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SUMMARY

Logistic regression is the standard method for developing prognostic
models for intensive care, but this approach does not take into account
the uncertainty in the model selected and the uncertainty in its regres-
sion coefficients. This weakness can be addressed by adopting a Bayesian
model-averaged approach to logistic regression; however, with respect to
the dataset used for our study, we found maximum likelihood to be as
effective as the more elaborate Bayesian approach, and an implementa-
tion of model averaging did not improve performance. Nevertheless, the
Bayesian approach has the theoretical advantage that it can exploit prior
knowledge about regression coefficient and model probabilities.

1. INTRODUCTION

The primary role of intensive care units (ICUs) is to monitor and stabilize the
vital functions of patients with life-threatening conditions. In order to aid ICU
nurses and intensivists with this work, scoring systems have been developed to
express the overall state of an ICU patient as a numerical value. In 1981, Knaus
et al1 proposed an index of patient severity called APACHE (APACHE I) for
use within ICUs, the value of APACHE increasing as the state of a patient
declines. The APACHE I score is an additive model based on demographic and
physiological attributes, such as age and serum bilirubin:

SCORE1 (x1 , . . . , xd1 ) =
d1∑

i=1

fi(xi), (1)

where function fi(·) gives the number of points associated with attribute value
xi. For physiological attributes, fi(xi) increases from zero as the divergence of
xi from clinical normality increases.
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1 INTRODUCTION 2

APACHE I was superseded by SAPS I2 in 1984 and APACHE II3 in 1985,
but, in all three cases, attribute selection and functional form for (1) were
determined subjectively through panels of experts. Nevertheless, in spite of the
subjectivity of (1), a number of intensivists (e.g., Chang et al4) have used this
type of score to estimate probabilities of a defined outcome (e.g., alive whilst in
hospital) through logistic regression:

p̂(outcome|x) = {1 + exp[−(β̂0 + β̂1SCORE1(x))]}−1,

where β̂0 and β̂1 are regression coefficients, and x is the vector of values x1, . . . , xd1 .
In 1985, Lemeshow et al5 replaced (1) with the linear combination

SCORE2 (x) =
d2∑

i=1

wixi,

in which weights w1, . . . , wd2 were obtained objectively as logistic regression
coefficients:

p̂(outcome|x) = {1 + exp[−(w0 + SCORE2(x))]}−1.

This objective approach was used in the development of a number of scoring
systems, including APACHE III,6 SAPS II7 and MPM II.8 A comparison of
scoring systems has shown that those derived by logistic regression perform
similarly to each other but are better than those obtained subjectively.9

Prognostic logistic regression models have been developed within intensive-
care medicine for a number of reasons:

• Conditional probabilities of outcome can be used to stratify patients at the
outset of a therapeutic drug trial.10 This is done to exclude those patients
unlikely to display a benefit because their probability of mortality is either
too low or too high.

• Outcome models have been used to compare different ICUs,11 but such
comparisons must be treated with caution.12 They can also be used to
provide a baseline to assess how a change of policy within a single ICU
affects patient outcome.

• A potential (albeit controversial) use of prognostic models is as an aid to
the identification of those cases unlikely to benefit from continued care.13

All the models developed for intensive-care prognosis have been based on the
classic approach to logistic regression; however, this approach has its drawbacks.
We describe these problems in the next section and investigate an alternative
method based on Bayesian statistics.
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2 BAYESIAN LOGISTIC REGRESSION 3

2. BAYESIAN LOGISTIC REGRESSION

An assumption of classic logistic regression is that a conditional probability
p(y = 1|x) is related to a vector of covariates x via a single model of the form

p̂(y = 1|x) =
{
1 + exp

[
−
(
β̂0 +

d∑
i=1

β̂ixi

)]}−1

, (2)

where β̂0, β̂1, . . . , β̂d are the regression coefficients, and x1, . . . , xd are the com-
ponents of x (Multiplicative terms can be added to model interactions between
explanatory variables). Furthermore, it is assumed that effective parameter
values β̂0, β̂1, . . . , β̂d for this model can be obtained by maximum-likelihood es-
timation.

