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Abstract 

Coronavirus Disease 2019 (COVID-19) has emerged as a significant global concern, triggering harsh 

public health restrictions in a successful bid to curb its exponential growth. As discussion shifts towards 

relaxation of these restrictions, there is significant concern of second-wave resurgence. The key to 

managing these outbreaks is early detection and intervention, and yet there is significant lag time 

associated with usage of laboratory confirmed cases for surveillance purposes. To address this, syndromic 

surveillance can be considered to provide a timelier alternative for first-line screening. Existing 

syndromic surveillance solutions are however typically focused around a known disease and have limited 

capability to distinguish between outbreaks of individual diseases sharing similar syndromes. This poses a 

challenge for surveillance of COVID-19 as its active periods are tend to overlap temporally with other 

influenza-like illnesses. In this study we explore performing sentinel syndromic surveillance for COVID-

19 and other influenza-like illnesses using a deep learning-based approach. Our methods are based on 

aberration detection utilizing autoencoders that leverages symptom prevalence distributions to distinguish 

outbreaks of two ongoing diseases that share similar syndromes, even if they occur concurrently. We first 

demonstrate that this approach works for detection of outbreaks of influenza, which has known temporal 

boundaries. We then demonstrate that the autoencoder can be trained to not alert on known and well-

managed influenza-like illnesses such as the common cold and influenza. Finally, we applied our 

approach to 2019-2020 data in the context of a COVID-19 syndromic surveillance task to demonstrate 

how implementation of such a system could have provided early warning of an outbreak of a novel 

influenza-like illness that did not match the symptom prevalence profile of influenza and other known 

influenza-like illnesses. 
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Introduction 

Mitigating COVID-19 Resurgence Risk via Syndromic Surveillance 

The fast spread of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome 

coronavirus 2 (SARS CoV-2), has resulted in a worldwide pandemic with high morbidity and mortality 

rates1-3. To limit the spread of the disease, various public health restrictions have been deployed to great 

effect, but as of May 2020, international discussion has begun shifting towards relaxation of these 

restrictions. A key concern is, however, any subsequent resurgence of the disease4-6, particularly given 

that the disease has already become endemic within localized regions of the world7. This issue further 

exacerbated by significant undertesting, where estimates have found that more than 65% of infections 

were undocumented8,9. Additionally, increasing levels of resistance and non-adherence to these 

restrictions has greatly increased resurgence risk.  

A key motivation behind the initial implementation of public health restrictions was to sufficiently curb 

the case growth rate so as to prevent overwhelming hospital capacities10,11. While the situation has been 

substantially improved, a resurgent outbreak will present much the same threat11. Indeed, second-wave 

resurgence has already been observed in Hokkaido Japan after public health restrictions were relaxed, and 

these restrictions were re-imposed a mere month after being lifted12. Additionally, from a healthcare 

provider perspective, significant nosocomial transmission rates for the disease have been found despite 

precautions13-15, a significant concern as many of the risk factors in terms of severity and mortality for 

COVID-192,16 can be commonly found within an in-hospital population. To avoid placing an even greater 

burden on already strained hospital resources, it is important that healthcare institutions respond promptly 

to any outbreaks and modify admission criteria for non-emergency cases appropriately. For both reasons, 

it is critical to detect outbreaks as early as possible so as to contain them prior to requiring reinstitution of 

these extensive public health restrictions.  
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Early detection is, however, no mean feat. Reliance on laboratory confirmed COVID-19 cases to perform 

surveillance introduces significant lag time after the beginning of the potential shedding period as 

symptoms must first present themselves17,18 and be sufficiently severe to warrant further investigation, 

before test results are received. This is further complicated by limited test reliability, with RT-PCR tests 

having an estimated sensitivity of 71%19, and serological tests, despite having high reported specificity, 

having significant false positive rates due to the relatively low prevalence of COVID-19 amongst the 

population. Moreover, asymptomatic carriers, which in some studies have been found to reach as much as 

50-75% of the actual case population20-22, present significant risk, particularly amongst the healthcare 

provider population.  

