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Abstract 15 

Among Italy, Spain, and Japan, the age distributions of novel coronavirus (COVID-19) 16 

mortality show only small variation even though the number of deaths per country 17 

shows large variation. To understand the determinant for this situation, we constructed a 18 

mathematical model describing the transmission dynamics and natural history of 19 

COVID-19 and analyzed the dataset of fatal cases of COVID-19 in Italy, Spain, and 20 

Japan. We estimated the parameter which describes the age-dependency of 21 

susceptibility by fitting the model to reported data, taking into account the effect of 22 

change in contact patterns during the outbreak of COVID-19, and the fraction of 23 

symptomatic COVID-19 infections. Our modelling study revealed that if the mortality 24 

rate or the fraction of symptomatic infections among all COVID-19 cases does not 25 

depend on age, then unrealistically different age-dependencies of susceptibilities against 26 

COVID-19 infections between Italy, Japan, and Spain are required to explain the similar 27 

age distribution of mortality but different basic reproduction numbers (R0). Variation of 28 

susceptibility by age itself cannot explain the robust age distribution in mortality by 29 

COVID-19 in those three countries, however it does suggest that the age-dependencies 30 

of i) the mortality rate and ii) the fraction of symptomatic infections among all COVID-31 

19 cases determine the age distribution of mortality by COVID-19.  32 
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Introduction 33 

Since its emergence, coronavirus disease 2019 (COVID-19) has resulted in a 34 

pandemic and has produced a huge number of cases worldwide (World Health 35 

Organization, 2020). As of May 29, 2020, the number of confirmed cases in Italy was 36 

231,139, with 237,141 in Spain, and 16,683 in Japan (World Health Organization, 37 

2020). Of those infected, it has been reported that elderly individuals account for a large 38 

portion of fatal cases inducing a large heterogeneity in the age distribution of mortality 39 

(Dowd et al., 2020; Onder et al., 2020; Wu et al., 2020). 40 

The expected value of mortality (the number of deaths, hereafter referred to as 41 

mortality) is calculated as the product of the number of cases and the mortality rate 42 

among cases (hereafter referred to as morality rate). As the background mechanism of 43 

the heterogeneity of mortality by age, the association of two epidemiological factors 44 

with mortality can be considered: i) the age-dependency of susceptibility to infection, 45 

which is related to the heterogeneity in the number of cases, and ii) the age-dependency 46 

of severity, which is related to the heterogeneity in the mortality rate, e.g. the rate of 47 

becoming symptomatic, severe, or fatal case among infected individuals.  For the first 48 

factor, a high susceptibility for infection will generate a larger number of infections and 49 

result in an increase in fatal cases. The possibility of heterogeneity in susceptibility by 50 
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age was pointed out by the analysis of epidemiological data reported from Wuhan, 51 

China (Lee et al., 2020; Wu et al., 2020; Zhang et al., 2020) and from Iceland 52 

(Gudbjartsson, 2020). For the second factor, an increase in severity will result in a 53 

higher mortality rate and subsequently a rise in the number of fatal cases. This 54 

assumption is also reasonable because elder age as well as the existence of 55 

comorbidities, which are likely with aging, have been reported as risk factors for severe 56 

COVID-19 infections (Bonanad et al., 2020; Guan et al., 2020; Liu et al., 2020; Shi et 57 

al., 2020; Verity et al., 2020; Zhou et al., 2020). Although not yet shown in relation to 58 

severe acute respiratory syndrome corona virus 2 (SARS Cov-2), which is the causal 59 

agent of COVID-19, the presence of age-dependent enhancement of severity has been 60 

suggested in SARS coronavirus by the analysis of the innate immune responses in the 61 

BALB/c mouse model (Baas et al., 2008; Chen et al., 2010; Roberts et al., 2005). 62 

Additionally, it has been suggested that antibody-dependent enhancement (ADE) can 63 

contribute to the formation of the observed age-dependency of severity, as suggested in 64 

