Time-series plasma cell-free DNA analysis reveals disease severity of COVID-19 patients

Authors: Xinping Chen¹[†], Yu Lin²[†], Tao Wu¹[†], Jinjin Xu²[†], Zhichao Ma¹[†], Kun Sun^{2,5}[†], Hui Li¹[†], Yuxue Luo^{2,3}[†], Chen Zhang¹, Fang Chen², Jiao Wang¹, Tingyu Kuo^{2,4}, Xiaojuan Li¹, Chunyu Geng², Feng Lin¹, Chaojie Huang², Junjie Hu¹, Jianhua Yin², Ming Liu¹, Ye Tao², Jiye Zhang¹, Rijing Ou², Furong Xiao¹, Huanming Yang^{2,6}, Jian Wang^{2,6}, Xun Xu^{2,7}, Shengmiao Fu¹*, Xin Jin^{2,3}*, Hongyan Jiang¹*, Ruoyan Chen²*

Affiliations:

¹Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Haikou 570311, Hainan, China.

²BGI-Shenzhen, Shenzhen, 518083, Guangdong, China

³School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China

⁴BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, Guangdong, China

⁵Shenzhen Bay Laboratory, Shenzhen 518132, Guangdong, China

⁶James D. Watson Institute of Genome Sciences, Hangzhou 310058, China

⁷Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China

*Correspondence to: jinxin@genomics.cn; chenruoyan@genomics.cn; hyjiangus@163.com; smfu2000@126.com.

[†]These authors contributed equally to this work.

Abstract: Clinical symptoms of coronavirus disease 2019 (COVID-19) range from asymptomatic to severe pneumonia and death. Detection of individuals at high risk for critical condition is crucial for control of the disease. Herein, for the first time, we profiled and analyzed plasma cell-free DNA (cfDNA) of mild and severe COVID-19 patients. We found that in comparison between mild and severe COVID-19 patients, Interleukin-37 signaling was one of the most relevant pathways; top significantly altered genes included POTEH, FAM27C, SPATA48, which were mostly expressed in prostate and testis; adrenal glands, small intestines and liver were tissues presenting most differentially expressed genes. Our data thus revealed potential tissue involvement, provided insights into mechanism on COVID-19 progression, and highlighted utility of cfDNA as a noninvasive biomarker for disease severity inspections.

One Sentence Summary: CfDNA analysis in COVID-19 patients reveals severity-related tissue damage.

Main Text:

A novel coronavirus, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 (1, 2), resulting in outbreak of the coronavirus disease 2019 (COVID-19) across the world and more than 5 million cases were confirmed by May 25, 2020 (3). In a report based on ~72,000 COVID-19 patients from China, 14% were classified as severe, 5% were critical, and the rest 81% were considered mild (4). Clinical progression of COVID-19 varies greatly among individuals (4-8), whereas the real course of the disease is not yet well understood. In fact, the incubation period for COVID-19 ranges from 1 to 14 days; the duration of viral shedding ranges from 8 to 37 days; and time from illness onset to death or discharge mainly range from 15 to 25 days (8,9). In addition, the case-mortality rate was found to be correlated with age, preexisting comorbid conditions such as cardiovascular disease, diabetes, and hypertension; however, reported deaths still contain high numbers of teenagers and cases without comorbidities (4-8). Laboratory records such as low lymphocyte counts, high C-reactive protein or D-dimer levels, and secondary bacterial infections could not provide insights into the actual process of death (10,11). Hence, systematical understanding of clinical course of COVID-19 and classification/prediction of severe cases precisely at early stage are essential for management of the disease.

Cell-free DNA (cfDNA) in plasma comprises short, naturally fragmented molecules that preserve valuable information related to gene expression and nucleosome footprint related to its tissues-of-origin (12-16). Numerous studies reported that cfDNA concentration, size profiles, coverage patterns around promoters are associated with various diseases, making cfDNA an intensively investigated biomarker for clinical use in various fields including oncology, noninvasive prenatal diagnosis, organ transplantation, autoimmune diseases, trauma, myocardial infarction, and diabetes (13-16). Circulating cfDNA mostly originate from died cells through apoptosis, necrosis and netosis (14,17,18). CfDNA is found to be potential drivers and therapeutic targets of COVID-19 suggested novel therapy strategies of the disease (14,18). However, to date, only subtotal concentration of cfDNA in serum from COVID-19 was investigated. Hence, to further explore the clinical value of cfDNA in COVID-19, we conducted systematical analysis of whole genome sequencing (WGS) data on cfDNA from mild and severe cases in time series. We report significantly different signals between mild and severe cases, which indicates potential genes, tissues, and pathways that are involved in disease course and severity, demonstrating high value in patient monitoring. Our functional analysis of cfDNA further shed light on mechanisms of progression of severe COVID-19, and demonstrated cfDNA as a potential noninvasive biomarker for disease severity inspections of COVID-19.

Gene set enrichment analysis suggest pathways associated with severity of COVID-19

Four subjects, including two male COVID-19 patients (one mild in his 30's and one serve in his 60's) and 2 healthy controls (one male in his 30's and one female in her 20's), were recruited in this study (Table S1). For the COVID-19 patients, peripheral blood was collected at various time

points within 29 days of hospitalization; plasma cfDNA was extracted and sequenced to ~12x human haploid genome coverage for each time point (Fig. S1 and Table S2). We investigated gene expression pattern in cfDNA via analyzing the sequencing depth-normalized, relative coverage of the promoters. Gene set enrichment analysis was performed using the relative coverage around promoters of known genes on the two time-course data sets and controls (Fig. 1). Six gene clusters showing significantly different patterns between mild and severe cases were identified (Fig. 1A and Fig. 1C). Notably, the average coverage around gene promoters from cluster 2 and 6 decreased along hospitalization time line for the severe case (suggesting upregulation of these genes), while such pattern did not exist in mild case (Fig. 1A), indicating that the genes involved in disease course could be different in mild and severe cases.

Pathway analysis was carried out on genes of the above six clusters separately (Fig. 1B). For cluster 1 containing the maximum number of genes among the six clusters, the most enriched pathway is interleukin-37 (IL-37) signaling (p = 0.005, Table S3), which is involved in suppression of cytokine production and inflammation inhibition (19, 20). Interestingly, this pathway had been reported to have potential therapeutic effect on COVID-19 (21). Cluster 2 shows a clear trend of increased expression in the severe case, especially at the last three time points; significantly enriched pathways in this cluster include cytosolic sulfonation of small molecules (p = 0.009) and RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function (p = 0.01), which is in accordance with the dropping platelet counts from clinical laboratory records of the severe case (Table 1). Cluster 6, which showed similar trend with cluster 2, involves Ub-specific processing proteases ($p = 2.8 \times 10^{-9}$) and deubiquitination pathways ($p = 3.3 \times 10^{-9}$), which are commonly hijacked by viruses for replication and pathogenesis, and were reported containing druggable targets to treat COVID-19 (22). Other enriched pathways include olfactory signaling pathway (p = 0.003), G alpha (s) signaling events (p = 0.006), signal regulatory protein family interactions $(p = 4.5 \times 10^{-7})$, and cell-cell communication ($p = 2.3 \times 10^{-4}$), which are expected given inflammatory and immune responses in severe COVID-19.