It is therefore evident that any surveillance solution relying purely on laboratory-confirmed cases will 

suffer from a significant temporal delay as compared to when the transmission event actually occurs, 

suggesting that a syndromic surveillance solution may be necessary23. In this study, we aim to perform 

computational syndromic surveillance for novel influenza-like illnesses such as COVID-19 amongst a 

hospital’s patient population (comprising both inpatient and outpatient settings) to detect outbreaks and 

prompt investigation in advance of actual confirmation of cases.  

Syndromic Surveillance for COVID-19 and Other Novel Influenza-Like Illnesses 

Digital syndromic aberration surveillance systems came to the forefront of national scientific attention for 

bioterrorism preparedness purposes24, particularly in the wake of the anthrax attacks in the fall of 200125. 

Such systems, however, were quickly noted to be also of use in clinical and public health settings26. 

Approaches that have been explored for this task27 include usage of simple statistical thresholds on raw 

frequency or prevalence data, to statistical modeling and visualization approaches such as Cumulative 

Sums (CUSUM), Exponentially Weighted Moving Averages (EWMA), and autoregressive modeling28-33. 

More specifically to syndromic surveillance of influenza-like illnesses (ILI), at a national level, the 

United States Centers for Disease Control and Prevention operates the ILInet, a national statistical 
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syndromic surveillance solution deriving its data from reports of fever, cough, and/or sore throat without 

a known non-influenza cause within outpatient settings28.  

While generally effective, many of these approaches are limited in granularity to a syndrome level: that is 

to say they perform surveillance of the frequencies or prevalence of a particular syndrome as a whole, but 

do not make a distinction amongst individual diseases that share similar syndromes. This is an issue for 

our task at hand as COVID-19’s syndrome very closely resembles that of many other seasonal diseases 

such as influenza, the common cold, or even allergic reactions. As such, while an outbreak of a novel 

influenza-like illness like COVID-19 may be registered in these surveillance systems, they may be 

difficult to discern if the outbreak temporally overlaps with known seasonal illnesses sharing the same 

syndrome (e.g. if they begin at the height of the influenza season), and the ongoing outbreak may be 

misattributed to the more benign seasonal disease.  

The underlying symptom prevalence amongst positive cases of influenza-like illnesses is, however, 

perceptibly different. For instance, while the symptom prevalence distribution for positive cases of 

influenza amongst the hospitalized, vaccinated, sub-50, population is 98%, 88%, 83%, 87%, and 96% for 

cough, fever, headache, myalgia, and fatigue respectively34, the distribution for the same symptoms is 

59%, 99%, 7%, 35%, and 70% respectively for hospitalized COVID-19 positive cases13. As an outbreak 

of COVID-19 will likely affect the background symptom prevalence distribution in a different manner 

than an outbreak of influenza, we theorize that an approach incorporating symptom prevalence 

distributions as part of its input data as opposed to the frequency/prevalence of the syndrome as a whole 

will be able to perform this differentiation and as such suppress outbreaks of known, relatively benign, 

seasonal diseases at the user’s discretion.  

Machine learning approaches can be used to perform this anomaly detection task. In this study, we 

adapted one such commonly used approach within the general domain, autoencoders35-37, for our 

syndromic surveillance task. An autoencoder (also commonly termed a “Replicator Neural Network”) is a 

neural network trained in a self-supervised manner to first encode the input into a lower-dimensional 
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form, and then decode this lower-dimension form to reconstruct the input38. In other words, a trained 

autoencoder learns two functions, an encoding function and a decoding function, such that given an input 

𝑥, 𝑒𝑛𝑐𝑜𝑑𝑒(𝑥) = 𝑦, 𝑑𝑒𝑐𝑜𝑑𝑒(𝑦) ≅ 𝑥, |𝑥| > |𝑦| and 𝑥 ≠ 𝑦. A natural property of autoencoders is that their 

encoding and decoding functions only function properly for input data that is similar to the data for which 

it is trained: data that differs in its input features will fail to be successfully reconstructed such that 

𝑑𝑒𝑐𝑜𝑑𝑒(𝑦) ≠ 𝑥.  