SARS and Middle East respiratory syndrome (MERS) cases (Arabi et al., 2016; Drosten 65 

et al., 2014; Tay et al., 2020; Tetro, 2020; Wan et al., 2018; Yang et al., 2005). 66 

Interestingly, the age distribution of mortality by COVID-19 (the distribution of 67 

the proportion of deaths per age group among all deaths), is similar between Italy, 68 
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Japan, and Spain, even though the number of deaths are quite different among them 69 

(Ministry of Health, Labor and Welware, 2020; Epicentro, Istituto Superiore di Sanità, 70 

2020; Centro de Coordinación de Alertas y Emergencias Sanitarias, 2020). The large 71 

difference in the number of deaths between the countries suggests a large difference in 72 

their basic reproduction numbers, R0s. An independency between age distribution of 73 

mortality by COVID-19 and R0 is suggested. From this independency of age 74 

distributions of mortality from R0, it can be expected that the contribution of 75 

heterogeneity in susceptibility by age to forming the age distribution of mortality is 76 

small. That is because, as we will show in this paper, though the age-dependency of 77 

severity will naturally produce a proportional effect on the distribution of mortality and 78 

result in the formation of robust distributions, when the age-dependency of 79 

susceptibility forms the age distribution of mortality, the age distribution of mortality 80 

highly depends on R0 and shows variability.  81 

To understand the background of robust age distribution of mortality with varied 82 

R0, we constructed a mathematical model describing the transmission dynamics of 83 

COVID-19 and analyzed the impact of age-dependent susceptibility on the age 84 

distribution of mortality. The heterogeneity in social contacts by age may also 85 

contribute to the age distribution of mortality. Our model took into account the 86 
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heterogeneity in social contacts by age and country, and the effect of behavioral change 87 

outside of the household during the outbreak. We also estimated and compared the age-88 

dependent susceptibility in Japan, Italy, and Spain to argue the existence of 89 

heterogeneity in susceptibility among age groups. 90 

 91 

Results 92 

Our result shows variation of susceptibility among age groups measured by the 93 

exponent parameter φ can explain the age distribution of mortality by COVID-19 94 

(figure 2(a)). However, the age distribution of mortality formed by the age-dependency 95 

of susceptibility is influenced by the value of R0 (figure 2(b)), which cannot explain the 96 

similarity in age distributions of mortality among Italy, Japan, and Spain. On the other 97 

hand, if susceptibility is constant among age groups, the impact of R0 is quite small on 98 

the age distribution of mortality (figure 3). 99 

Assuming that the age-dependency of mortality by COVID-19 is determined by 100 

only age-dependent susceptibility, i.e., the mortality rate does not depend on age, the 101 

exponent parameter, φ, describing the variation of susceptibility among age groups for 102 

each country, Italy, Japan, and Spain, was estimated as shown in figure 4. From the 103 

difference of the R0 value and country, the estimated value of φ is largely varied. The 104 
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impact of reductions in contacts outside of the household on the estimated value of φ 105 

was small. The estimate of φ in Italy, assuming a range of R0 = 2.4-3.3 (Zhuang et al., 106 

2020; D’Arienzo and Coniglio, 2020) was 15.0 (95% CI = 14.0-16.0), 16.3 (95% CI = 107 

14.9-17.7), and 16.9 (95% CI = 15.4-18.4) for 80%, 40%, and no reduction in contacts 108 

outside of the household. For Japan, the estimate of φ assuming R0 = 1.7 (Expert 109 

Meeting on the Novel Coronavirus Disease Control, 2020) was 4.2 (95%CI = 3.7-4.9), 110 

5.5 (95%CI = 4.9-6.3), and 6.1 (95%CI = 5.4-6.9) for 80%, 40%, and no reduction in 111 

contacts outside of the household. When it comes to Spain, the estimate of φ assuming 112 

an R0 = 2.9 (Caicedo-Ochoa et al., 2020) was 10.5 (95%CI = 10.4-10.6), 11.7 (95%CI = 113 

