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Abstract 
The Democratic Republic of the Congo declared its tenth Ebola virus disease outbreak in July 
2018, which has circulated primarily in the Nord Kivu province. In addition to standard 
epidemiologic surveillance and response efforts, the Institut National de Recherche Biomédicale 
implemented an end-to-end genomic surveillance system, including sequencing, bioinformatic 
analysis, and dissemination of genomic epidemiologic results to frontline public health workers. 
Here we report 538 new genomes from this outbreak; together with previously available 
sequence data (​n ​= 48 genomes), this represents an unprecedented 17% of all 
laboratory-confirmed infections. To support outbreak response efforts, we reconstructed 
spatiotemporal transmission dynamics at broad and at fine scales as new data were available 
and disseminated the results via an interactive narrative-based platform. Our innovative system 
enables actionable information sharing between scientists and epidemiologists coordinating the 
day-to-day response on the time scales necessary to guide response efforts. The development 
of this genomic surveillance pipeline, within a resource-limited setting, represents significant 
technological and scientific progress in genomic epidemiology. Here we present a phylodynamic 
analysis of the outbreak as of February 2020, and describe the types of epidemiologic dynamics 
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that we monitor the genomic data for, including resolution of co-circulating transmission chains, 
detection of superspreading events, inference of regions that act as transmission sources and 
sinks, and differentiation of closely linked cases versus propagated transmission. These findings 
have ameliorated the current outbreak response and are directly applicable to future outbreaks.  
 
Introduction 
Since the first documented outbreak of Ebola virus disease (EVD) in Yambuku in 1976, 
outbreaks of EVD have occurred sporadically in the Democratic Republic of the Congo (DRC). 
The most recent outbreak began in late July 2018, when 26 cases of viral hemorrhagic fever 
were reported in Mabalako health zone, Nord Kivu province. Phylogenetic analysis of 48 Ebola 
virus (EBOV) genomes were used to distinguish the current outbreak from a previous one, 
which ended eight days before the Nord Kivu outbreak began ​1​. In June 2018, laboratory 
capacity to perform whole genome sequencing of EBOV had been established in-country, at the 
Institut National de Recherche Biomédicale (INRB) in Kinshasa. Sequencing capacity was 
extended to a field diagnostic lab in Butembo city, Katwa heath zone, in February, 2019. The 
establishment of sequencing labs in the DRC has allowed for continual genomic surveillance of 
this outbreak. At the time of writing, we had generated 586 full and partial genome sequences 
which were shared publicly shortly after sequencing at 
https://github.com/inrb-drc/ebola-nord-kivu ​. This represents ~17% of known cases, a density of 
genomic surveillance that is both a significant achievement and a testament to the impact that 
building within-country capacity can have.  
 
Comparative analysis of pathogen genomes can support traditional epidemiologic surveillance 
by improving our ability to detect and define clusters of related infections, facilitating detailed 
investigations of spatiotemporal dynamics, and monitoring for the emergence of genomic 
variants that infect or transmit more effectively. During the 2013-2016 West African EVD 
outbreak, analysis of viral genomic data was used to differentiate sexual EVD transmission from 
standard human-to-human transmission ​2​, to show that large, sustained case counts were 
attributable to many co-circulating transmission chains of varying sizes ​3​, and to detect the 
emergence of the A82V variant that rose to high frequency during the epidemic, most likely due 
to the variant’s increased infectivity in humans ​4,5​. For all of its utility, genomic surveillance also 
presents a challenge for public health agencies. Genomic surveillance generates large, complex 
datasets. Analyzing these data can require advanced computational infrastructure, as well as 
analysts trained in disciplines that have not historically been a part of public health, such as 
bioinformatics, computational biology, and data science ​6​. Presciently, Dudas and colleagues ​3 
postulated that as laboratory capacity for sequencing increased, genomic surveillance would 
become a routine part of outbreak response, but that analytic capacity would impede the timely 
release of genomic epidemiologic findings. Indeed, public health agencies’ ability to analyze and 
interpret genomic data within an epidemiologic context has lagged behind laboratory capacity to 
perform sequencing. This mismatch between the capacity to generate sequence data, and the 
capacity to interpret and communicate those inferences back to frontline public health workers, 
is a critical gap for the field to address.  
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During this outbreak we have used Nextstrain ​7​ to efficiently perform genomic epidemiologic 
analysis of sequence data as it is generated, and to share the results both publicly and privately 
through nextstrain.org. Beyond simply making the analyses available to public health officials, 
we have sought to increase their utility by improving how we communicate findings. To this end, 
we publish online, interactive situation reports describing our interpretation of the genomic data 
for the epidemiologists who are coordinating the day-to-day response. These situation reports, 
released in both English and French, are produced via Nextstrain Narratives ​8​, which allows 
simultaneous representation of genomic data visualizations and scientific interpretation.  
 