For the purposes of syndromic surveillance, we theorize that the autoencoder approach can be adapted: 

given a distribution of syndromic prevalence within the clinic, we would expect that distribution to 

change significantly should an outbreak occur. This implies that during an actual outbreak, the 

reconstruction error would increase perceptibly as compared to during normal time periods and can thus 

be plotted against time to provide a readily interpretable visualization of an outbreak of a novel influenza-

like illness. 

In other words, to accomplish the COVID-19 and other novel influenza-like illness syndromic 

surveillance task, we propose that:  

1) By mining the raw mentions of symptoms within a syndrome of interest through a NLP-based 

approach, we can estimate the prevalence of individual symptoms amongst the overall patient 

population in a timely manner 

2) By delineating certain time periods as “normal” (i.e. no outbreaks of surveilled target of interest) for 

autoencoder training purposes, the resulting model can be used to perform syndromic surveillance by 

measuring the error score of any given day’s input symptom prevalence distribution. Crucially to the 

COVID-19 and novel ILI detection task itself, “normal” time periods can also contain outbreaks of 

seasonal influenza, which should lead the model to learn the appropriate symptom prevalence 

distributions so as to not have elevated errors during typical influenza seasons. 
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In this study, we explore this approach for computational syndromic surveillance with the goal of 

enabling early detection of outbreaks of COVID-19 and other novel influenza-like illnesses, particularly 

during periods of heightened seasonal influenza-like-illness activity.  

Results 

Overview 

The true beginnings of the COVID-19 pandemic within the United States is still a subject of much 

contention, with the date being pushed earlier as investigation continues39. As such, it is difficult to 

directly validate any conclusions about the viability of autoencoder-based syndromic surveillance for 

COVID-19. As such, we validated our approach incrementally through a three-phase approach:  

1) Validating the utility and accuracy of autoencoder-based anomaly detection for syndromic 

surveillance on a disease with known outbreak time periods  

2) Validating that given appropriate training data, our autoencoder model can effectively learn the 

symptom distributions of outbreaks of COVID-19’s common seasonal differentials such as influenza, 

allergies and the common cold within its underlying model, i.e. that it is capable of suppressing 

outbreaks of these other, known, seasonal illnesses from its resulting signal  

3) Applying an autoencoder based anomaly detection approach to syndromic surveillance of COVID-19 

over the past year of data and evaluating the resulting error plot against currently known key dates for 

the COVID-19 pandemic 

Autoencoder-Based Anomaly detection is Viable for Syndromic Surveillance Tasks 

To validate the utility and accuracy of autoencoder-based anomaly detection for syndromic surveillance, 

we chose syndromic surveillance of influenza seasons as the target task. This task was chosen primarily 

due to two factors: 1) its relatively well-defined outbreak periods (available both at a national and state 

level via the CDC Morbidity and Mortality Weekly Reports40-47  and the CDC Influenza-Like-Illness (ILI) 
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Activity Tracker48 respectively) and 2) its similarity in potential input features (due to similar symptom 

presentations) to our end-goal of performing COVID-19 syndromic surveillance.  

 

Figure 1 - Mean Squared Error Relative to Anomaly Threshold for an Autoencoder Trained for the Influenza Season Detection 

Task 

In Figure 1, we present the error plot relative to the anomaly threshold of a stacked autoencoder trained 

using influenza off-season data for the purposes of syndromic surveillance of influenza. We additionally 

highlight official CDC flu seasons (national level) 40-47 in orange, and time periods with heightened 

(moderate or greater) ILI activity48 within the state of Minnesota (from where our data originates) in red.  

Our error plots and the close congruence between periods of heightened autoencoder reconstruction error 

and influenza activity does suggest that our approach is fairly successful at performing the influenza 

syndromic surveillance task. Of particular note, the magnitude of the reconstruction error is also closely 

tied to the associated severity of the outbreak, as can be seen in the location of our error peaks relative to 

state-level ILI activity tracking.  
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As such, our results here suggest that an autoencoder-based anomaly detection approach to syndromic 

surveillance is capable of picking up and alerting on the underlying changes in the prevalence of 

influenza-related symptoms in the practice during influenza season as opposed to the off-season, both in 

terms of identifying that the underlying distribution of symptom prevalence changed and in reflecting the 

magnitude of the differences in underlying distribution of symptom prevalence compared to normal time 

periods within its reconstruction error. 