There are two problems with the classic approach. Firstly, there is the as-
sumption that variables y and x are related by a single model with a prespecified
structure M , but this does not take account of the fact that we are uncertain
about M . Secondly, for a given choice of M , we are, in truth, uncertain about
the vector β of parameter values associated withM , yet the maximum-likelihood
approach imposes a single set of parameter values onM . In principle, these two
criticisms can be addressed by regarding logistic regression within the framework
of Bayesian statistics.14,15

Bayesian statistics provides a very different approach to the problem of un-
known model parameters. Instead of considering just a single value for a model
parameter, as done by maximum likelihood estimation, Bayesian inference ex-
presses the uncertainty of parameters in terms of probability distributions and
integrates them out of the distribution of interest.16 For example, by express-
ing the uncertainty in parameter vector β for a given model M as the posterior
probability distribution p(β|M,D), where D is the observed data, we have

p(y = 1|x,M,D) =
∫

β

p(y = 1,β|x,M,D)dβ (3)

=
∫

β

p(y = 1|x,β,M)p(β|M,D)dβ. (4)

where

p(y = 1|x,β,M) =
{
1 + exp

[
−βTx

]}−1

. (5)

A common Bayesian assumption is that the posterior distribution p(β|M,D)
is Gaussian, but, with p(y = 1|x,β,M) defined by (4), the resulting integral in
(4) cannot be solved analytically. However, Spiegelhalter & Lauritzen17 derived
the approximation∫

θ

(1 + exp[−θ])−1p(θ|ν, σ2)dθ ≈ (1 + exp[−cν])−1, (6)
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3 GIBBS SAMPLING 4

where θ ∼ Normal(ν, σ2) and c is equal to (1 + ξ2σ2)−1/2 for an appropriate
value of ξ. This was done via the approximation

(1 + exp[−θ])−1 ≈ Φ(ξθ), (7)

where Φ is the probit function.18 Because of the relationship between Φ and the
error function, the latter can also provide an approximation for the left-hand
side of (6).19

If ξ2 is set equal to π/8, as suggested by MacKay,20 then, from (5) and (6),
we obtain the Spiegelhalter–Lauritzen–MacKay (SLM) approximation

p(y = 1|x,M,D)

≈
1 + exp

−βT
mpx

/√
1 +

πVar(βTx|x,M,D)
8


−1

, (8)

where βmp is the mode of p(β|M,D), and Var(βTx|x,M,D) is the variance of
the posterior distribution p(βTx|x,M,D). Bishop discusses the error in ignoring
the square root in (8).21

There is, however, still the uncertainty in the choice for model M . This
uncertainty can be dealt with by averaging over all possible models:

p(y = 1|x,D) =
∑
M

p(y = 1|x,M,D)p(M |D), (9)

where p(M |D) is the posterior probability for model M . On substituting (4)
into (9), we have the general expression for Bayesian model-averaged logistic
regression:

p(y = 1|x,D) =
∑
M

∫
β

p(y = 1|x,β,M)p(β|M,D)dβp(M |D), (10)

The SLM approximation provides an estimate of p(y = 1|x,M,D) for (9),
but, in order to perform model-averaging, we also need the posterioir model
probability p(M |D). In Section 4, we discuss the GLIB S-PLUS function for
estimating this probability, but first we consider the evaluation of the mode and
variance required for (8).

3. GIBBS SAMPLING

One route to estimating the mode and variance for (8) is to use the evidence–
framework scheme proposed by MacKay22 and recommended by Bishop21; how-
ever, our experience (unpublished) has been that the approximations required
to satisfy this scheme make it unreliable. Therefore, we obtained estimates of
the regression coefficients via Gibbs sampling.

Gibbs sampling provides a Markov chain simulation of a random walk in the
space of β, which converges to a stationary distribution approximating the joint
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4 GLIB 5

distribution p(β|M,D).23 In addition to providing an estimate of the mode
βmp, the stationary distribution also provides an estimate of the variance of
βTx via the estimated covariance for β. The freeware BUGS package provides
a convenient environment in which to conduct Gibbs sampling.24

4. GLIB

Bayesian model averaging can be performed using the freeware GLIB pack-
age,25 which is designed for use within S-PLUS.26 For a given set of models
M0,M1, . . . MK (where M0 is the null (intercept-only) model), GLIB can esti-
mate the model posterior probabilities p(Mk|D) for each model through the use
of Bayes factors. The Bayes factor Bi,j associated with models Mi and Mj is
defined as

Bi,j = p(D|Mi)/p(D|Mj). (11)