In this paper we begin with an overview of the genomic surveillance system, describing 
sequencing intensity over the outbreak and patterns of data release. We then provide a 
phylodynamic analysis of the 586 publicly available genomes, discussing broad transmission 
dynamics between health zones over the course of the epidemic. Finally, we provide examples 
of the actionable, fine scale transmission dynamics we have monitored the genomic surveillance 
for. We describe the importance of these dynamics for frontline public health efforts such as 
contact tracing and infection control, and we discuss how we communicated our findings to 
public health workers. 
 
Online Methods 
 
Ethics statement 
Diagnostic specimens were collected as part of the DRC Ministry of Health public health 
emergency response; therefore, consent for sample collection was waived. All preparation of 
samples for sequencing, genomic analysis, and data analysis were performed on anonymized 
samples identifiable only by their laboratory or epidemiological identifier. USAMRIID and UNMC 
both determined that the generation of sequencing data for public health response was not 
research.  
 
Sequence data generation 
As described previously ​1​, clinical diagnostic specimens were collected from individuals 
presenting with EVD-like symptoms. Specimens were tested for the presence of EBOV RNA 
using the GeneXpert Ebola Assay (Cepheid, Sunnyvale, CA, USA). We sequenced a subset of 
all EBOV-positive samples; generally, samples are sequenced if they represent an 
epidemiologically important case, or if the case had an unusual contact history. Once samples 
were selected for sequencing, samples were sent to either the field genomics laboratory in 
Katwa or to INRB in Kinshasa. Samples were handled in a glovebox and RNA was extracted 
from the diagnostic specimen using the Viral RNA Mini kit (Qiagen). Samples were processed 
for sequencing using a hybrid capture method as described previously ​1​ or by an Amplicon 
based method ​9​. For hybrid capture sequencing, we used the KAPA RNA HyperPrep library 
preparation kit (KAPA Biosystems, Wilmington, MA, USA) with a spike-in of 20 ng HeLa RNA 
(Thermo Fisher, USA) and xGen Dual Index UMI Adapters (Integrated DNA Technologies, IA, 
USA) to prepare libraries. The libraries were enriched for EBOV using biotinylated probes (Twist 
Biosciences, USA) with the TruSeq Exome Enrichment kit (Illumina, San Diego, USA). For 
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amplicon sequencing, the ThermoFisher 1st strand synthesis system was used to reverse 
transcribe RNA to cDNA. We amplified overlapping EBOV-specific amplicons according to a 
primer scheme generated from PrimalSeq ​9​ using Q5 DNA High-Fidelity Mastermix (New 
England Biolabs, Ipswich, MA) according to manufacturer’s specifications (primers are in table 
S1). Amplicons were quantified with the ​Qubit dsDNA High Sensitivity assay on the Qubit 4.0 
instrument (Life Technologies, Carlsbad, CA) ​and then diluted to <500 ng for input into library 
preparation. Sequencing libraries were prepared using the Illumina Nextera DNA Flex kit 
(Illumina, San Diego, CA) with IDT for Illumina Unique Dual indexes. Libraries from both 
methods were quantified by qPCR with the KAPA Universal Library Quantification kit or by Qubit 
with the ​dsDNA High Sensitivity assay, ​andrun on an Illumina iSeq 100 or Miseq System for 2 x 
150 cycles. 
 
Bioinformatic and phylogenetic analysis 
We used a custom bioinformatic pipeline to generate consensus genomes from the raw 
FASTQ-formatted sequencing output ​1,10​. De-identified metadata about the patient, diagnostic 
lab, and sequence quality were paired with the consensus genome. This additional data 
included the laboratory identifier of the sample, the epidemiologic identifier for the patient, the 
patient’s symptom onset date, the sample collection date, health zone, province, lab that 
performed the diagnostic testing, the sequencing date, and the percent genome coverage of the 
sequence. Phylogenetic analysis of all consensus genomes was performed using Nextstrain ​7​, 
with updated builds occurring each time new sequences were released. Alignments were 
verified manually in Geneious (​https://www.geneious.com/​). 
 
Our phylogenetic analysis pipeline utilises Augur version 6.3.0 (a component of Nextstrain), 
which performs a multiple sequence alignment with MAFFT ​v7.402 ​11​, computes a maximum 
likelihood phylogeny using IQ-TREE v​1.6.6 ​12​, and temporally resolves this phylogeny using 
TreeTime v0.7.2 ​13​. We infer the health zone at internal nodes in the tree using the discrete trait 
reconstruction found in TreeTime. Resulting data are visualised using Auspice (a component of 
Nextstrain) which allows interactive exploration of the data. 
 