11.6-11.9), and 12.3 (95%CI = 12.2-12.5) for 80%, 40%, and no reduction in contacts 114 

outside of the household. 115 

The estimates of φ, assuming that the fraction of infections becoming 116 

symptomatic does not depend on age, were also varied by the value of R0 and by 117 

country (figure 5, 6 and 7). Employing the same assumptions of R0 value, the estimate 118 

of φ in Italy was 4.8 (95% CI = 4.2-5.3), 5.4 (95% CI = 4.9-5.9), and 5.7 (95% CI = 5.1-119 

6.2) for 80%, 40%, and no reduction in contacts outside of the household. For Japan, the 120 

estimate of φ was 0.0 (95%CI = 0.0-0.9), 0.0 (95%CI = 0.0-1.1), and 0.0 (95%CI = 0.0-121 

1.2) for 80%, 40%, and no reduction in contacts outside of the household. For Spain, the 122 
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estimate of φ was 1.7 (95%CI = 1.4-1.9), 2.2 (95%CI = 1.9-2.5), and 2.5 (95%CI = 2.1-123 

2.8) for 80%, 40%, and no reduction in contacts outside of the household. 124 

 125 

Discussion 126 

In the present study, we explored the role of susceptibility to COVID-19 in 127 

explaining the age distribution of mortality by COVID-19. Interestingly, the age 128 

distributions of mortality from COVID-19 are quite similar between Italy, Japan, and 129 

Spain (figure 1). When comparing the age distributions of mortality, only the 130 

comparison between Italy and Spain is significant (p<0.05 in Wilcoxon rank sum test 131 

with Bonferroni correction). On the other hand, the numbers of deaths are quite 132 

different (29,525 for Italy, 400 for Japan, 18,818 for Spain). Indeed, R0 values are 133 

largely different: 2.4-3.3 for Italy (Zhuang et al., 2020; D’Arienzo and Coniglio, 2020), 134 

1.7 for Japan (Expert Meeting on the Novel Coronavirus Disease Control, 2020), and 135 

2.9 for Spain (Caicedo-Ochoa et al., 2020). If the variation of mortality by age is 136 

determined by only the age-dependency of susceptibility, the age distribution of 137 

mortality is affected by R0 as shown in figure 2(b). However, we observed a similarity 138 

in age distributions of mortalities between Italy, Japan, and Spain where their R0s are 139 

quite different. Indeed, unrealistically different φs among these three countries are 140 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.20126003doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.08.20126003
http://creativecommons.org/licenses/by-nc-nd/4.0/


required to explain their age distribution of mortality for both settings, i) age-141 

independent mortality, and, ii) the fraction of infections that becomes symptomatic 142 

among all COVID-19 cases, fs, does not depend on age. Although we cannot fully reject 143 

the existence of age-dependency in susceptibility, our results suggest that it does not 144 

largely depend on age, but rather that age-dependency in severity highly contributes to 145 

the formation of the observed age distribution in mortality. 146 

The estimates of φs assuming age independency in symptomatic infections were 147 

smaller than those that assumed age independency in mortality. This suggests that the 148 

age-dependency of the confirmed case fatality rate (cCFR), which can be biased by the 149 

age-dependent difference of the fraction of symptomatic infections among all cases, 150 

partially explains the age distribution in mortality. Indeed, when we assumed that the 151 

fraction of symptomatic infections was not dependent on age, the estimate of φ in Japan 152 

was close to zero in all scenarios regarding the fraction of symptomatic infections, 153 

meaning that susceptibility is constant among age groups (figure 5). Although we 154 

observed φs around 5 in Italy and 2 in Spain, this does not mean straightforwardly that 155 

susceptibility is age dependent because there is room for an alternative explanation: not 156 

susceptibility, but an age-dependent fraction of symptomatic infections can explain this 157 

age-dependency. Unfortunately, as we do not yet have detailed data regarding the age-158 
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dependent fraction of symptomatic infections and the rate of diagnosis in COVID-19, 159 

we cannot conclude which factors (i.e., susceptibility or the fraction of symptomatic 160 

infection among all cases) contributed to the observed age-dependency.  161 

 Wu et al. (2020) showed variation of susceptibility to symptomatic infection by 162 