Significantly altered genes and tissue specificity on progression of COVID-19

To detect differentiated genes and tissues between mild and severe cases, relative coverages around promoters from cfDNA 1) within control group, 2) among 4 time points from mild case, 3) among 4 time points from severe case, 4) between mild and severe cases, 5) between cases and controls, were compared using Mann-Whitney rank-sum tests (Fig. 2). We laid emphasis on differences between mild and severe cases, while not significant either between cases and controls, or within controls. Table 2 lists top 10 genes out of all significantly differentially expressed genes (Fig. 2A and Table S4), and the coverage pattern around the promoters of the top 10 genes were shown in Fig. S2. Strikingly, the top 3 genes, namely POTEH (Prostate, Ovary, Testis-Expressed Protein On Chromosome 22), MGC39584 (Family With Sequence Similarity 27 Member C), and C7orf72 (Spermatogenesis Associated 48) are all highly linked to male gender: POTEH and MGC39584 are specifically expressed in prostate and testis, and C7orf72 is associated to spermatogenesis (23). The significant difference of genes related to male reproductive system are corroborated by previous studies that claimed spermatogonia cells to be targets attacked by SARS-CoV-2 (24,25). Other genes worth noting include SQLE that catalyzes oxidation of squalene, a reported conjugate of therapeutic drugs for COVID-19 (26),

and LAMP3, which is specifically expressed in lung and associated to dendritic cell function and adaptive immunity (27). Additionally, the significantly differentiated expression of SPEG gene which were essential for cardiac function was consistent with clinical laboratory records (Table 1, Table S5, and Table S6) that reported the severe case with atrial fibrillation.

Significantly altered genes that are known to be tissue-specific (N=28) selected (Fig. 2B) and their expressing tissues were analyzed (Fig. 2C). Except for prostate and small intestines that were also significant between cases and controls, tissues that include most percent of significantly differentiated genes between mild and severe cases are adrenal, liver, and whole blood, which were acceptable in consideration of the inflammatory and immune reactions associated with COVID-19. Moreover, tissues significant specifically among data collected at the 4 time points of severe case include heart, muscle, and artery, which can be explained by the clinical records reporting arrhythmia, atrial fibrillation, and general fatigue for the severe case.

Microbial and mitochondrial cfDNA

Besides autosomal cfDNA from cases and controls, infection of microbiomes in plasma and mitochondrial cfDNA concentration were also investigated (Fig. 3). In consistent with the RNAvirus nature of SARS-COV-2, we did not find any viral DNA of SARS-CoV-2 in the cfDNA sequencing data. Total counts of bacteria detected in plasma from COVID-19 patients were lower than that from controls (Fig. 3A), which could be explained by medication of interferons and antibiotics for these patients. Notably a novel virus infected in plasma collected at third and fourth time points of the severe case was human betaherpesvirus 5 (Table S7), which might cause pneumonia, colitis, or encephalitis in immunocompromised people (*28*).

Overall, mitochondrial cfDNA concentrations of plasma from cases were lower than controls, while the severe case had higher concentration than mild case (Fig. 3B). Notably distribution of mitochondrial concentration for severe case showed clear "S" shape, which was matched with hematocrit and hemoglobin at last four collection time (Table 1), suggesting hypoxia of the patient.

Discussion

Acute progression of COVID-19 makes it vital to discriminate patients at high risk to go through rapid deterioration. Results of this study on cfDNA from patients with COVID-19 revealed signals associated with disease severity. We found that IL-37 signaling pathway and SQLE gene are both altered in COVID-19 patients, which results were consistent with previous reports. We also discovered signals that are in line with clinical records, including differentially expressed genes related to atrial fibrillation and male reproduction system. In addition, we observed changes of mitochondrial cfDNA concentration, which matches with hematocrit and hemoglobin of the patient. Moreover, alterations in Ub-specific processing proteases and deubiquitination pathways, SQLE, LAMP3, and SPEG genes provide clues on drug targets and biomarkers for COVID-19. Considering the relatively small sample size, follow-up analyses with large-scale sample size is required to make solid conclusions. Nevertheless, the preliminary results demonstrate that cfDNA could serve as a valuable analyte for surveillance, medication guidance, and prognosis of COVID-19 patients.

References and Notes:

- N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G. F. Gao, W. Tan, China Novel Coronavirus Investigating and Research Team, A Novel Coronavirus From Patients With Pneumonia in China, 2019. *N. Engl. J. Med.* 382(8), 727-733 (2020).
- P. Zhou, X. Yang, X. Wang, B. Hu, L. Zhang, W. Zhang, H. Si, Y. Zhu, B. Li, C. Huang, H. Chen, J. Chen, Y. Luo, H. Guo, R. Jiang, M. Liu, Y. Chen, X. Shen, X. Wang, X. Zheng, K. Zhao, Q. Chen, F. Deng, L. Liu, B. Yan, F. Zhan, Y. Wang, G. Xiao, Z. Shi, A Pneumonia Outbreak Associated With a New Coronavirus of Probable Bat Origin. *Nature*. **579**(7798), 270-273 (2020).
- 3. World Health Organization, Coronavirus disease (COVID-2019) situation reports. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/ [accessed 25 May 2020].
- 4. Z. Wu, J. M. McGoogan, Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. *JAMA*. 10.1001/jama.2020.2648 (2020).
- S. Richardson, J. S. Hirsch, M. Narasimhan, J. M. Crawford, T. McGinn, K. W. Davidson, the Northwell COVID-19 Research Consortium, D. P. Barnaby, L. B. Becker, J. D. Chelico, S. L. Cohen, J. Cookingham, K. Coppa, M. A. Diefenbach, A. J. Dominello, J. Duer-Hefele, L. Falzon, J. Gitlin, N. Hajizadeh, T. G. Harvin, D. A. Hirschwerk, E. J. Kim, Z. M. Kozel, L. M. Marrast, J. N. Mogavero, G. A. Osorio, M. Qiu, T. P. Zanos, Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. *JAMA*. 10.1001/jama.2020.6775 (2020).
- H. Tian, Y. Liu, Y. Li, C. Wu, B. Chen, M. U. G. Kraemer, B. Li, J. Cai, B. Xu, Q. Yang, B. Wang, P. Yang, Y. Cui, Y. Song, P. Zheng, Q. Wang, O. N. Bjornstad, R. Yang, B. T. Grenfell, O. G. Pybus, C. Dye, An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. *Science*. 10.1126/science.abb6105 (2020).
- G. Grasselli, A. Zangrillo, A. Zanella, M. Antonelli, L. Cabrini, A. Castelli, D. Cereda, A. Coluccello, G. Foti, R. Fumagalli, G. Iotti, N. Latronico, L. Lorini, S. Merler, G. Natalini, A. Piatti, M. V. Ranieri, A. M. Scandroglio, E. Storti, M. Cecconi, A. Pesenti, COVID-19 Lombardy ICU Network, A. Nailescu, A. Corona, A. Zangrillo, A. Protti, A. Albertin, A. F. Molinari, A. Lombardo, A. Pezzi, A. Benini, A. M. Scandroglio, A. Malara, A. Castelli, A. Coluccello, A. Micucci, A. Pesenti, A. Sala, A. Alborghetti, B. Antonini, C. Capra, C. Troiano, C. Roscitano, D. Radrizzani, D. Chiumello, D. Coppini, D. Guzzon, E. Costantini, E. Malpetti, E. Zoia, E. Catena, E. Agosteo, E. Barbara, E. Beretta, E. Boselli, E. Storti, F. Harizay, F. D. Mura, F. L. Lorini, F. D. Sigurtà, F. Marino, F. Mojoli, F. Rasulo, G. Grasselli, G. Casella, G. D. Filippi, G. Castelli, G. Aldegheri, G. Gallioli, G. Lotti, G. Albano, G. Landoni, G. Marino, G. Vitale, G. B. Perego, G. Evasi, G. Citerio, G. Foti, G. Natalini, G. Merli, I. Sforzini, L. Bianciardi, L. Carnevale, L. Grazioli, L. Cabrini, L. Guatteri, L. Salvi, M. D. Poli, M. Galletti, M. Gemma, M. Ranucci, M. Riccio, M. Borelli, M. Zambon, M. Subert, M. Cecconi, M. G. Mazzoni, M. Raimondi, M. Panigada, M. Belliato, N. Bronzini, N. Latronico, N. Petrucci, N. Belgiorno, P. Tagliabue, P. Cortellazzi,

P. Gnesin, P. Grosso, P. Gritti, P. Perazzo, P. Severgnini, P. Ruggeri, P. Sebastiano, R. D. Covello, R. Fernandez-Olmos, R. Fumagalli, R. Keim, R. Rona, R. Valsecchi, S. Cattaneo, S. Colombo, S. Cirri, S. Bonazzi, S. Greco, S. Muttini, T. Langer, V. Alaimo, U. Viola, Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. *JAMA*. **323**(16), 1574-1581 (2020).

- B. E. Young, S. W. X. Ong, S. Kalimuddin, J. G. Low, S. Y. Tan, J. Loh, O. Ng, K. Marimuthu, L. W. Ang, T. M. Mak, S. K. Lau, D. E. Anderson, K. S. Chan, T. Y. Tan, T. Y. Ng, L. Cui, Z. Said, L. Kurupatham, M. I. Chen, M. Chan, S. Vasoo, L. Wang, B. H. Tan, R. T. P. Lin, V. J. M. Lee, Y. Leo, D. C. Lye, Singapore 2019 Novel Coronavirus Outbreak Research Team, Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. *JAMA*. 323(15),1488-1494 (2020).
- F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, J. Xiang, Y. Wang, B. Song, X. Gu, L. Guan, Y. Wei, H. Li, X. Wu, J. Xu, S. Tu, Y. Zhang, H. Chen, B. Cao, Clinical Course and Risk Factors for Mortality of Adult Inpatients With COVID-19 in Wuhan, China: A Retrospective Cohort Study. *Lancet.* 395(10229), 1054-1062 (2020).
- 10. J. Vincent, F. S. Taccone, Understanding pathways to death in patients with COVID-19. *Lancet. Respir. Med.* 10.1016/S2213-2600(20)30165-X (2020).
- 11. J. Phua, L. Weng, L. Ling, M. Egi, C. Lim, J. V. Divatia, B. R. Shrestha, Y. M. Arabi, J. Ng, C. D. Gomersall, M. Nishimura, Y. Koh, B. Du, Asian Critical Care Clinical Trials Group, Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendation. *Lancet. Respir. Med.* 10.1016/S2213-2600(20)30161-2 (2020).
- P. Ulz, G. G. Thallinger, M. Auer, R. Graf, K. Kashofer, S. W. Jahn, L. Abete, G. Pristauz, E. Petru, J. B. Geigl, E. Heitzer, M. R. Speicher, Inferring expressed genes by whole-genome sequencing of plasma DNA. *Nat. Genet.* 48(10),1273-8 (2016).
- 13. M. W. Snyder, M. Kircher, A. J. Hill, R. M. Daza, J. Shendure, Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. *Cell.* **164**, 57–68 (2016).
- 14. A. Thierry et al., https://www.preprints.org/manuscript/202004.0238/v1 (2020).
- 15. K. Sun, P. Jiang, K. C. A. Chan, J. Wong, Y. K. Y. Cheng, R. H. S. Liang, W. Chan, E. S. K. Ma, S. L. Chan, S. H. Cheng, R. W. Y. Chan, Y. K. Tong, S. S. M. Ng, R. S. M. Wong, D. S. C. Hui, T. N. Leung, T. Y. Leung, P. B. S. Lai, R. W. K. Chiu, Y. M. D. Lo, Plasma DNA Tissue Mapping by Genome-Wide Methylation Sequencing for Noninvasive Prenatal, Cancer, and Transplantation Assessments. *Proc. Natl. Acad. Sci. U. S. A.* **112**(40), E5503-12 (2015).
- 16. K. Sun, P. Jiang, S. H. Cheng, T. H. T. Cheng, J. Wong, V. W. S. Wong, S. S. M. Ng, B. B. Y. Ma, T. Y. Leung, S. L. Chan, T. S. K. Mok, P. B. S. Lai, H. L. Y. Chan, H. Sun, K. C. A. Chan, R. W. K. Chiu, Y. M. D. Lo, Orientation-aware Plasma Cell-Free DNA Fragmentation Analysis in Open Chromatin Regions Informs Tissue of Origin. *Genome. Res.* 29(3), 418-427 (2019).
- 17. B. J. Barnes, J. M. Adrover, A. Baxter-Stoltzfus, A. Borczuk, J. Cools-Lartigue, J. M. Crawford, J. Daßler-Plenker, P. Guerci, C. Huynh, J. S. Knight, M. Loda, M. R. Looney, F. McAllister, R. Rayes, S. Renaud, S. Rousseau, S. Salvatore, R. E. Schwartz, J. D. Spicer, C.