Raftery27 showed that application of the Laplace approximation28 to the integral
in the expression

p(D|Mk) =
∫

β

p(D|β,Mk)p(β|Mk)dβ (12)

gives an approximation for lnBk,0 that can be calculated using quantities readily
provided by regression packages such as GLIM.29 This enables p(Mk|D) to be
determined through the relationship

p(Mk|D) = αkBk,0

/
K∑

r=0

αrBr,0 , (13)

where αk = p(Mk)/p(M0). The prior distribution p(β|Mk) in (12) is defined by
three hyperparameters: ν1, ψ, and φ.30 GLIB fixes ν1 and ψ to 1, and φ is set
to 1.65 by default. Raftery & Richardson31 gave two examples illustrating the
use of GLIB.

If the number of candidate models is very large, the total time taken by
GLIB to compute p(Mk|D) for each model can be lengthy. In such a situation,
a pragmatic approach is to use the bic.logit S-PLUS function.25 This uses an
approximation for lnBk,0

32 based on the Bayesian Information Criterion.33 Al-
though this approximation is less accurate than that used by GLIB for lnBk,0,
bic.logit can filter out a large number of candidate models by implementing the
following model-selection criteria.34

• First criterion for model selection
If a model is far less likely a posteriori than the most likely model, it
should be excluded. Therefore, exclude Mk if

p(Mk|D) < 0.05p(M
|D), (14)
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5 EXPERIMENTAL 6

where M
 is the model with maximum p(M |D). This inequality is equiv-
alent to

2 lnBk,0 < 2 lnB
,0 − 5.99 (15)

if p(Mk) = p(M
) for all k.

• Second criterion for model selection (Occam’s Window)
Exclude any model that receives less support from the data than a simpler
model that is nested within it. Therefore, exclude Mk if there exists Mj

nested within it for which

p(Mj |D) > p(Mk|D). (16)

This inequality is equivalent to

2 lnBj,0 > 2 lnBk,0. (17)

5. EXPERIMENTAL

5.1. Data

The 327 patients comprising the dataset were present in the adult ICU at St
Thomas’ Hospital, London, from January 1997 to July 1997. The 11 attributes
of the dataset are those listed in Table 1, and the values were recorded during
the first 24-hours of each patient’s stay in ICU.

The dataset was incomplete. Of the 11×327 cells of the dataset, 75 (2%) were
empty, resulting in 67 (20%) incomplete rows. In the context of classic logistic
regression, Lai35 found that imputing the incomplete cells of this dataset with
class-conditional medians was as effective as using values derived by the EM
algorithm36; therefore we used class-conditional median imputation. However,
we deleted the three rows for which the outcome values were missing.

For this experiment, the continuous variables were neither discretized nor
transformed in any way. The nominal and ordinal variables were replaced by
binary dummy variables, which resulted in a total of 13 candidate explanatory
variables.

5.2. Classic logistic regression

With the 13 candidate explanatory variables present, a main-effects logistic re-
gression model was assessed using the leave-one-out version of cross-validation.37

The regression coefficients were obtained from the S-PLUS glm function, and
the pooled predicted probabilities were assessed with respect to the correspond-
ing (half) Brier score and ROC-plot area (Table 3). The Brier score measured
predictive accuracy whereas the ROC-plot area measured discrimination.37

In an effort to reduce the number of explanatory variables, stepwise variable
selection was performed using the S-PLUS step function set at its default val-
ues, whereby variable selection was based on the Akaike Information Criterion.38

The resulting logistic regression model, which consisted of 10 explanatory vari-
ables, was evaluated by leave-one-out cross-validation (Table 3).
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5 EXPERIMENTAL 7

5.3. Bayesian logistic regression

Gibbs sampling was performed with BUGS (in the form of WinBUGS39) using
40-fold cross-validation. A non-informative prior for the regression coefficients
was approximated by a normal distribution with mean 0 and variance 106. Each
Markov chain consisted of 11,000 samples, including an initial ‘burn-in’ of 1,000
samples.