age. This susceptibility can be expressed as the product of the susceptibility and the 163 

fraction of symptomatic infection among all cases. To accurately understand 164 

susceptibility (i.e., without the constraint of the symptom onset), estimates of the age-165 

dependent fraction of symptomatic infections is required.  166 

To understand the mechanism of age-dependency of mortality by COVID-19, an 167 

accurate age-dependent mortality rate is required. To estimate the age-dependent 168 

mortality rate, an accurate estimate of the case fatality rate is required. However, the 169 

number of cases, which is the denominator of the case fatality rate, is difficult to 170 

estimate for COVID-19 due to changes in the testing rate (Gostic et al., 2020a; Gostic et 171 

al., 2020b; Omori et al. 2020), the change of case definition (Tsang et al. 2020), 172 

selection biases (Bar-on et al., 2020), and the delay between the onset of symptoms and 173 

death (Linton et al., 2020; Shim et al., 2020; Sun et al., 2020; Verity et al., 2020) as 174 

were the cases we experienced in the surveillance of other emerging diseases (Ghani et 175 

al., 2005; Garske et al,, 2008). To address this problem, implementation of active 176 
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epidemiological surveillances, such as a large-scale cohort study including real-time 177 

detection of infections, should be considered. 178 

From the modelling perspective on mortality by Covid-19, age-dependency of 179 

severity should be carefully taken into consideration. In particular, in the mathematical 180 

models of ADE, the previous models employed three types of assumptions (Woodall 181 

and Adams, 2014), the assumption of: increasing susceptibility to infection (Recker et 182 

al., 2009; Tang et al., 2018), increasing transmissibility once infection occurred 183 

(Ferguson et al., 1999; Ferguson and Andreasen, 2002; Recker et al., 2009), and 184 

increasing severity and/or mortality associated with infection (Kawaguchi et al., 2003). 185 

Based on our results and from the biological/epidemiological observations of past 186 

SARS and MERS cases, the “increasing severity” assumption should be taken into 187 

account when analyzing SARS Cov-2 epidemics. 188 

In conclusion, the contribution of age-dependency to susceptibility is difficult to 189 

use to explain the robust age distribution in mortalities by COVID-19, and it suggests 190 

that the age-dependencies of the mortality rate and the fraction of symptomatic 191 

infections among all COVID-19 cases determine the age distribution in mortality from 192 

COVID-19. Further investigations regarding age-dependency on the fraction of 193 
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infections becoming symptomatic is required to understand the mechanism behind the 194 

mortality by COVID-19 infections. 195 

 196 

Methods 197 

1. Data 198 

We analyzed the number of mortalities caused by COVID-19 in Italy reported 199 

on 13th May 2020, Japan reported on 7th May 2020, and Spain reported on 12th May 200 

2020. The data were collected from public data sources in each country (Ministry of 201 

Health, Labor and Welware, 2020; Epicentro, Istituto Superiore di Sanità, 2020; Centro 202 

de Coordinación de Alertas y Emergencias Sanitarias, 2020). 203 

 204 

2. Model 205 

To understand the background of robust age distribution of mortality with varied 206 

R0, we employed a mathematical model describing transmissions of COVID-19, an age-207 

structured SEIR model, which can be written as; 208 

 𝑆!" = −𝛽𝜎"𝑆"&∑ 𝑘",$𝐼$$ *,	 (1) 209 

𝐸!" = 𝛽𝜎"𝑆"&∑ 𝑘",$𝐼$$ * − 𝜀𝐸", (2) 210 
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𝐼!" = 𝜀𝐸" − (𝛾 + 𝛿")𝐼", (3) 211 

𝑅!" = 𝛾𝐼",  (4) 212 

𝐷!" = 𝛿"𝐼",  (5) 213 

where Sn, En, In, Rn and Dn represent the proportion of susceptible, latent, infectious, 214 

recovered and dead among the entire population, and the subscript index n denotes age 215 

group. We stratified the entire population by into eight groups, n = 1, 2, 3, 4, 5, 6, 7, and 216 