C. Yost, A. Weber, Y. Zuo, M. Egeblad, Targeting potential drivers of COVID-19: Neutrophil extracellular traps. *J. Exp. Med.* **217**(6), e20200652 (2020).

- Y. Zuo, S. Yalavarthi, H. Shi, K. Gockman, M. Zuo, J. A. Madison, C. N. Blair, A. Weber, B. J. Barnes, M. Egeblad, R. J. Woods, Y. Kanthi, J. S. Knight, Neutrophil extracellular traps in COVID-19. *JCI. Insight*. 10.1172/jci.insight.138999 (2020).
- D. Boraschi, D. Lucchesi, S. Hainzl, M. Leitner, E. Maier, D. Mangelberger, G. J. Oostingh, T. Pfaller, C. Pixner, G. Posselt, P. Italiani, M. F. Nold, C. A. Nold-Petry, P. Bufler, C. A. Dinarello, IL-37: a new anti-inflammatory cytokine of the IL-1 family. *Eur. Cytokine Netw.* 22, 127-47 (2011).
- X. Yan, B. Xie, G. Wu, J. Hu, D. Wang, X. Cai, J. Li, Interleukin-37: The Effect of Anti-Inflammatory Response in Human Coronary Artery Endothelial Cells. *Mediators. Inflamm.* 2019, 2650590 (2019).
- P. Conti, G. Ronconi, A. Caraffa, C. Gallenga, R. Ross, I. Frydas, S. Kritas, Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by COVID-19 antiinflammatory strategies. *J. Biol. Regul. Homeost. Agents.* 34(2), 1 (2020).
- 22. D. E. Gordon, G. M. Jang, M. Bouhaddou, J. Xu, K. Obernier, K. M. White, M. J. O'Meara, V. V. Rezelj, J. Z. Guo, D. L. Swaney, T. A. Tummino, R. Huettenhain, R. M. Kaake, A. L. Richards, B. Tutuncuoglu, H. Foussard, J. Batra, K. Haas, M. Modak, M. Kim, P. Haas, B. J. Polacco, H. Braberg, J. M. Fabius, M. Eckhardt, M. Soucheray, M. J. Bennett, M. Cakir, M. J. McGregor, Q. Li, B. Meyer, F. Roesch, T. Vallet, A. M. Kain, L. Miorin, E. Moreno, Z. Z. C. Naing, Y. Zhou, S. Peng, Y. Shi, Z. Zhang, W. Shen, I. T. Kirby, J. E. Melnyk, J. S. Chorba, K. Lou, S. A. Dai, I. Barrio-Hernandez, D. Memon, C. Hernandez-Armenta, J. Lyu, C. J. P. Mathy, T. Perica, K. B. Pilla, S. J. Ganesan, D. J. Saltzberg, R. Rakesh, X. Liu, S. B. Rosenthal, L. Calviello, S. Venkataramanan, J. Liboy-Lugo, Y. Lin, X. Huang, Y. Liu, S. A. Wankowicz, M. Bohn, M. Safari, F. S. Ugur, C. Koh, N. S. Savar, Q. D. Tran, D. Shengjuler, S. J. Fletcher, M. C. O'Neal, Y. Cai, J. C. J. Chang, D. J. Broadhurst, S. Klippsten, P. P. Sharp, N. A. Wenzell, D. Kuzuoglu, H. Wang, R. Trenker, J. M. Young, D. A. Cavero, J. Hiatt, T. L. Roth, U. Rathore, A. Subramanian, J. Noack, M. Hubert, R. M. Stroud, A. D. Frankel, O. S. Rosenberg, Kliment. A. Verba, D. A. Agard, M. Ott, M. Emerman, N. Jura, M. Zastrow, E. Verdin, A. Ashworth, O. Schwartz, C. d'Enfert, S. Mukherjee, M. Jacobson, H. S. Malik, D. G. Fujimori, T. Ideker, C. S. Craik, S. N. Floor, J. S. Fraser, J. D. Gross, A. Sali, B. L. Roth, D. Ruggero, J. Taunton, T. Kortemme, P. Beltrao, M. Vignuzzi, A. García-Sastre, K. M. Shokat, B. K. Shoichet, N. J. Krogan, A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug Repurposing. Nature. 10.1038/s41586-020-2286-9 (2020).
- 23. J. Zhang, R. Yan, C. Wu, H. Wang, G. Yang, Y. Zhong, Y. Liu, L. Wan, A. Tang, Spermatogenesis-associated 48 Is Essential for Spermatogenesis in Mice. *Andrologia*. 50(6), e13027 (2018).
- 24. Z. Wang, X. Xu, scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. *Cells.* 2020, **9**(4), 920 (2020).
- 25. C. Fan et al. https://www.medrxiv.org/content/10.1101/2020.02.12.20022418v1 (2020).

- 26. F. Dormont, R. Brusini, C. Cailleau, F. Reynaud, A. Peramo, A. Gendron, J. Mougin, F. Gaudin, M. Varna, P. Couvreur, Squalene-based multidrug nanoparticles for improved mitigation of uncontrolled inflammation. *Sci. Adv.* eaaz5466 (2020).
- 27. M. Xiong, D. P. Heruth, L. Zhang, S. Ye, Identification of lung-specific genes by metaanalysis of multiple tissue RNA-seq data. *FEBS. Open. Bio.* **6**(7), 774–781 (2016).
- 28. G. H. Taylor, Cytomegalovirus, Am. Fam. Physician. 67(3),519-24 (2003).

Acknowledgments: This work was supported by China National GeneBank. We sincerely thank the support provided by China National GeneBank. Funding: 1.the Hainan Medical University novel coronavirus pneumonia project (XGZX2020002) 2. National natural science foundation of china (81960389) 3. Natural Science Foundation of Guangdong Province, China (2017A030306026) 4 Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011) 5 Talent Support Project of Guangdong, China (2017TQ04R858) 6. Distinguished Young Scholar of South China University of China (2017JQ017). Author contributions: Ruoyan Chen, Xin Jin, Hongyan Jiang, and Shengmiao Fu had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis; concept and design: Xin Jin, Xinping Chen, Ruoyan Chen; acquisition, analysis, or interpretation of data: Ruoyan Chen, Yu Lin, Jinjin Xu, Yuxue Luo, Tingyu Kuo, Ye Tao; drafting of the manuscript: Ruoyan Chen, Kun Sun; critical revision of the manuscript for important intellectual content: Xin Jin, Xun Xu, Kun Sun; statistical analysis: Ruoyan Chen, Yu Lin, Jinjin Xu; obtained funding: Xun Xu, Xin Jin, Xinping Chen, Huanming Yang, Jian Wang; administrative, technical, or material support: Tao Wu, Zhichao Ma, Hui Li, Chen Zhang, Jiao Wang, Xiaojuan Li, Feng Lin, Junjie Hu, Ming Liu, Jiye Zhang, Fang Chen, Chunyu Geng, Chaojie Huang, Jianhua Yin, Rijing Ou, Xiaorong Fu; supervision: Xin Jin, Xinping Chen, Hongyan Jiang, Shengmiao Fu. **Competing interests:** Authors declare no competing interests. Data and materials availability: The data that support the findings of this study have been deposited into CNSA (CNGB Nucleotide Sequence Archive) of CNGBdb with accession number CNP0001081 (https://db.cngb.org/cnsa/).

pathways based on genes of the 6 clusters were illustrated and mapped to six different functional modules (**B**).