These results are promising for our eventual experiment for COVID-19 syndromic surveillance as the 

underlying assumptions are similar: COVID-19 and influenza share very similar symptoms, but the 

underlying distribution of the prevalence of individual symptoms within their respective cases will likely 

differ. It is expected that an autoencoder will be able to pick up on these prevalence distribution 

differences in a similar manner to the influenza season vs. offseason variation.  

Autoencoders can be Trained to Suppress Alerting on Outbreaks of Illnesses Sharing 

Similar Syndromes 

COVID-19 syndromic surveillance is severely complicated by its similar presentation and overlapping 

timeframe with a variety of seasonal illnesses, such as the common cold, allergies, and influenza. To 

verify that an autoencoder-based COVID-19 syndromic surveillance solution will be functional, we must 

first verify that, if supplied as part of its training data, outbreaks of these seasonal illnesses will not be 

reflected in its resulting error plots. To that end, we again use influenza as the target for evaluation here, 

due to its relatively well-defined temporal boundaries.  
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Figure 2 - Mean Squared Error Relative to Anomaly Threshold for an Autoencoder Trained on both Influenza Season and 

Offseason Data  

In Figure 2, we present the mean squared error plot of a stacked autoencoder trained using data covering 

three influenza seasons and off-seasons, with the aim of verifying that typical influenza seasons can be 

suppressed from anomalous readings by incorporating their symptom prevalence distributions as part of 

training data.  

Our results demonstrate that our autoencoder has successfully incorporated symptom prevalence data for 

influenza and other seasonal diseases with similar differentials occurring within the target period, as can 

be seen by the relatively consistent reconstruction error throughout the year with peaks being dramatically 

suppressed in magnitude compared to the highly visible peaks in Figure 1. 

Syndromic Surveillance Viable for Sentinel Detection of Novel Influenza-Like-Illnesses  

At this point we have validated that a) an autoencoder reconstruction error-based approach to anomaly 

detection is capable of reflecting both the occurrence and the magnitude of shifts in underlying symptom 

prevalence distributions, and b) if included as part of the “normal” training data, autoencoders will 
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successfully reconstruct symptom prevalence distributions occurring during COVID-19’s seasonal 

differentials. We can thus proceed with the targeted task of this study: syndromic surveillance of the 

COVID-19 outbreak within the United States, particularly within Olmsted County, Minnesota, the 

location of the Mayo Clinic Rochester campus. 

 

Figure 3 - Mean Squared Error Relative to Anomaly Threshold for an Autoencoder Trained on both Influenza Season and 

Offseason Data  

In Figure 3, we present the mean error plot of a stacked autoencoder trained using a year of both influenza 

season and off-season data applied to data from June 1st, 2019 through April 30th, 2020. We additionally 

annotated the resulting plot with dates pertinent to the COVID-19 epidemic in Minnesota to provide 

additional context to the detected signals. 

Our results suggest the following with respect to the time period prior to the first laboratory confirmed 

case in the state of Minnesota:  

1) A spike occurring the week of September 15th, 2019. We do not believe this is COVID-19 related and 

will elaborate more on this in the discussion section. 

2) A persistent, low level of elevated anomalous signals beginning late December through the first 

laboratory confirmed COVID-19 case within Olmsted County, Minnesota occurring March 11th, 
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2020. This period is marked by two dramatic spikes occurring January 23rd and March 11th 2020 that 

we will also discuss in the discussion section. This period of elevated anomalous signals does roughly 

match the period of heightened state-level ILI activity as reported by the CDC. 

When interpreting these results, it is important to note that CDC’s ILI tracker is itself a form of syndromic 

surveillance and doesn’t explicitly indicate levels of influenza-specific activity, but rather all syndromes 

with similar symptomatic presentations: specifically, ILInet uses fever, cough, and/or sore throat without 

a known non-influenza cause as the data through which it performs its tracking28. It is therefore expected 

that our detected anomalous time periods will match, as COVID-19 itself shares many of these symptoms. 