Narrative construction and deployment 
Upon release of new sequence data and completion of an updated Nextstrain build, we 
examined the phylogenies to determine where the new sequences clustered and to investigate 
epidemic dynamics apparent in the genomic data. Specific examples of these inferences are 
discussed in the Results. These inferences were written up in English and French as Nextstrain 
Narratives (Hadfield et al. 2019) and were disseminated through nextstrain.org. Briefly, 
Narratives are sourced from a Markdown file, which associates text with specific views of the 
data available on Nextstrain (see Supplemental Figure 1 for an example of an example). More 
information on writing, formatting, and deploying Narratives is available at 
https://nextstrain.github.io/auspice/narratives/how-to-write ​. 
The Narratives released to frontline public health workers contain sensitive patient information 
and thus are shared privately on a password-protected site. However, to illustrate what these 
situation reports are like, we have provided five narratives originally shared during September 
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and October 2019, with this sensitive information redacted. Links to the online interactive 
versions and PDF copies of these narratives are available as Supplemental Information, and the 
data are available at ​https://github.com/blab/ebola-narrative-ms/​ in branches 
“sitrep-2019-09-13”, “sitrep-2019-09-14”, “sitrep-2019-09-21”, “sitrep-2019-10-15” and 
“sitrep-2019-10-23”.  
 
Data and code availability 
All genomic surveillance data, including consensus genomes and de-identified metadata, are 
publicly available at ​https://github.com/inrb-drc/ebola-nord-kivu ​. Nextstrain Augur and Auspice 
are open-source and all source code can be found at ​https://github.com/nextstrain/augur​ and 
https://github.com/nextstrain/auspice ​. All other analyses presented here are available as 
iPython notebooks at ​https://github.com/blab/ebola-narrative-ms/​.  
 
Results 
 
Developing actionable genomic surveillance 
Operationalizing genomic epidemiology in an outbreak setting requires consistent sequencing of 
samples in proportion to infection incidence, as well as rapid analysis and communication of 
results. To be actionable, return of results must occur quickly enough that the inferences can 
inform response efforts. As such, the success of genomic surveillance systems should be 
evaluated on the consistency and timeliness of sequencing, analysis, and data release. 
 
As of February 2020, we have sequenced 586 EVD genomes from the Nord Kivu outbreak, 92% 
of which are included in a published analysis here for the first time. Samples have been 
sequenced over the full temporal span of the outbreak to date (Figure 1A). Despite the complex 
geographical and political situation in eastern DRC, sequencing intensity shows minimal 
geographic bias; the number of sequences from a health zone is proportional to the total 
number of cases reported within that health zone (Figure 1B). This lack of bias improves the 
validity of phylogeographic reconstructions of transmission dynamics.  
 
To promote open data sharing and to facilitate potentially important insights from the 
international scientific and public health community, genomic data and de-identified metadata 
were released publicly through virological.org, GitHub, and Nextstrain as they were generated. 
As the genomic surveillance system developed over the outbreak, the time between sequencing 
and data release decreased (Figure 1C). While releasing data publicly supports open science in 
the broader community, data release alone does not necessarily make these data actionable. 
Rather, interpretations of the analyzed data must be circulated rapidly to be useful for public 
health response. Initially, we constructed and disseminated haplotype maps which were 
manually annotated with epidemiologic information. These visualizations were shared with the 
response team as PDFs, and were subsequently discussed at regular emergency operations 
meetings. In September 2019, we started to routinely run bioinformatic analysis in Kinshasa, 
and implemented private data sharing to accredited parties through nextstrain.org. This allowed 
us to transition from generating haplotype maps to constructing phylogenies with the Nextstrain 
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pipeline, which improved the efficiency and scalability of analyses. Using Nextstrain enabled us 
to include genomes that were less than full length in the analyses as phylogenetic 
reconstruction methods can handle uncertainty at sites in an alignment. Secondly, we were able 
to generate temporally-resolved trees in addition to visualizations of genetic distance; this 
allowed estimation of when transmission chain movement occurred. Finally, the Nextstrain 
analytic pipeline enables automated annotation of many of the traits that we used to manually 
annotate in the haplotype maps. This reduced the average time between sequencing and 
sharing of phylogenetic reconstructions to 6.6 days (standard deviation 7.8 days). Public data 
sharing occured an average of 13.4 days later (Figure 1D,E). 
 
In September 2019 we also began using Nextstrain Narratives ​8​ to deliver genomic 
epidemiological situation reports. Nextstrain Narratives provide simultaneous representation of 
genomic data visualizations alongside a narrative scientific interpretation. They are also 
interactive, providing users detailed information about the data on demand. This switch to using 
Narratives had various advantages; we could include more genomic data in the analyses and 
we could present both genetic divergence and temporally-resolved phylogenies. The Nextstrain 
Narrative situation reports, written in both English and French, were shared electronically as well 
as being presented to field epidemiologists at emergency operations centre meetings, typically 
held in Beni. 
 