Fig. 2. Significant tests on genes and tissues of two controls and two mild and severe cases. (A) Meta p values of rank-sum tests on coverage distribution in 200bp TSSs of genes on whole genome for case and control (pink), mild and severe (green), and control (blue). Name of genes with $-\log_{10}(p \text{ value})$ greater than 6 within each group were marked. (B) Meta p values of genes that were expressed specifically in 28 tissues from 1) controls, 2) mild time series, 3) severe time series, 4) mild and severe cases, 5) cases and controls, from top to bottom. (C) Percent of significant genes marked in (A) within each tissue from (B) were summarized for control (green), case and control (pink), mild and severe (blue), severe (grey). Tissues were sorted based on percent of significant genes between case and control.

Fig. 3. Microbial and mitochondrial cfDNA from two controls and two mild and severe cases. No. of bacteria detected (**A**) and mitochondrial cfDNA concentration (**B**) from cfDNA of

plasma collected at 4 time points for mild (light blue) and severe (dark blue) cases, and at once for the two cases (green, time for dotted lines are invented only for comparison).

				Sev	vere				Mild	
Variable	Unit	Hospit al Day 1	Hospit al Day 2	Hospit al Day 16	Hospit al Day 19	Hospit al Day 25	Hospit al Day 29	Hospit al Day 1	Hospit al Day 11	Hospit al Day 20
Gender				Ma	ale				Male	
Temperature	°C	36	37.5	38	39	38	37.6	36.5		
Breathing rate	bpm	30	22	24	19	20	26	20		
Blood pressure	mmH g	179/99	125/84	104/67	98/54	78- 163/52- 86	116/68	126/88		
Blood oxygen saturation	%	46.00	98.00	99.00	98.00	96.00	97.00	99.00		
White blood cell count	10 ⁹ /L	10.89	10.23	19.29	10.47	10.16	6.48			8.07
Red blood cell count	10 ¹² /L	3.56			5.49	2.92	3.98			
Hematocrit			0.34	0.221	0.333	0.267	0.375			
PH		7.4	7.251	7.386	7.425	7.371	7.384			7.342
partial pressure of oxygen	mmH g	80	169	98	94	82	66			118
partial pressure of carbon dioxygen	mmH g	33	58.1	43.6	37.8	52.4	49.8			35.4
C-reactive protein	mg/L	92.95		180.6	107.4	159.4	166.5			4.57
N-terminal pro b-type Natriuretic Peptide	ng/L		922	354		98	607			
Magnesium	mmol/ L			1.16			0.72			
D-dimer	ng/ml					8.5	16.1			
Sodium	mmol/	129.3	134.7	145.9	148	143	142			138.3
Potassium	mmol/	3.53		4.02	4.08	3.7	3.65			3.93
Chloride	mmol/ L			112.3						
Creatinine	mmol/ L	54		139.7						
Glucose	mmol/ L			9.05		8.54	7.6			
Urea	mmol/ L			29.36			1.63			
Calcium	mmol/ L	1.86		2.11		1.11	1.88			
Aspartate aminotransferase	U/L			22.2			58.7			
Alanine aminotransferase	U/L			9.9			54.8			
Albumin	g/L	28.6		32.8	35.1		35.7			41.3
Alkaline phosphatase	U/L						42			
Lactate dehydrogenase	U/L						413			
Lactic acid	mmol/ L			2.32		1.61	1.72		2.59	
Hemoglobin	g/L	113	114	96	108	89	121			141
Platelet count	10 ⁹ /L	164		264	281	164	106			
Absolute neutrophil count	%	92.00		92.90	89.60	82.10	88.70			61.60
Absolute lymphocyte	%	3.50			5.80		5.90			
The high-sensitivity cardiac troponin	µg/L			0.027			0.028			
(1→3)-β-D-Glucan	pg/ml				128.2	197.1	218.3			
Aspergillus galactomannan	µg/L					0.12	0.13			

Table 1. Clinical laboratory records of the mild and severe cases

Interleukin 6	pg/ml	81.6	410.2
Gastric fulid occult		Positive	Positive
blood		(++)	(++)

Table 2. Top 10 significantly differentiated expressed genes between mild and severe cases

Case and ontrolMild and severe0.242.58x10 ⁻²⁸	
0.24 2.58x10 ⁻²⁸	
1.00 7.44x10 ⁻²⁷	
'4x10 ⁻³ 2.81x10 ⁻²⁵	
5x10 ⁻⁶ 1.23x10 ⁻¹⁹	
1.00 8.64x10 ⁻¹⁹	
0.04 1.87x10 ⁻¹⁸	
0.32 7.22x10 ⁻¹⁸	
96x10 ⁻³ 7.65x10 ⁻¹⁸	
96x10 ⁻³ 1.23x10 ⁻¹⁷	
3x10 ⁻⁶ 1.83x10 ⁻¹⁷	
)))	1.00 7.44x10 ⁻²⁷ 4x10 ⁻³ 2.81x10 ⁻²⁵ 5x10 ⁻⁶ 1.23x10 ⁻¹⁹ 1.00 8.64x10 ⁻¹⁹ 0.04 1.87x10 ⁻¹⁸ 0.32 7.22x10 ⁻¹⁸ 6x10 ⁻³ 7.65x10 ⁻¹⁸ 6x10 ⁻³ 1.23x10 ⁻¹⁷ 3x10 ⁻⁶ 1.83x10 ⁻¹⁷

Supplementary Materials for

Time-series plasma cell-free DNA analysis reveals disease severity of COVID-19 patients

Authors: Xinping Chen[†], Yu Lin[†], Tao Wu[†], Jinjin Xu[†], Zhichao Ma[†], Kun Sun[†], Hui Li[†], Yuxue Luo[†], Chen Zhang, Fang Chen, Jiao Wang, Tingyu Kuo, Xiaojuan Li, Chunyu Geng, Feng Lin, Chaojie Huang, Junjie Hu, Jianhua Yin, Ming Liu, Ye Tao, Jiye Zhang, Rijing Ou, Furong Xiao, Huanming Yang, Jian Wang, Xun Xu, Shengmiao Fu^{*}, Xin Jin^{*}, Hongyan Jiang^{*}, Ruoyan Chen^{*}

*Correspondence to: <u>chenruoyan@genomics.cn; hyjiangus@163.com; jinxin@genomics.cn; smfu2000@126.com</u>. †These authors contributed equally to this work.