The fact that elevated anomalous results appeared in our error plot, however, suggests that the underlying 

symptom prevalence distributions seen within the clinical practice are atypical of those seen in other 

influenza seasons: per the second phase of our experiment, we established that “typical” influenza seasons 

can be suppressed from anomalous readings by incorporating their symptom prevalence distributions as 

part of training data. We would have thus expected the error rates to have remained largely under the 

anomaly threshold with no significant peaks, unlike what was observed here. 

Discussion 

Interpreting Anomalous Signals and Potential Attribution Errors 

It is important to note with all our results presented here that the anomaly detection component detects 

anomalies in the input data, i.e. anomalies in the incoming symptom prevalence distributions. Such 

anomalies can, however, be caused by a variety of external factors and are not necessarily indicative of an 

outbreak. As such, while such a system can serve as an early-warning system to alert that an anomaly 

exists as well as the magnitude of such an anomaly, further human investigation is needed to identify the 

underlying reasons as well as to confirm whether an outbreak is occurring. With reference to our results 

derived from Figure 3 suggesting a sustained elevated anomalous error rate starting the final week of 

December through the first laboratory confirmed COVID-19 case, it would therefore be premature to 
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directly conclude that the anomalous time period is attributable to only COVID-19, such a conclusion 

would only be possible to achieve had laboratory tests been done during that time period. Instead, it 

serves only as an indicator of the need for additional investigation. 

 

Figure 4 - Mean Squared Error Relative to Anomaly Threshold for an Autoencoder Trained for Influenza Season Detection 

Spanning an EHR Migration Occurring May 2018  

An example of the potential for attribution error can be shown where, in Figure 4, we note that while the 

periods of elevated error rates for the 2017-2018 influenza season do roughly correspond to the official 

CDC-determined flu season and periods of heightened ILI activity, starting May of 2018, the error rate 

rises outside the display range of the chart. This anomaly does, in fact, exist in reality, but is not tied to a 

renewed outbreak of influenza-like illness. Rather, the Mayo Clinic Rochester clinic migrated EHR 

systems from its historical GE Centricity-based EHR to the Epic EHR, and the go-live date for clinical 

operations was May 1st. Due to the changes in clinical workflows and associated documentation practices, 
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the underlying distribution of positive symptom prevalence mentions within clinical documentation also 

dramatically changed, and that anomalous change was appropriately detected.  

A similar phenomenon is reflected in Figure 3. A brief spike in the plotted errors occurs mid-September 

2019: further investigation leads us to hypothesize that rather than an outbreak of influenza-like illness 

during this timeframe, this spike was related to media coverage and associated greater patient concern to a 

local outbreak of E.coli during this same time period originating from a popularly attended state fair49. 

Similarly, two events that triggered greatly increased media coverage and associated public awareness are 

highlighted in red, the initial lockdown of the city of Wuhan and Hubei province on January 23rd 2020, 

the event that originally brought the coronavirus outbreak to the public’s attention, and the first 

laboratory-confirmed COVID-19 case within Olmsted County, Minnesota on March 11th 2020. Instead of 

directly attributing the spike to only actual [undiagnosed] COVID-19 cases, the news coverage and 

increased patient concern likely caused a dramatic increase in patient healthcare engagement, and that 

increase is likely reflected here with the dramatic spikes. Nevertheless, these “public awareness and 

concern” spikes are typically obvious, as the spike is sudden, relatively large in magnitude, and are 

temporally co-located with publicly available news sources.  

COVID-19 Syndromic Surveillance: Retrospective and Prospective Opportunities 

Had a syndromic surveillance solution similar to what we established in phase 3 of our experiment existed 

at the time of the Hubei lockdown, anomalous readings would have appeared far in advance of the actual 

first laboratory-confirmed case even within the United States, and alert on a possible outbreak a novel 

influenza-like-illness that did not share similar symptom prevalence distributions as priorly encountered 

influenza seasons. This information could have been used as an actionable signal for further investigation 

suggesting a possible spread of COVID-19 within the served community and been a prompt for far more 

aggressive testing than what was done in practice. From a public health perspective, this could have 

allowed for earlier intervention and potentially dramatically reduced outbreak magnitude. 
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From a prospective perspective, such a syndromic surveillance approach can potentially be utilized to 

provide early warning of future outbreaks, particularly with respect to differentiation from outbreaks of 

other influenza-like illnesses. As public health restrictions are eased, such capabilities are increasingly 

critical for detection and early intervention in the case of second-wave outbreaks within the individual 

hospital’s served communities. It is important to note, however, that clinical workflows with respect to 

patients presenting with influenza-like illnesses, and by extension documentation practices will have 

substantially changed in the post COVID-19 era; these changes will be reflected in elevated error rates. 