When circumstances have been ideal, we have performed diagnostic testing, sample 
transportation, and sample preparation for sequencing in as little as 4 days, with sequencing 
and data analysis taking an additional 2 to 3 days.  Indeed, we have made genomic 
epidemiological inferences available to the response team in as little as 7 days after sample 
collection from a patient. However, the time between sample collection and sequencing is 
usually longer than this. On average, a sample is sequenced 41 days after collection from the 
patient, with a standard deviation 37 days. This relatively large lag results from logistical 
challenges and political instability, which we describe in greater detail in the Discussion.  
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Figure 1: Progress of genomic surveillance over the course of the outbreak. ​ (A) Total numbers of 
confirmed cases (grey) and sequenced cases (orange) by epi week; ~17% of cases have been 
sequenced. (B) Correlation between the number of laboratory-confirmed cases reported in a health zone 
and the number sequenced cases from a health zone. (C) Time lags between sample collection and 
release of phylogenetic analyses. Three vertical lines, firstly for haplotype map release (teal), then for 
public Nextstrain release (purple), and then for private Nextstrain release (light blue) represent the initial 
roll-out of each of these platforms, when all sequence data up to that date were re-released on the new 
platform. The analysis in this paper uses the publicly released data. (D) Kernel density estimates of lag 
times between sample collection and sequencing (orange), between sequencing and private release of 
the data (teal), and between sequencing and public release of the data (purple), prior to September 2019. 
(E) Kernel density estimates of lag times between sample collection and sequencing (orange), between 
sequencing and private release of the data (teal), and between sequencing and public release of the data 
(purple), after switching to privately-released Nextstrain Narrative situation reports in September 2019.  
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Broad-scale dynamics of EVD 
From phylogeographic analysis of 586 publicly available EBOV genomes collected between July 
2018 and January 2020, we describe broad patterns of the outbreak in space and time. The 
genomic data suggest that the outbreak began in late-July 2018 in the Mabalako health zone 
(Figure 2A), a finding that agrees with case surveillance data ​1​. There is only evidence for a 
single zoonotic spillover event, with all subsequent cases caused by human-to-human 
transmission. Transmission to the nearby health zones of Beni and Mandima appears to have 
occurred early after the outbreak started (Figure 2A,B). The genomic data suggest that there 
were multiple introductions of EVD from Mabalako into Beni (Figure 2A). One of these 
introductions, which we estimate occurred in August 2018 (95% CI: Aug 5, 2018 – Aug 18, 
2018) led to extensive onward transmission into other health zones, becoming the primary 
circulating lineage in this outbreak (Figure 2A, “Primary Outbreak Clade”). We also observe 
movement of transmission chains back into previously affected health zones. For example, the 
primary outbreak clade moved from Beni into Kalunguta around the end of September 2018 
(95%CI: Aug 19, 2018 – Oct 9, 2018), which later led to multiple introductions into Katwa during 
October 2018 through January 2019. One of the transmission chains circulating in Katwa then 
moved back into Beni some time between late-February and early-May 2019 (Figure 2A). A 
secondary, sustained lineage resulted from an introduction from Beni to Katwa sometime 
between August and October 2018 (Figure 2A, “Secondary Outbreak Clade”). This lineage later 
moved into Mandima, Rwampara, and back into Katwa. Although smaller than the primary 
outbreak clade, this secondary lineage has persisted throughout much of the outbreak, with 
descendents sampled as recently as September 2019. 
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Figure 2: Broad scale spatiotemporal dynamics of the EVD outbreak in Nord Kivu province DRC ​. 
(A) temporal phylogenetic reconstruction of 586 genomes colored by reporting health zone, with clades of 
interest annotated; the health zone of internal branches is inferred via a discrete model and reduced 
confidence is conveyed by transitioning colors to gray. (B) Geographical spread of samples over five 
disjoint time intervals which span the entire outbreak (inferred transmissions removed for clarity). Figure 
adapted from Nextstrain visualizations. 
 