This supplementary file includes:

Materials and Methods Fig. S1 to S3 Tables S1 to S8 References

Materials and Methods

Data collection

A total of 10 samples were collected from 2 patients with COVID-19 at 4 time points and 2 health controls. Leftover surplus blood was collected from participants who had signed consent forms after clinical diagnosis. Peripheral blood was stored using EDTA anticoagulant-coated tubes. The blood samples pretreatment and DNA extraction were proceeded at a Biosafety Level 2 (BSL-2) laboratory to ensure the appropriate biosafety practices (1). All samples were centrifuged at low speed (3000 rpm) for 10 min at 4°C within six hours after collection. The supernatant was centrifuged at high speed (1,4000 rpm) for 10 min at 4°C. Then the plasma was set at 56°C water bath for 30 minutes. Circulating cfDNA was extracted from 200uL plasma using MagPure Circulating DNA Mini KF Kit (MD5432-02) following the manufacturer's guide. The cfDNA was eluted by 200uL TE buffer for QC and 40uL for the rest. For cfDNA library construction, the extracted cfDNAs were processed to library using MGIEasy Cell-free DNA Library Prep kit (MGI, cat. No.: AA00226).

For upstream data processing, firstly, soapnuke (version 1.5.0) (2) was used for trimming the sequencing adapters from raw reads, and filtering low quality and high ratio N. N rate threshold was set to 0.1, low quality rate was set to 0.5, and low quality threshold, namely the max mismatch number when match the adapter to 2 and the clean data quality system to sanger, was set to 12. Secondly, BWA (version $0.7.17 \cdot r1188$) (3) was used to map reads against the human reference genome (build hg38). After sorting and removing duplication of the aligned reads, variants were detected by Haplotype caller from GATK (4). The above steps were performed by sention (5), a platform for processing of genomic data that combined alignment, variants calling, and quality recalibration together efficiently.

Gene set enrichment and pathway analysis

Firstly, for each gene, average sequencing depth within 2kb region around transcription start sites (2kb-TSSs) and 200bp region around TSSs (200bp-TSSs) were calculated respectively by DepthOfCoverage package from GATK (4). The relative coverage around TSS was the above depth normalized by average depth of WGS data from each sample. Secondly, for each gene, $S_i = D_{maxi} - D_{mini}$ was calculated, where D_{maxi} represented the highest depth among group *i* within 2kb-TSSs/200bp-TSSs and D_{mini} represented the lowest depth among group *i* within 2kb-TSSs/200bp-TSSs. Genes with $S_{controls} > S_{cases}$ were filtered, and remained genes were ranked by S_{cases} . Gene set enrichment analysis was performed on the top 1% ranked genes by the heatmap package from R version 3.5.1, and clusters of genes were selected from dendrogram output by heatmap package. Pathway analysis was carried out by Reactom (6) on the 6 clusters of genes separately (Table S2). Results based on 2kb-TSS regions were presented in Fig. 1, and results based on 200bp-TSS regions were summarized in Fig. S3.

Analysis on differentiated genes and tissue specificity

To test difference among different groups, including 1) $G_{control}$: 2 samples from 2 control individuals, 2) G_{mild} : 4 samples from 1 mild case at 4 time points, 3) G_{severe} : 4 samples from 1 severe case at 4 time points, 4) $G_{mild,severe}$: 4 mild and 4 severe samples, 5) $G_{case,control}$: 2 controls and 8 cases, reads start counts, namely counts of starts of sequencing reads pairs, were calculated within 200bp region around transcription start site (TSS) of each gene. For the 2 samples from 2 control individuals and the 8 samples from 4 cases collected at 4 time points, pairwise Wilcox's Rank-sum tests were carried out by wilcox package from R version 3.5.1, and corresponding *p* values, including $G_{control} \in \{p_{control1,control2}\}$, $G_{mild} \in \{p_{mild1,mild2}, p_{mild1_mild3}, p_{mild2_mild4}, p_{mild2_mild4}, p_{mild3_mild4}\}$, $G_{severe} \in \{p_{severe1,severe2}, p_{severe1,severe3}, p_{severe2,severe3}, p_{severe2,severe4}, p_{severe3,severe4}\}$, $G_{mild,severe2} \in \{p_{mild1,severe3}, p_{mild2,severe4}, p_{mild2,severe3}, p_{mild2,severe4}, p_{mild3,severe4}, p_{mild3,severe3}, p_{mild3,severe4}, p_{mild3,severe4}, p_{mild3,severe4}, p_{mild3,severe4}, p_{mild3,severe4}, p_{mild3,severe4}, p_{mild3,severe4}, p_{mild3,severe4}, p_{mild3,severe4}, p_{mild4,severe3}, p_{mild4,severe4}, G_{case,control} \in \{p_{control1,mild1}, p_{control2,mild2}, p_{control1,mild3}, p_{control2,mild4}, p_{control2,severe4}, p_{control2,severe4}, for each group of$ *p*values above, a combined*p* $value was calculated using Wilkinson's method (7). Cutoff for selection of significantly differentially expressed genes of each group was set to <math>p < \frac{0.05}{count of genes included for significant tests}$, namely, $p < 1.6 \times 10^{-6}$.

Tissue specificity was analyzed based on grouped meta p values above. 23,570 transcripts that are expressed specifically from 28 tissues were selected based on GTEx database (8,9).

Microbiomes and mitochondrial cfDNA concentration estimation

The sequences remaining after removal of reads identified as human were aligned to microbial genome databases, contains 4153 viral and 2328 bacterial genomes, 208 fungi and 79 parasites genomes, coronavirus 2 (SARS-CoV-2) genome downloaded from NCBI, NC_045512.2. For identifying a positive microbe, we used the methodological criteria according to (*10-12*), focused on a). Coverage rate; b). Species level sequencing depth; c). Species level relative abundance and d). Unique mapped reads numbers.

Concentration of mitochondrial cfDNA was calculated as count of cfDNA fragments (sequencing reads pairs) that were uniquely mapped to mitochondrial DNA divided by total count of cfDNA fragments that were uniquely mapped to whole genome (Build hg38).

Fig. S1. Illustration of timelines for the mild and severe cases.

Fig. S2. Distribution of coverage around TSSs of genes significantly different between severe and mild cases. Relative coverage was calculated as coverage of cfDNA fragments weighted by average sequencing depth of each sample. Top 10 significant genes were ranked by *p* values from top to bottom. Regions within the grey rectangle were used for significant test.

Fig. S3. Gene set enrichment analysis based on relative coverage around 200bp-TSSs. Same gene set enrichment analysis as Fig. 1 was performed on 200bp-TSSs regions alternatively, and 6 clusters of genes were used for pathway analysis (Table S8).