Such a discrepancy may be addressed through the application of transfer learning: with a pretrained 

model similar to that which would be produced from phase 3 of our experiment, limited retraining of the 

existing model on a month of “normal” data after resumption of full clinical operations might be 

sufficient to adapt it to the post COVID-19 data distributions. 

Data and Study Limitations 

Our study faced several challenges from a data perspective. Firstly, it must be noted that patient profiles 

significantly change between normal work-week operations and weekends/holidays, which are far more 

likely to be acute/emergency care. As such, to prevent these from becoming a confounding factor and 

unduly influencing our anomaly detection error plots, data points relating to weekends, US federal 

holidays, Christmas Eve and New Year’s Eve were excluded from our datasets. We do not believe that 

this has affected the validity of our results, further evidenced by the plot in Figure 4, showing that the 

period of elevated ILI activity that occurred from January through mid-March of 2018 was correctly 

reflected, while December of 2017 did not display anomalous results, indicating that our model is not 

simply picking up on proximity to holidays. We will, however, work on incorporating weekend and 

holiday data as part of our models as part of future work. 

Additionally, several limitations within our data sources hampered our efforts to evaluate our methods: as 

previously noted, anomalies may also be caused by problems with the input data unrelated to the 

syndromic surveillance task. Specifically, in our case, we faced two major EHR/data platform shifts 
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within our source data that led to irregular disruption of clinical documentation within our data 

warehouse, one occurring throughout the entirety of Q1 2016, and the other occurring beginning May 1st 

2018 and lasting through the first week of July 2018 resulting from Mayo Clinic Rochester’s migration to 

the Epic EHR. The training datasets and results presented thus excluded these time periods (except for 

illustrative purposes in Figure 4) as they are known to be anomalous with the reasons for the anomaly 

being irrelevant to our target tasks (e.g. reasons for anomaly include changes in documentation practices 

affecting NLP-based prevalence, metadata changes, etc.)  

Finally, the fact that an EHR migration did occur significantly hampers the amount of pre-COVID-19 

data available for training purposes for phase 3 of our experiment. Due to documentation practice shifts 

we must use Epic data as part of our training data, and due to the data source disruption as a result of this 

migration, we were limited to data beginning August of 2018. As part of future work, we thus aim to 

further validate our model on other sites within the Mayo Clinic enterprise that switched EHR systems in 

2016, so as to have a greater amount of training data. 

From a methodological perspective, we were constrained in available methodological choices by the need 

for methods to be unsupervised and/or self-supervised (using “normal” data): given our task to detect 

novel influenza-like-illnesses of unknown symptom prevalence distributions, it is not feasible to procure 

labeled “anomalous” data for supervised learning approaches. It is nevertheless important to note that the 

autoencoder approach is only one of many existing approaches that have been utilized for anomaly 

detection within the general domain. Other approaches commonly used in this space include k-means 

clustering50-52, one-class SVMs52-54, Bayesian networks55, as well as more traditional statistical approaches 

such as the chi-square test56 and principal component analysis57. In many systems, such approaches are 

not taken in isolation, but are rather used in conjunction with others to perform specific sub-components 

of the anomaly detection task or to provide multiple features for downstream analysis51,53,58,59. Our study 

is not intended to perform a comprehensive benchmarking of available methods, and we have not 

included comparative metrics here given that we have achieved workable results with only an 
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autoencoder approach. Nevertheless, it may be worth exploring usage and/or integration of many of these 

other models to improve discriminative power and denoise the signal, and we have left such exploration 

to future work. 

Methods 

We present an overview of our experimental procedure in Figure 5, and outline each step in detail within 

the ensuing subsections. 