It can be useful to know how frequently EVD moves between different geographic areas. The 
policies instituted for controlling transmission when introductions and exportations are rare may 
be very different from the policies instituted when transmission chains move frequently between 
different regions. Using ancestral state reconstruction from the phylogeny, we assessed 
patterns of transmission chain movement across the entire outbreak. We detected 191 events 
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where an EVD transmission chain moved from one health zone into a different health zone. Of 
these movement events, we were able to infer the source location with 70% certainty for 163 
events, finding 57 distinct movement patterns of EVD between all possible pairwise 
combinations of affected health zones. Of the 26 affected health zones, 15 health zones acted 
only as sinks, meaning that once EVD transmission moved into them, they did not seed 
transmission into any further health zones (Supplemental Figure 2A). Fewer than half of health 
zones were identified as sources of transmission (​n = ​11/26), and the majority of EVD 
exportation events occurred from only 5 source health zones: Beni, Mabalako, Katwa, 
Kalunguta, and Mandima (Supplemental Figure 2A,C). Each of these five health zones seeded 
transmission in a different health zone at least 20 separate times. Nineteen health zones 
received multiple introductions (Figure 2C, Supplemental Figure 2A). For each health zone, the 
number of introduction events into the health zone was correlated with the number of 
exportation events out of that health zone (r​2​=0.39, p<0.001, Supplemental Figure 2B). 
 
In general, a circulating transmission chain was more likely to seed transmission in a different 
health zone if the two health zones were geographically close (Figure 2A), although we note 
that the geography and infrastructure of Eastern DRC means that straight-line distances may be 
misleading. The number of times that a transmission chain moved into a new health zone was 
variable (mean 3.7, standard deviation 6.8, Figure 2B). Just five transmission chains were 
responsible for 106 of the 163 events where a transmission chain moved into a new health zone 
(Supplemental Figure 2A,C). The duration of time that a chain circulated within a health zone 
was also variable (Figure 2D), and analysis of all transmission chains that moved between 
different health zones (​n ​= 44) indicated that the length of time that a chain circulated in a health 
zone was weakly, but significantly, correlated with the number of times that transmission chain 
seeded transmission in other health zones (r​2​=0.19, p<0.003, Supplemental Figure 2D).  
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Figure 2: Transmission patterns within and between health zones. ​ (A) Kernel density estimate of the 
inferred distance (in kilometers) between a source and a sink health zone, for 163 events where a 
transmission chain moved between two health zones; 50% of movement events occur between health 
zones that are less than 49km apart, and 95% of movement events occur between health zones that are 
less than 131km apart. (B) Kernel density estimate of the number of times a single chain circulating within 
a health zone seeded transmission into a different health zone; 50% of chains seed less than 1.5 
transmissions into a different health zone, and 95% of transmission chains seed less than 6.2 
transmissions into a different health zone. (C) Kernel density estimate of the number of times EBOV was 
introduced into each health zone; 50% of health zones experienced less than 7.1 introduction events, and 
95% of health zones experienced less than 31.1 introduction events. (D) Kernel density estimate of the 
duration of time a transmission chain circulated within a single health zone; 50% of transmission chains 
circulated within a single health zone for less than 3.4 weeks, and 95% of transmission chains circulated 
within a single health zone for less than 20.9 weeks. 
 
Fine-scale transmission dynamics  
For various infectious diseases, including seasonal influenza, Zika virus, and Ebola virus, 
genomic epidemiology studies have increased our understanding of transmission dynamics at 
broad spatiotemporal scales ​3,14–19​. While these large-scale descriptive inferences provide 
important context during outbreaks, frontline public health workers also need specific, actionable 
pieces of information. When responding to EVD outbreaks, analyses should provide information 
that supports contact tracing efforts and evaluates the effectiveness of surveillance systems and 
infection control measures ​20​. Here we describe the various types of fine-scale epidemiological 
dynamics that we have observed during the Nord Kivu EVD outbreak, and explain their 
importance to outbreak response efforts. 
 
Sources and sinks of infections 
Phylogeographic analyses, which infer patterns of transmission jointly from geographic and 
genomic data, reconstruct pathogen spatial movements over time ​21​. From these reconstructed 
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patterns we can describe which regions act as sources, that is they export transmission chains 
to other regions, and which regions act as sinks, meaning that they receive transmission chains 
but do not seed them elsewhere. Differentiating between source and sink regions can inform the 
allocation of surveillance resources. If a particular region is a primary source of transmission 
seeding transmission chains in other regions, then enhanced contact tracing and outreach 
efforts in the source area can limit transmission in both the source and sink regions. 
  
Below we show an example of qualitative source and sink inference. Genomic data suggest that 
clade c26 circulated primarily in Mandima health zone (Figure 3, pink). Genomes from other 
health zones, including Butembo (clade c27, orange), Mambasa (c36 and c40, periwinkle), and 
Kayna (c28, teal), form their own clades interdigitating within clade c26. Under the assumption 
that sequenced cases are representative samples of EVD infections, this pattern suggests that 
Mandima acted as a source of the circulating chains, seeding transmission chains in Butembo, 
Mambasa, and Kayna that circulated within those health zones but did not move beyond them. 
These findings can be strengthened by analyzing case surveillance data for travel history or 
contact links across health zones. 
 