Sample	Testing date	ORF1ab/N Gene Detection ¹
	2020/2/3	Gray area
	2020/2/8	Negative
	2020/2/11	Positive
	2020/2/14	Positive
	2020/2/17	N Gene Positive
	2020/2/21	N Gene Positive
	2020/2/25	Positive
	2020/2/28	Positive
	2020/3/1	Positive
Severe	2020/3/2	Gray area
Cevere	2020/3/3	Negative
	2020/3/4	Negative
	2020/3/5	Positive
	2020/3/6	Negative
	2020/3/7	Negative
	2020/3/8	Positive
	2020/3/9	Positive
	2020/3/10	Negative
	2020/3/11	Negative
	2020/3/18	Gray area
	2020/2/17	Gray area
	2020/2/19	Positive
	2020/2/21	Negative
	2020/2/22	Positive
	2020/2/24	Positive
	2020/2/26	Positive
	2020/2/27	Negative
	2020/2/28	Negative
	2020/2/29	Negative
	2020/3/14	Negative
Mild	2020/3/31	Negative

Table S1. Summary on PCR testing of throat swab nucleic acids results.

*1. Negative:Ct≥40; Postive:Ct<37;Gray Area :Ct 37-40.

Sample	Control1	Control2	Severe1	Severe2	Severe3	Severe4	Mild1	Mild2	Mild3	Mild4
Sequencing Platform					DNB	SEQ- T1				
Sequencing Style					Paired-	end 100bp				
Gender	Male	Female		М	ale			М	ale	
ESR (%) ¹	79.55	79.55	77.89	79.55	79.55	77.89	77.89	79.55	79.55	77.89
GC (%)	40.92	40.92	40.87	40.92	40.92	40.87	40.87	40.92	40.92	40.87
Reads count (x1M)	123.68	76.90	203.77	173.04	494.18	574.49	241.41	226.70	176.81	253.74
Bases count (x100M)	247.40	153.80	407.60	346.00	988.40	1149.00	482.80	453.40	353.60	507.40
Q10 (%, total) ²	99.68	99.68	99.69	99.68	99.68	99.69	99.69	99.68	99.68	99.69
Q20 (%, total) ²	98.43	98.43	98.41	98.43	98.43	98.41	98.41	98.43	98.43	98.41
Q30 (%, read1) ²	93.76	93.76	93.58	93.76	93.76	93.58	93.58	93.76	93.76	93.58
Q30 (%, read2) ²	92.21	92.21	91.95	92.21	92.21	91.95	91.95	92.21	92.21	91.95
Q30 (%, total) ²	92.99	92.99	92.77	92.99	92.99	92.77	92.77	92.99	92.99	92.77
Duplication Rate (%)	8.15	3.12	1.80	10.02	2.99	3.98	7.77	6.67	4.97	7.88
Mapping rate	99.50	99.70	99.98	99.97	99.97	99.97	99.89	99.99	99.99	99.89
Unique rate	93.19	93.12	92.61	92.71	92.76	92.76	92.61	92.79	92.83	92.66
Average depth	7.76	5.10	13.69	10.71	32.76	37.68	15.25	14.51	11.52	16.00
Coverage	96.90	94.77	98.44	98.06	99.22	99.28	98.79	98.75	98.26	98.83
Coverage > 4X ³	83.73	62.74	93.19	90.41	97.95	98.20	95.63	95.29	92.02	95.92
Coverage > 10X	25.70	6.75	66.46	50.73	94.61	95.61	77.48	74.20	57.48	79.05
Coverage > 20X	0.66	0.19	14.86	4.27	81.46	86.14	18.55	15.48	5.52	23.09

Table S2. Summary (on WGS data of the 2	cases and 2 controls.
---------------------	----------------------	-----------------------

*1. Estimated sequencing error rate.
2. Q10: percent of bases with sequencing quality above 10; Q20: percent of bases with sequencing quality above 20; Q30: percent of bases with sequencing quality above 30.
3. Coverage of bases with depth equal or above 1, 4, 10, and 20.

Cluster	Pathway	Found entities	Total entities	Ratio	p value	FDR	Found reaction	Total reaction	Ratio
	Interleukin- signaling	2	36	0.00	0.01	0.17	1	14	0.00
	Surfactant metabolism	2	53	0.00	0.01	0.17	3	29	0.00
	Interleukin- family signaling	2	163	0.01	0.08	0.75	1	79	0.01
	RA biosynthesis pathway	1	39	0.00	0.11	0.75	1	11	0.00
	TBC/RABGAPs	1	49	0.00	0.14	0.75	1	14	0.00
	lon transport by P-type ATPases	1	71	0.01	0.19	0.75	1	14	0.00
	Signaling by Retinoic Acid	1	72	0.01	0.19	0.75	1	21	0.00
	Rab regulation of trafficking	1	129	0.01	0.32	0.75	1	35	0.00
	Ub-specific processing proteases	1	206	0.01	0.46	0.75	2	40	0.00
	Ion channel transport	1	207	0.01	0.46	0.75	1	41	0.00
	Neddylation	1	241	0.02	0.51	0.75	6	31	0.00
	Signaling by Interleukins	2	639	0.04	0.57	0.75	1	490	0.04
	Deubiquitination	1	288	0.02	0.58	0.75	2	77	0.01
Cluster 1	Antigen processing: Ubiquitination & Proteasome	1	315	0.02	0.61	0.75	4	9	0.00
	Signaling by Nuclear Receptors	1	385	0.03	0.69	0.75	1	191	0.02
	Olfactory Signaling Pathway	1	432	0.03	0.73	0.75	1	2	0.00
	Class I MHC mediated antigen processing & presentation	1	465	0.03	0.75	0.75	4	48	0.00
	G alpha (s) signalling events	1	605	0.04	0.84	0.84	1	18	0.00
	Membrane Trafficking	1	665	0.05	0.87	0.87	1	218	0.02
	Cytokine Signaling in Immune system	2	1,261	0.09	0.90	0.90	1	699	0.06
	Vesicle-mediated transport	1	824	0.06	0.92	0.92	1	251	0.02
	Metabolism of proteins	4	2,354	0.16	0.93	0.93	11	891	0.07
	Transport of small molecules	1	963	0.07	0.95	0.95	1	438	0.03
	Adaptive Immune System	1	999	0.07	0.95	0.95	4	261	0.02
	Post-translational protein modification	2	1,592	0.11	0.96	0.96	8	525	0.04
	Cytosolic sulfonation of small molecules	2	72	0.01	0.01	0.23	5	24	0.00
	RUNX regulates genes involved in megakaryocyte differentiation and platelet function	2	78	0.01	0.01	0.23	2	33	0.00
	XBP(S) activates chaperone genes	2	95	0.01	0.01	0.23	1	47	0.00
	IREalpha activates chaperones	2	101	0.01	0.02	0.23	1	53	0.00
	Unfolded Protein Response (UPR)	2	155	0.01	0.04	0.34	1	94	0.01
Cluster 2	Apoptotic cleavage of cellular proteins	1	38	0.00	0.07	0.34	1	38	0.00
Cluster 2	Effects of PIP hydrolysis	1	40	0.00	0.07	0.34	1	9	0.00
	Phase II - Conjugation of compounds	2	258	0.02	0.09	0.34	5	72	0.01
	i ranscriptional regulation by RUNX	2	261	0.02	0.09	0.34	2	132	0.01
	Inactivation, recovery and regulation of the phototransduction cascade	1	54	0.00	0.10	0.34	1	19	0.00
	Apoptotic execution phase	1	54	0.00	0.10	0.34	1	57	0.00
	The phototransduction	1	59	0.00	0.11	0.34	1	27	0.00