In order to reduce correlations, and thus improve convergence, the covari-
ates were reparameterized by centering them about their respective means.40

The improvements to convergence obtained by this reparameterization were
confirmed by the Raftery-Lewis41 and Gelman-Rubin42 diagnostics provided by
the freeware CODA diagnostic package.43,44

5.4. Results from Bayesian logistic regression

Although classical logistic regression gave better results than that obtained from
Gibbs sampling with the SLM approximation (Table 2), the differences were
not significantly different with respect to either Brier-score terms or ROC-plot
(p-value > 0.15). However, omission of the SLM approximation did make a
significant difference to the Brier-score terms (p-value = 0.008). Because of
the lack of improvement when using Gibbs sampling, we decided to conduct the
model-averaging phase of the study using maximum-likelihood estimates for the
regression coefficients. In other words, (10) was replaced by

p(y = 1|x,D) =
∑
M

p(y = 1|x, β̂,M)p(M |D), (18)

where β̂ is the vector of regression coefficients estimated by maximum likelihood
with respect to model M .

5.5. Bayesian model averaging

With 13 candidate explanatory variables, there were 213 (i.e. 8192) possible
models (including the null model). This was too many for GLIB to determine
lnBk,0 for each model in a reasonable time; therefore, we initially used bic.logit
to reduce the number of models to a more manageable subset. This produced
a subset consisting of 40 models. Using the values for 2 lnBk,0 for these 40
models provided by GLIB, we applied the two model-selection criteria described
in Section 4 to this subset. This resulted in the selection of six models when the
hyperparameter φ was set to 1.65. GLIB was rerun on the six models to obtain
their estimated posterior probabilities p(Mk|D).

In order to ascertain the sensitivity of the results to choice of hyperparam-
eter, the GLIB phase of the analysis was repeated using different values for φ.
When φ was set to 1, the model-selection criteria produced 12 models; with
φ = 5, three models were selected. All the models of this study are listed in Ta-
ble 4. The three sets of models were evaluated by leave-one-out cross-validation
(Table 3).
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6 DISCUSSION 8

5.6. Results from Bayesian model averaging

Table 3 gives the Brier scores and ROC-plot areas resulting from model averag-
ing. Use of the single model with all the candidate variables present (Table 5)
was significantly better than model averaging with respect to both Brier-score
terms (p= 0.008) and ROC-plot area (p= 0.034).

6. DISCUSSION

In this paper, we have demonstrated that, in the context of ICU prognostic mod-
elling, Bayesian logistic regression and Bayesian model averaging do not neces-
sarily provide better predictive accuracy and discrimination than that given by
a single regression model optimized by maximum likelihood estimation.

In the absence of any prior knowledge concerning the regression coefficients,
we used a normal distribution with a very large variance to approximate a non-
informative prior. However, if prior knowledge about some of the regression
coefficients had been available to us (for example, from relevant publications),
the Bayesian approach may have led to improved accuracy.

If we order the regression models in terms of their empirically-derived per-
formance metrics then

g
(
β̂

T
x
)
∼ g
 βT

mpx√
1 + πVar(βTx|x,M,D)

8

 
 g
(
βT

mpx
)
,

where g(η) = [1 + exp(−η)]−1. But a curious aspect of this ordering is that we
used a locally uniform prior, and from the Bayesian relationship

p(β|D) ∝ p(D|β)p(β),
we would have expected the mode of the posterior distribution to virtually
coincide with the maximum likelihood estimate β̂. The reason for the observed
ordering is not clear.

In spite of the claims made for the GLIB strategy,31 we did not find it to be
superior to the classic, single-model approach. This may be due to the approx-
imations for lnBk,0 being insufficiently accurate with respect to our dataset;
however, with another ICU dataset, model-averaging may prove to be superior.
Furthermore, model averaging has the advantage that it can exploit knowledge
concerning the prior model probabilities p(M) used by (13).

In addition to the theoretical advantage to using model averaging (Section 2)
there is also a disadvantage. With a single logistic regression model for prob-
ability p(y = 1|x), each regression coefficient (along with any associated mul-
tiplicative interaction terms) indicates the change in the probability for a unit
change in the variable associated with the coefficient. Thus, the structure of the
model provides some degree of interpretability. In model averaging, however,
we are confronted with a collection of models, and if a number of models in
the collection happen to have posterior probabilities close to that for the most
probable model, model interpretation becomes much more complex.
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Table 1: The attributes of interest
Attribute Name Data type Levels
Age (years) Age Continuous —
Artificial ventilation required Vent Nominal “1” = true; “0” = false
Type of inotrope support Ino Ordinal “0” = no intotropes; “1” =

dopamine; “2” = adrenaline
only; “3” = adrenaline plus
other inotrope(s)