 
Figure 3: Source-sink transmission dynamics in Mandima health zone. ​ (A) Phylogenetic 
reconstruction of a transmission chain circulating primarily in Mandima (c26), which moved into 12 other 
health zones; clades mentioned in the text are annotated on the phylogeny. (B) Geographic 
representation of the inferred transmission events between health zones. Circle size corresponds to 
sequenced sample counts for each health zone indicated. Counts are also annotated next to the health 
zone name. 
 
Resolution of multiple concurrently circulating transmission chains 
During large outbreaks, multiple separate transmission chains may circulate concurrently in the 
same geographic area ​3​. It may be difficult to differentiate between co-circulating transmission 
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chains if exposure profiles are not distinct. Using molecular data increases the sensitivity with 
which we can define groups of related infections ​6​. Resolving distinct, co-circulating 
transmission chains is important because separate transmission chains may contribute 
disproportionately to overall case counts, or the factors that sustain transmission may vary by 
chain. Additionally, genomic data may detect transmission chains that are under-surveilled, 
something that can be masked in aggregate case count data. Thus defining clusters of related 
infections at high resolution may enable public health officials to evaluate and explicitly tailor 
surveillance and response measures. 
 
In September 2019, we sequenced seven new cases from Kalunguta health zone (Figure 4A, 
enlarged tips); all had been collected between August 26th and September 1st, 2019. Despite 
coming from the same health zone and having similar sample collection dates, these cases 
were genetically diverse, clustering into three separate clades that each appeared to have 
resulted from a separate introduction from Beni (Figure 4A,B). These clades are c30, defined by 
a T to C mutation at nucleotide site 18083; c31, defined by a mutation from G to A at site 10982; 
and c32, defined by five mutations: T2695C, A3098G, C11678A, G11934A, and C13172T 
(Figure 4).  
  

 
Figure 4: Multiple transmission chains co-circulating in Kalunguta health zone. ​ (A) View of clade 
c33 and its descendents. Clade c33 circulated in Beni and was exported to Kalunguta three separate 
times, yielding three co-circulating transmission chains in Kalunguta (clades c30, c31, and c32). Enlarged 
tips show which samples were sequenced in September 2019, smaller tips were sequenced previously. 
(B) Map schematic showing the inferred transmissions from Beni into Kalunguta for this clade; each 
paraphyletic introduction is represented by a labelled different circle, where the circle area is proportional 
to the number of sequences falling within the labelled clade. The exact count is also annotated. 
 
Field epidemiologists hypothesized that the cases in c31 were part of a transmission cluster 
(data not shown to protect patient privacy). The genomic data reinforce this picture. In contrast, 
cases KAT10686 and BTB24923, which group together in clade c32, are significantly diverged 
from the other Kalunguta cases. This finding indicates that clade c32 was circulating in 
Kalunguta, during which time mutations accrued across the genome. However, this circulation 
was not detected by genomic surveillance until these two cases were sequenced. Given that we 
do not sequence all cases, this pattern indicates two possibilities. The first is that transmission 
was entirely cryptic, with neither genomic surveillance nor traditional surveillance capturing this 
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chain of transmission within Kalunguta. If this were the case, the genomic data would indicate a 
need for enhanced contact tracing and community outreach within Kalunguta. Alternatively, this 
transmission chain may have been detected by traditional surveillance, but cases were simply 
not sent for sequencing, as may happen if reported contact histories are detailed and clear. This 
situation demonstrates the importance of having an integrated response team with expertise in 
interpretation of both genomic and case surveillance data; this integration would allow real-time 
differentiation of these two possible scenarios. 
 
Superspreading 
EVD can be transmitted during traditional burial practices, which may include frequent contact 
with the body of the deceased ​22​. Funerals for prominent figures in the community are often well 
attended, which can lead to superspreading events that cause large numbers of secondary 
cases and seed transmission in wider geographic areas ​23​. From a surveillance perspective, 
knowing that a superspreading event has occurred, and knowing which cases were infected as 
part of that event, can explain increased case counts in previously low incidence areas ​23​. 
Alternatively, if surveillance is enhanced in the wake of a known large exposure event, 
epidemiologists will likely detect prevalent cases unrelated to the superspreading event. These 
alternate exposure settings must also be investigated to control transmission. In both scenarios, 
genomic data enable classification of cases as related or unrelated to the superspreading event 
at a high resolution. 
 