8 for < 10 years old (yo), 10-19 yo, 20-29 yo, 30-39 yo, 40-49 yo, 50-59 yo, 60-69 yo, 217 

and 70+ yo. β, kn,m, ε, γ and δn represent a transmission coefficient, an element of the 218 

contact matrix between age group n and m, the progression rate from latent to 219 

infectious, recovery rate and mortality rate among age group n, respectively. σn denotes 220 

the susceptibility of age group n. For the sake of simplicity, births and deaths by other 221 

than COVID-19 were ignored. To take into account the effect of behavioral changes 222 

outside of the household during the outbreak, kn,m is decomposed by a matrix for 223 

contacts within household kin,n,m and that for contacts outside the household kout,n,m; 224 

 𝑘",$ = 𝑘%",",$ + 𝛼𝑘&'(,",$, (6) 225 

where α denotes the reduced fraction of contacts outside of the household. We modelled 226 

age specific susceptibility as 227 

 𝜎" = 𝑐𝑛) . (7) 228 

Where c is a constant among all age groups, φ denotes the exponent parameter 229 

describing the variation of susceptibility among age groups. An increase in φ means an 230 

increase in the variation of susceptibility among age groups, and φ=0 means that 231 

susceptibility is equal among all age groups 232 

 233 

3. Parameterizations 234 
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We parameterized ε and γ using the values from a previous modelling study of COVID-235 

19 (Prem et al., 2020). We referred to the contact matrices for Italy, Japan, and Spain 236 

from Prem et al. (Prem et al., 2017). β and c were controlled such that the basic 237 

reproduction number, R0, becomes arbitral values. R0 was calculated by constructing a 238 

next generation matrix (Diekman and Heesterbeek, 2000; Mossong et al., 2008) using 239 

each country’s demographic data obtained from a public data source (United Nations, 240 

2020). 241 

 242 

4. Fitting 243 

 We calculated the proportions of deaths in the age group n among all deaths, dn 244 

(= 𝐷"(∞)/∑ 𝐷"(∞)" ), and fitted them to the observed data in each country. The 245 

mortality rate among age group n, δn, is required to calculate dn, however, a reliable 246 

estimate of δn for COVID-19 is difficult to obtain. Due to the uncertainty of the fraction 247 

of symptomatic infections per age group, δn is difficult to estimate from observed data, 248 

i.e., the confirmed case fatality rate among age group n (cCFRn). Since an estimate of δn 249 

is difficult to obtain, we employed two different settings to calculate dn, i) δn is assumed 250 

to be a constant among all age groups, or, ii) δn is calculated from cCFRn assuming that 251 

the fraction of symptomatic infections among all COVID-19 cases ( fs) is not dependent 252 

with age. 253 

In setting i), the value of δn is not required to estimate dn once the value of R0 is 254 

given. We calculated dn by calculating the proportions of recovered persons per age 255 

group among all recovered persons 𝑅"(∞)/∑ 𝑅"(∞)"  instead of 𝐷"(∞)/∑ 𝐷"(∞)" . 256 

In our model, shown in equation (1)-(4), 𝑅"(∞)/∑ 𝑅"(∞)"  is determined by the value 257 

of R0 completely when all parameter values other than β and δn are fixed, and 258 
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𝐷"(∞)/∑ 𝐷"(∞)" = 𝑅"(∞)/∑ 𝑅"(∞)"  if 𝛿" ≠ 0. The proof can be found in 259 

supplementary file 1. 260 

The assumption in setting i), δn is constant among all age groups, may be too 261 

strong for the COVID-19 epidemic. To take into account the age-dependency of 262 

mortality by COVID-19, δn was calculated from the cCFRn assuming that fs is not 263 

dependent with age. As for the setting ii), assuming three scenarios; fs = 0.05, 0.25, and 264 