Symptom Prevalence 

Distribution Extraction

[Date, %Cough, %Fever, … ]

[2010-01-01, .03, .04, …]

…

[2020-05-01, .08, .06, …]

Normal vs. Test Dataset Split

Influenza Surveillance Normal: 

Odd-Year Flu Off Seasons

…

COVID-19 Surveillance Normal:

2018-08-01 to 2019-08-01

Syndromic Surveillance 

Neural Net

Detect anomalous symptom 

prevalence distributions for 

possible outbreak

Syndromic Surveillance 

Verification

Test using historical outbreak 

timespans with well defined 

borders

Verify Approach 

Suppresses Illnesses with 

Similar Syndromes

Using full year of pre-2018 

data to verify no alerts from 

resulting model

Perform COVID-19 

Syndromic Surveillance

Apply model to 2019-2020 

data and plot reconstruction 

error

 

Figure 5 – Experimental Procedure Overview 

Sign/Symptom Extraction 

Sign and symptom extraction via natural language processing was accomplished via the MedTagger NLP 

engine60,61. The signs and symptoms chosen were selected via a literature review conducted in early 

March 2020 for known COVID-19 and influenza symptoms13,62. Specifically, mentions of Abdominal 

Pain, Appetite Loss, Diarrhea, Dry/Nonproductive Cough, Dyspnea, Elevated LDH, Fatigue, Fever, 
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Ground-Glass Opacity Pulmonary Infiltrates, Headaches, Lymphopenia, Myalgia, Nasal Congestion, 

Patchy Pulmonary Infiltrates, Prolonged Prothrombin Time, and Sore Throat were used for all three 

experiments. Additionally, explicit mentions of influenza were used for phase 2 (establishing 

baseline/incorporating influenza seasons as part of “normal” symptom prevalence distributions) and phase 

3 (COVID-19 surveillance task) of our experiment. Only positive present NLP artifacts with the patient as 

the subject were retained. 

Symptom Prevalence Distribution Dataset  

Clinical documentation generated from January 1st 2011 through May 1st 2020 was utilized as part of this 

study, with the exclusions detailed within the Data Limitations subsection within our Discussion section 

(January 1st – July 1st 2016, May 1st – July 7th 2018). For each day within this range, a symptom 

prevalence feature vector was generated, where each item in the vector corresponds to the symptom 

prevalence of one of the symptoms of interest for that day. We define symptom prevalence on any given 

day as the number of unique patients that had a clinical document generated that day containing a NLP 

artifact corresponding to that symptom (that was positive, present, and had the patient as the subject) 

divided by the number of unique patients that had at least 1 clinical document generated on that day. 

This dataset was then subdivided into different training and plotting (for simulated surveillance purposes) 

definitions for each of the tasks at hand. We have provided a summary of these divisions in Table 1. 

 

Task Training Data (“Normal” 

Time Periods) 

Plotted Data (Surveillance 

Time Periods) 

Influenza Surveillance [2011-05-22, 2011-10-02) 

[2013-05-19,2013-09-29) 

[2015-05-23, 2015-10-04) 

[2017-05-20, 2017-10-01) 

[2011-01-01, 2018-05-01*) 

 

Seasonal Illness Suppression [2011-05-22, 2014-01-25†) [2014-01-25, 2016-01-01) 

COVID-19 Syndromic 

Surveillance Task 

[2018-08-01§, 2019-06-01) [2019-06-01, 2020-05-01) 

* Mayo Clinic transitioned from its historical EHR to the Epic EHR on this date.  

† End of moderate or greater ILI activity within the State of Minnesota for 2013-14 influenza season.  
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§ Three months after EHR migration began, to allow for clinical workflow changes to be solidified and reduce data volatility. 
Table 1 - Task-Specific Training and Plotted Data Divisions 

Autoencoder Architecture and Implementation 

Our neural network was implemented in Java via the DL4J deep learning framework63. For our purposes 

we used a 5-layer fully-connected stacked autoencoder consisting of [INPUT_DIM, 14, 12, 14, 