During this outbreak we have monitored the genomic data for possible superspreading events. 
We illustrate one such example, shown in clade c25. KAT5915 was a pastor who died of EVD in 
Beni. The body of the deceased was transported from Beni to Butembo for burial. Their funeral, 
which did not follow EVD safe burial protocols ​24​, was widely attended. While many people were 
exposed at the funeral, the genomic data indicate which infections were likely directly related to 
KAT5915. Exposure at the funeral led to further cases in Beni, and to the infection of individuals 
from Butembo, Ariwara, and Oicha (Figure 5). Three other cases had identical viral genome 
sequences to KAT5915, while another 5 cases had sequences that differed from KAT5915 by 
only one nucleotide (Figure 5A). This degree of sequence similarity indicates that infection likely 
occurred due to funerary contact. The genomic data also indicate that these funeral-associated 
infections started chains of transmission that continued to circulate and spread more widely. As 
of February 2020, 210 sequences across 20 health zones were descendents of this clade 
(Figure 5A,B). 
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Figure 5: Superspreading event and sustained transmission after unsafe burial of a pastor ​. (A) 
Phylogenetic reconstruction of the funerary associated clade. The horizontal axis represents mutations 
relative to the index case (KAT5915, orange, labelled). Three other samples had identical genome 
sequences to KAT5915. One case was from Oicha (light brown), one case was from Ariwara (neon 
yellow), and one case lacked geographic information (grey). Additional cases diverged by only one 
nucleotide were detected in Beni (green), Butembo (orange), and Kalunguta (purple). In total, 210 
sampled infections descend from this event, spanning 20 health zones. (B) Map indicating the numbers of 
sequences descended from this clade by health zone. The area of the circle is proportional to the number 
of sequenced cases from a health zone. Movements between health zones are shown as lines linking 
health zones. 
 
Differentiating direct transmission from propagated transmission. 
Promptly detecting and isolating EVD cases can limit the risk of onward transmission to family 
and other contacts, lower the number of deaths that occur in the community, and potentially 
improve patient outcomes because care is sought earlier in the course of disease ​25​. Given the 
importance of finding all cases along a transmission chain, a critical component of EVD 
surveillance epidemiology is differentiating direct transmission events between two cases from 
longer transmission chains with intermediary infections. Genomic data are useful for detecting 
cryptic transmission, as viral genomes mutate during viral replication, leaving a history of 
infection even when a case is not captured by surveillance. This property allows us to assess 
the probability that a certain number of intermediate cases occurred between two sequenced 
cases given the number of nucleotide substitutions observed between their genomes. 
 
We estimate the number of serial intervals along a transmission chain given observed genetic 
divergence using the following logic. EBOV has an evolutionary rate of roughly 1.2×10 ​-3 
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substitutions per site per year ​26​. With a genome length of roughly 19,000 nucleotides, on 
average we expect 22.8 substitutions to accrue across the viral genome during a year of EBOV 
circulation. The EBOV serial interval, or the duration of time between symptom onsets in an 
index case and in a secondary case, is 14 to 15 days ​27​. Thus on average, 0.875 substitutions 
will accrue after a 14 day period. Notably these estimates are averages, but in the data one 
observes discrete numbers of substitutions. These substitutions accrue according to a Poisson 
process, and the probability of observing a specific number of mutations can be modeled as a 
Poisson distribution where the mean is the substitution rate per serial interval. In our case, given 
that two cases are directly linked and separated by a single 14 day serial interval, the probability 
of observing no substitutions is 0.42, the probability of observing one substitution is 0.36, and 
the probability of observing two mutations is 0.16. These probability distributions can be 
modeled for any number of serial intervals (Figure 6A). 
 

 
Figure 6: Expected numbers of mutations over transmission chains of different lengths, and 
application to transmission within Beni. ​(A) The distributions show the probability of observing a 
particular number of substitutions separating two sequences given that the two sampled cases are 
separated by a certain number of serial intervals. Here we model the probability distributions for one 
through eight serial intervals separating two cases. (B) Phylogenetic reconstruction of clade c44 showing 
genetic divergence between genomes. The branch lengths indicate the number of substitutions 
separating a sample from the root of clade c44. The three samples that are stacked vertically at the root 
of the clade, BEN39780, BEN39826, and BEN39066, all have identical consensus genome sequences. 
 
As a concrete example we can look at clade c44, a cluster of 8 sequenced cases that circulated 
in Beni. These cases were sampled between October 28, 2019 and November 17, 2019, a 
period of 20 days. Three of these samples (BEN39066, BEN39826, and BEN39780) all have 
identical genome sequences (Figure 6B), which is consistent with either sequential direct 
transmission between the cases, or with a single source infecting multiple cases. In contrast, 
BEN39817, which was sampled on the same day as BEN39826 and BEN39780, is diverged 
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from those sequences by 6 substitutions.The probability of observing 6 mutations separating 
two direct infections is negligible (​p​ = 0.00026). The more probable explanation for this amount 
of genetic divergence is the presence of unsequenced cases along the transmission chain 
leading to the infection of BEN39817. As an additional note on interpretation, while both 
BEN39817 and BEN40801 are both diverged from the root of clade c44 by 6 mutations, 
BEN39817 has a ​different ​6 mutations than BEN40801. That is, the mutations occurring along 
these branches are unique to that sample. This means that the intermediate infections prior to 
BEN39817’s infection are different from the intermediate infections leading to BEN40801.  
 