Serum bilirubin (µ mol/l) Bili Continuous —
Acute renal failure ARF Nominal “1” = true; “0” = false
24-h urine volume (ml) UVol Ordinal “0” = (0 - 50ml); “1” = (51 -

300ml) ; “2” = (> 300ml)
Surgical category Cat Nominal “1” = elective (mostly car-

diothoracic); “2” = emergency
(medical patients); “3”= emer-
gency (general surgery)

Creatinine (µ mol/l) Creat Continuous —
Left ventricular intercept LVI Continuous —
Glasgow Coma Score GCS Continuousa —
Died whilst in hospitalb Died Nominal “1” = true; “0” = false

aLevels are 3, 4, . . . , 15; therefore, the variable can be regarded as continuous
bThe outcome variable

Table 2: Brier scores and ROC-plot areas (Az) resulting from the Bayesian and
classical logistic regressions. The bootstrap 95% confidence intervals for the
Brier scores and the estimated standard errors for the ROC-plot areas are also
given.

Type of logistic regression Brier 95%CI(Brier) Az ŜE(Az)
Classical 0.142 (0.113, 0.170) 0.826 0.026
Bayesian with SLM approxima-
tion

0.152 (0.126, 0.182) 0.821 0.026

Bayesian without SLM approx-
imation

0.162 (0.129, 0.198) 0.815 0.027

Table 3: Brier scores and ROC-plot areas (Az) resulting from the use of single
models and model averaging.

Type of logistic regression Brier 95%CI(Brier) Az ŜE(Az)
Single model with 13 variables 0.133 (0.110, 0.162) 0.848 0.024
Single model with 10 variables
via stepwise selection

0.130 (0.106, 0.156) 0.848 0.024

Model averaging (φ = 1.65) 0.139 (0.116, 0.164) 0.820 0.027
Model averaging (φ = 1) 0.139 (0.118, 0.167) 0.817 0.027
Model averaging (φ = 5) 0.138 (0.118, 0.167) 0.820 0.027
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Table 4: Models used in the study. C1 is the model containing all the candi-
date variables, and C2 is the model resulting from stepwise logistic regression.
A black dot indicates that a variable was present. The 6, 12, and 3 models
corresponding to φ = 1.65, φ = 1, and φ = 5, respectively, are listed.

Variable C1 C2 φ = 1.65 φ = 1 φ = 5
Age • • • • • • • • • • • • • • • • • • • • • • •
Vent •
Ino = 1 • • • • •
Ino = 2 • • • • • • • • • • •
Ino = 3 • • • • • • • • • • •
Bili • • • • • • • •
ARF • • • • • • • • • • • • • •
UV ol = 2 •
Cat = 1 • • • • • • • • • • • • • • • • • •
Cat = 2 • • •
Creat • •
LVI • • • • • • • • • • • • • • • •
GCS • • • • • • • • • • • • • • • • • • • • • • •

Table 5: Regression analysis of the logistic regression model containing all the
candidate variables according to maximum likelihood estimation. For each vari-
able, the table gives the estimated regression coefficient (β̂), the estimated stan-
dard error for the regression coefficient (ŜE(β̂)), and the 95% confidence interval
for the odds ratio (95%CI(OR)). The odds ratios for the continuous variables
were calculated with respect to the first and third quartiles.

Variable β̂ ŜE(β̂) 95%CI(OR)
(Intercept) -0.0431 1.37
Age 0.0599 0.0135 (1.78, 4.44)
Vent -0.382 0.548 (0.23, 2.00)
Ino = 1 0.933 0.498 (0.96, 6.75)
Ino = 2 1.593 0.500 (1.85, 13.1)
Ino = 3 1.947 0.599 (2.17, 22.6)
Bili 0.00994 0.00508 (1.00, 1.27)
ARF 1.0910 0.588 (0.94, 9.42)
UV ol = 2 -0.460 0.591 (0.20, 2.01)
Cat = 1 -1.375 0.514 (0.09, 0.69)
Cat = 2 0.285 0.526 (0.47, 3.73)
Creat -0.00290 0.00156 (0.62, 1.01)
LVI -0.0322 0.0139 (0.41, 0.93)
GCS -0.266 0.0482 (0.01, 0.13)
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