INPUT_DIM] nodes in each respective layer, where INPUT_DIM refers to the dimensionality of the 

input data. For influenza detection, this was 16 (excluding influenza prevalence), and for all other tasks, 

this was 17. The activation function used for all layers was the sigmoid activation function, except for the 

output layer, which used the identity function, with all inputs being rescaled to the [-1, 1] range. The 

optimization function used, their associated learning rate, and the l2 regularization penalty was selected 

via five-fold cross-validation, where optimization function was one of AdaDelta64, AdaGrad65, or 

traditional stochastic gradient descent66 and their respective learning rate was selected from 100 randomly 

sampled points from the range [0.0001, 0.01], with the exception of AdaDelta, as it is an adaptive learning 

rate algorithm, and we instead used the recommended default rho and epsilon of 0.95 and 0.000001 

respectively. An L2 regularization penalty67 was selected from 100 random samples in the range 

[0.00001, 0.001]. The cost function used was mean squared error. For all model training tasks, training 

was done using the entire train dataset as one batch, over 1000 epochs utilizing early stopping (5 

iterations with score improvement < 0.0001) and selecting the model resulting from the epoch that had the 

best performance against the test dataset. 

Evaluating Influenza Season Detection Capabilities 

For training purposes, we used seasonal date ranges as defined in the US CDC released morbidity and 

mortality weekly report (MMWR) and selected flu offseason for the odd-numbered years between 2010 

and 2018 as our training set40-47. Specifically, the date ranges used for training were [2011-05-22, 2011-

10-02), [2013-05-19,2013-09-29), [2015-05-23, 2015-10-04), and [2017-05-20, 2017-10-01).  
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For these date ranges, all extracted symptom prevalence information was included for training with the 

exception of explicit mentions of influenza, as that might provide an unwarranted hint for the task to the 

underlying trained network.  

To evaluate this approaches’ effectiveness for influenza season detection, we ran the trained autoencoder 

on all years from 2011 through May of 2018 (when the Epic EHR migration occurred), and plotted the 

error, as determined by the mean-squared error between the supplied input feature set and the network’s 

outputs, with a particular focus on detected influenza seasons starting on even years.  

The best performing model from training was selected, and the anomaly threshold was determined as the 

mean + 2 standard deviations of the reported errors derived from the test partition resulting from cross-

validation of the normal (training) time periods, with errors higher than this value being deemed 

anomalous. 

The errors were plotted and compared against timespans with elevated influenza activity, both at a 

national level via the official MMWR defined influenza season and in terms of ILI activity for the state of 

Minnesota as reported by the CDC ILInet. The distinction is important as while the CDC MMWR reports 

a national level influenza season, the actual periods of elevated activity differ from state to state, and we 

would only truly be able to detect anomalies when influenza activity is actually elevated within 

Minnesota, as that is the source for our data. 

Evaluating Autoencoder Capability to Embed Influenza Season Data as “Normal” 

In this phase, we use data from May 22nd 2011 (the end date of the 2010-2011 influenza season) through 

January 25th 2014 (the end date for observed moderate-or-greater ILI activity in the state of Minnesota for 

the 2013-2014 influenza season) as our training set.  

Unlike in the previous phase, the prevalence of influenza mentions is included within the feature set for 

training to supply explicit knowledge about the occurrence of and the magnitude of ongoing influenza 
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seasons. Additionally, to ensure a balance in examples, we sampled from the influenza off-seasons such 

that the number of off-season examples corresponded to the number of in-season examples. 

Once training using this dataset was completed, we then ran this new autoencoder model on all data 

between January 25th 2014 and January 1st 2016 and plotted the mean squared error between the supplied 

input and the autoencoder’s resultant output, with a focus on even years.  

The anomaly threshold was again set to the mean + 2 standard deviations of the test partition error during 

the training time period and the resultant anomalous spans were used to evaluate the autoencoder’s 

capability to embed influenza and other seasonal differential data. 

Applying Autoencoder-Based Anomaly detection for COVID-19 Syndromic Surveillance 

In this phase, we use data from August of 2018 through June of 2019 (Exclusive) as our “normal” training 

data. Again, we ensure a 50/50 balance of influenza in-season and off-season examples in our dataset 

prior to partitioning the data for cross-validation. As with our previous experiments, the anomaly 

threshold was set to the mean + 2 standard deviations of the test partition error during the training time 

period. 

The resulting model was run on data from June of 2019 through present, and the resulting errors were 

plotted for further analysis. 
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