Discussion 
 
In response to the ongoing Ebola outbreak in Nord Kivu, Democratic Republic of the Congo, we 
implemented an end-to-end genomic surveillance system. This system includes viral whole 
genome sequencing, bioinformatic analysis, and dissemination of genomic epidemiologic results 
to frontline public health workers. We used the genomic surveillance data to describe epidemic 
dynamics broadly, finding that while many health zones in Nord Kivu have been affected by 
EVD, a small number of transmission chains circulating within a limited subset of health zones 
have sustained the outbreak. These transmission chains moved frequently between this subset 
of health zones, likely increasing the challenge of containing the outbreak. We also used the 
genomic data to explore fine-scale dynamics that are actionable, such as precisely defining 
relatedness of infections, differentiating multiple co-circulating viral lineages, investigating 
superspreading events, and monitoring for possible undetected transmission chains. While 
these inferences have great public health utility, genomic epidemiologic training remains limited 
within the public health workforce. We therefore developed an innovative platform for 
communicating salient results, returning our interpretations of the genomic data within situation 
reports with narrative descriptions of epidemiologic dynamics accompanying genomic data 
visualizations. 
 
In many ways, this outbreak shows how far genomic surveillance for outbreak response has 
come. At the time, the 2013-2016 West Africa EVD epidemic was notable for its high density of 
sequenced cases, representing around ~5% of reported EVD cases ​3​. Within this outbreak, we 
have sequenced ~17% of confirmed EVD cases, with all sequencing, and now most 
bioinformatic analysis, occurring within the DRC. The value of building capacity within-country is 
demonstrated not only by our work here, but also by the sustainability of a system that can be 
shifted to other surveillance efforts as well. Indeed, using this same genomic surveillance 
system we are now sequencing SARS-CoV-2 cases in the DRC.  
 
While these are considerable strides, we have still encountered hurdles to generating data and 
communicating insights to the response team in a timely manner. We emphasize the critical 
importance of logistical support in the design of genomic surveillance systems. Although we 
have demonstrated that a one-week turnaround time between sample collection and return of 
results is possible, various obstacles have undermined our ability to always work that efficiently. 
Notably, challenges surrounding sample transport lengthened the average period of time 
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between sample collection and generation of sequence data. This was especially true when 
periods of heightened violence caused the Katwa laboratory to close, and samples intended for 
sequencing in the field had to be shipped to Kinshasa, roughly 3000km away. Additionally, 
without a highly developed laboratory supply chain, it was hard to consistently access 
sequencing reagents, and lack of reagents sometimes delayed sequencing runs.  
 
An additional consideration when performing genomic surveillance for outbreak response is how 
sampling may impact phylogeographic inference. Ideally, sequences should be sampled in 
proportion to incidence, and represent the full genetic diversity of the circulating pathogen. 
Genomic epidemiologic inferential techniques make these assumptions about samples, 
however we know that these assumptions are often violated by convenience sampling during 
outbreaks. Therefore, as genomic surveillance becomes more common, the field would benefit 
from additional simulation-based work exploring how genomic epidemiologic interpretations may 
change as a function of sampling. Finally, phylogenetic reconstructions may change with the 
addition of more sequence data. This does not necessarily mean that the reconstruction is 
wrong; rather, one can think of the reconstruction as incomplete due to lack of data. Increasing 
genomic surveillance capacity such that even higher proportions of cases can be sequenced will 
go far to alleviate these limitations. 
 
The addition of genomic data to traditional epidemiologic data improves our ability to support 
contact tracing and evaluate interventions. Drawing inferences from multiple data sources can 
provide greater confidence in inferred epidemiologic dynamics, and also pinpoint weaknesses or 
erroneous findings in one data stream. Thus we emphasize the utility of reviewing findings from 
genomic surveillance and traditional surveillance in an integrated manner. Supporting integrated 
surveillance systems and epidemiologic response will require technical and social progress. 
From a technical perspective, we will need unified databases that provide all public health 
responders with access to well linked epidemiologic information, laboratory information, and 
genomic data for cases. From a social perspective, we envision that the utility of genomic 
surveillance will be improved if genomic and traditional epidemiologists work together, in 
real-time, during outbreak response. Performing rapid analysis with the opportunity for 
communication about the results enables an iterative discussion of the epidemiological 
dynamics within the context of both the genomic data and case history data. Facilitating this 
review process would increase the efficiency with which we can act on the results, leading to 
quicker evaluation and refinement of outbreak response efforts. While these next steps will 
require cooperation, openness, and motivation, we hope that our work shows the utility and 
worthiness of this effort. 
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