0.5, δn for each country were calculated using cCFRn in each country. We obtained δn 265 

by solving cCFRn = δn/[ fs (δn+γ)].  266 

We solved the model shown in equations (1)-(5) numerically, and dn was 267 

calculated after sufficient time was given to finish the epidemics. We estimated φ using 268 

a log likelihood function describing the multinomial sampling process of deaths per age 269 

group; 270 

∑ 𝐷"log[𝑑"(𝜑)]" . (8) 271 

Maximum likelihood estimates of φ with given R0 were obtained by maximizing 272 

equation (8) and the profile likelihood-based confidence intervals were computed. 273 
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Figures 483 
 484 
Figure 1: The age distribution of mortality by COVID-19 in Italy reported on 13th May 485 
2020, Japan reported on 7th May 2020, and Spain reported on 12th May 2020. Circle, 486 
square, and “+” denote Italy, Japan, and Spain. 487 
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Figure 2: The sensitivity of (a) age-dependency of susceptibility and (b) transmission 491 
coefficient β against age distribution of mortality when age-independent mortality was 492 
assumed. In panel (a), all parameters except the exponent parameter φ, describing the 493 
variation of susceptibility among age groups, were fixed and parameterized as R0 = 2.9 494 
in the setting for Spain. In panel (b), all parameters parameterized as the setting for 495 
Spain (φ=12.3) except were fixed except transmission coefficient β. 496 
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Figure 3: The sensitivity of transmission coefficient β against age distribution of 499 
mortality when it was assumed that age-dependent mortality was proportional to cCFR 500 
per age group. All parameters were fixed and parameterized as the setting for Spain 501 
except the transmission coefficient β. 502 
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Figure 4: The estimate of exponent parameter φ describing the variation of 505 
susceptibility among age groups assuming that mortality rate does not depend on age. 506 
True and broken lines represent the maximum likelihood estimates and 95% confidence 507 
intervals, respectively. 508 
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Figure 5: The estimate of exponent parameter φ describing the variation of 512 
susceptibility among age groups assuming that mortality rate does not depend on age 513 
and the fraction of infections that becomes symptomatic among all COVID-19 cases is 514 
0.25. True and broken lines represent the maximum likelihood estimates and 95% 515 
confidence intervals, respectively. 516 

 517 

 518 
  519 

Basic reproduction number R0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

2.0

6.0

Basic reproduction number R0
Basic reproduction number R0

Basic reproduction number R0

Basic reproduction number R0

Basic reproduction number R0 Basic reproduction number R0

Basic reproduction number R0
Basic reproduction number R0

Ex
po

ne
nt

 p
ar

am
et

er
Ex

po
ne

nt
 p

ar
am

et
er

Ex
po

ne
nt

 p
ar

am
et

er

Ex
po

ne
nt

 p
ar

am
et

er
Ex

po
ne

nt
 p

ar
am

et
er

Ex
po

ne
nt

 p
ar

am
et

er

Ex
po

ne
nt

 p
ar

am
et

er
Ex

po
ne

nt
 p

ar
am

et
er

Ex
po

ne
nt

 p
ar

am
et

er

Italy Japan Spain
(a) 80% reduction in contacts outside of household

(b) 40% reduction in contacts outside of household

(c) No reduction in contacts outside of household

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0

2.0

6.0

4.0

2.0

6.0

4.0

2.0

6.0

4.0

2.0

6.0

4.0

2.0

6.0

4.0

2.0

6.0

4.0

2.0

6.0

4.0

2.0

6.0

4.0

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.20126003doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.08.20126003
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: The estimate of exponent parameter φ describing the variation of 520 
susceptibility among age groups assuming that mortality rate does not depend on age 521 
and the fraction of infections that becomes symptomatic among all COVID-19 cases is 522 
0.5. True and broken lines represent the maximum likelihood estimates and 95% 523 
confidence intervals, respectively. 524 
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Figure 7: The estimate of exponent parameter φ describing the variation of 528 
susceptibility among age groups assuming that mortality rate does not depend on age 529 
and the fraction of infections that becomes symptomatic among all COVID-19 cases is 530 
0.05. True and broken lines represent the maximum likelihood estimates and 95% 531 
confidence intervals, respectively. 532 
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