

Manufacturer* Siemens Siemens, GE Medical Systems 

Acquisition Model Inspiration (breath hold) Inspiration (breath hold) 

Slice thickness (mm) 1 (range 0.6 - 2) 2.5 (range 2 - 3) 

Reconstruction kernels B60f, B70f, Bl64 B60f, B70f, LUNG 

Tube voltage (kVP) 120 (range 80 - 150) 120 

*HRCT scanners included SOMATOM Definition AS, SOMATOM Definition Flash, SOMATOM Force, SOMATOM Sensation 
64, SOMATOM Sensation 16, Biograph 64, LightSpeed Pro 16, LightSpeed VCT. 
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Supplementary Table 7: Parameter settings for MaxQuant analysis. 
 

Parameter Value 

Version 1.6.6.0 

Machine name PROXMOX-W10 

PSM FDR 0.01 

PSM FDR Crosslink 0.01 

Protein FDR 0.01 

Site FDR 0.01 

Use Normalized Ratios For Occupancy TRUE 

Min. peptide Length 7 

Min. score for unmodified peptides 0 

Min. score for modified peptides 40 

Min. delta score for unmodified peptides 0 

Min. delta score for modified peptides 6 

Min. unique peptides 0 

Min. razor peptides 2 

Min. peptides 2 

Use only unmodified peptides and FALSE 

Peptides used for protein quantification Razor 

Discard unmodified counterpart peptides TRUE 

Label min. ratio count 2 

Use delta score FALSE 

iBAQ TRUE 

iBAQ log fit TRUE 

Match between runs TRUE 

Matching time window [min] 0.7 

Match ion mobility window [indices] 0.05 

Alignment time window [min] 20 

Alignment ion mobility window [indices] 1 

Find dependent peptides FALSE 

Fasta file MusMusculus_SP_2019_10.fasta 

Decoy mode revert 
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Include contaminants TRUE 

Fixed modification Carbamidomethylation of Cys 

Variable modifications Oxidation on Met; Acetyl on protein N-term 

Advanced ratios FALSE 

Second peptides TRUE 

Stabilize large LFQ ratios TRUE 

Separate LFQ in parameter groups FALSE 

Require MS/MS for LFQ comparisons TRUE 

Calculate peak properties FALSE 

Main search max. combinations 200 

Advanced site intensities FALSE 

Write msScans table FALSE 

Write msmsScans table FALSE 

Write ms3Scans table FALSE 

Write allPeptides table FALSE 

Write mzRange table FALSE 

Write pasefMsmsScans table FALSE 

Write accumulatedPasefMsmsScans table FALSE 

Max. peptide mass [Da] 5500 

Min. peptide length for unspecific search 8 

Max. peptide length for unspecific search 25 

Razor protein FDR TRUE 

Max mods in site table 3 

Match unidentified features FALSE 

Evaluate variant peptides separately TRUE 

Variation mode None 

MS/MS tol. (FTMS) 20 ppm 

Top MS/MS peaks per Da interval. (FTMS) 6 

Da interval. (FTMS) 20 

MS/MS deisotoping (FTMS) TRUE 

MS/MS deisotoping tolerance (FTMS) 7 

MS/MS deisotoping tolerance unit (FTMS) ppm 
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MS/MS higher charges (FTMS) TRUE 

MS/MS water loss (FTMS) TRUE 

MS/MS ammonia loss (FTMS) TRUE 

MS/MS dependent losses (FTMS) TRUE 

MS/MS recalibration (FTMS) FALSE 

MS/MS tol. (ITMS) 0.4 Da 

Top MS/MS peaks per Da interval. (ITMS) 12 

Da interval. (ITMS) 100 

MS/MS deisotoping (ITMS) FALSE 

MS/MS deisotoping tolerance (ITMS) 0.15 

MS/MS deisotoping tolerance unit (ITMS) Da 

MS/MS higher charges (ITMS) TRUE 

MS/MS water loss (ITMS) TRUE 

MS/MS ammonia loss (ITMS) TRUE 

MS/MS dependent losses (ITMS) TRUE 

MS/MS recalibration (ITMS) FALSE 

MS/MS deisotoping (Unknown) FALSE 

MS/MS deisotoping tolerance (Unknown) 0.15 

MS/MS deisotoping tolerance unit (Unknown) Da 

MS/MS higher charges (Unknown) TRUE 

MS/MS water loss (Unknown) TRUE 

MS/MS ammonia loss (Unknown) TRUE 

MS/MS dependent losses (Unknown) TRUE 

MS/MS recalibration (Unknown) FALSE 
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Supplementary Table 8: Murine primer sequences used for qRT-PCR.  
 

Gene  Forward primer (5’ - 3’) Reverse primer (5’ - 3’) 

Collagen 1 alpha 1 (Col1a1) GAT GAC GTG CAA TGC AAT GAA CCC TCG ACT CCT ACA TCT TCT GA 

Collagen 3 alpha 1 (Col3a1) AGC TTT GTG CAA AGT GGA ACC ATA GGA CTG ACC AAG GTG GC 

Fibronectin 1 (Fn1) ATG TGG ACC CCT CCT GAT AGT GCC CAG TGA TTT CAG CAA AGG 

Interleukin 6 (Il6) TGA TGG ATG CTA CCA AAC TGG GGT ACT CCA GAA GAC CAG AG 

Monocyte chemoattractant protein 1 (Mcp-1) CCA CTC ACC TGC TGC TAC TCA T TGG TGA TCC TCT TGT AGC TCT CC 

60S acidic ribosomal protein P0 (Rplp0) GCA GGT GTT TGA CAA CGG CAG GAT GAT GGA GTG TGG CAC CGA 
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