cascade Netrin- signaling

1

59

0.00

0.11

0.34

1

37

0.00

Table S3. Results on pathway analysis of the 6 clusters from coverage around 2kb-TSSs from cfDNA of one mild case, one severe case, and two controls¹.

	G alpha (z) signalling events	1	62	0.00	0.11	0.34	3	13	0.00
	FCGR activation	1	103	0.01	0.18	0.36	3	6	0.00
	Downstream TCR signaling	1	124	0.01	0.21	0.36	4	24	0.00
	Role of phospholipids in phagocytosis	1	129	0.01	0.22	0.36	5	12	0.00
	Formation of the cornified envelope	1	138	0.01	0.24	0.36	6	27	0.00
	FCGRA-mediated IL synthesis	1	141	0.01	0.24	0.36	1	20	0.00
	TCR signaling	1	147	0.01	0.25	0.36	4	52	0.00
	Regulation of actin dynamics for phagocytic cup formation	1	158	0.01	0.26	0.36	6	24	0.00
	Visual phototransduction	1	169	0.01	0.28	0.36	1	92	0.01
	Biological oxidations	2	545	0.04	0.28	0.36	5	188	0.02
	FCERI mediated NF-kB activation	1	175	0.01	0.29	0.36	13	19	0.00
	Apoptosis	1	189	0.01	0.31	0.36	1	141	0.01
	Passive transport by Aquaporins	1	13	0.00	0.02	0.05	2	8	0.00
Cluster 3	Aquaporin-mediated transport	1	53	0.01	0.06	0.06	2	25	0.00
	Transport of small molecules	1	731	0.06	0.61	0.61	2	438	0.03
	Olfactory Signaling Pathway	3	432	0.04	0.00	0.01	1	2	0.00
	G alpha (s) signalling events	3	577	0.05	0.01	0.01	1	18	0.00
Cluster 4	GPCR downstream signalling	3	1,154	0.10	0.04	0.04	1	258	0.02
	Signaling by GPCR	3	1,226	0.11	0.05	0.05	1	437	0.03
	Signal Transduction	3	2,829	0.25	0.32	0.32	1	2,347	0.19
	Signal regulatory protein family interactions	3	16	0.00	0.00	0.00	10	10	0.00
	Keratinization	4	217	0.02	0.00	0.00	1	34	0.00
	Cell-Cell communication	3	130	0.01	0.00	0.00	10	60	0.01
	Developmental Biology	4	1,100	0.10	0.02	0.05	1	537	0.04
	Cell surface interactions at the vascular wall	2	246	0.02	0.02	0.07	1	64	0.01
	DAP interactions	1	47	0.00	0.04	0.09	1	33	0.00
Cluster F	Neutrophil degranulation	2	480	0.04	0.08	0.15	3	10	0.00
Cluster 5	Hemostasis	2	726	0.06	0.15	0.15	1	328	0.03
	Innate Immune System	2	1,187	0.10	0.32	0.32	4	697	0.06
	Olfactory Signaling Pathway	1	432	0.04	0.35	0.35	1	2	0.00
	G alpha (s) signalling events	1	577	0.05	0.44	0.44	1	18	0.00
	GPCR downstream signalling	1	1,154	0.10	0.69	0.69	1	258	0.02
	Immune System	2	2,374	0.21	0.70	0.70	4	1,598	0.13
	Signaling by GPCR	1	1,226	0.11	0.71	0.71	1	437	0.03
	Signal Transduction	1	2,829	0.25	0.96	0.96	1	2,347	0.19
	Ub-specific processing proteases	8	205	0.02	0.00	0.00	2	40	0.00
	Deubiquitination	8	282	0.03	0.00	0.00	2	77	0.01
	Post-translational protein modification	8	1,417	0.12	0.00	0.02	2	525	0.04
Cluster 6	Tyrosine catabolism	1	5	0.00	0.01	0.03	1	6	0.00
	Phenylalanine and tyrosine metabolism	1	11	0.00	0.02	0.06	1	12	0.00
	Metabolism of proteins	8	2,012	0.18	0.03	0.06	2	891	0.07
	GABA receptor activation	1	60	0.01	0.11	0.11	2	12	0.00
	Signaling by ERBB	1	62	0.01	0.11	0.11	1	52	0.00

Neurotransmitter receptors and postsynaptic signal transmission	1	208	0.02	0.33	0.33	2	109	0.01
Transmission across Chemical Synapses	1	273	0.02	0.41	0.41	2	161	0.01
Metabolism of amino acids and derivatives	1	376	0.03	0.52	0.52	1	285	0.02
Neuronal System	1	419	0.04	0.56	0.56	2	214	0.02
Signaling by Receptor Tyrosine Kinases	1	523	0.05	0.64	0.64	1	698	0.06
Metabolism	1	2,142	0.19	0.99	0.99	1	2,241	0.18
Signal Transduction	1	2,829	0.25	1.00	1.00	1	2,347	0.19

*1.Pathway analysis output from Reactom. Pathways with p values smaller than 0.01 were marked in bold.

Chromosome	Position	Gene	-log₁₀ (<i>p</i> value of control)	-log ₁₀ (<i>p</i> value of case and control)	-log ₁₀(p value of mild and severe)
chr22	15690025	POTEH	0.76	0.62	27.59
chr21	9821060	MGC39584	1.11	0.00	26.13
chr7	50096085	C7orf72	0.95	2.56	24.66
chr8	124999756	SQLE	0.00	5.94	18.91
chr12	5043918	KCNA5	0.76	0.00	18.06
chr2	219473003	SPEG	1.61	1.45	17.73
chr16	1773227	EME2	2.33	0.49	17.14
chr1	118989555	TBX15	0.73	2.10	17.12
chr3	183162878	LAMP3	0.15	2.71	16.91
chr17	9905366	RCVRN	1.25	5.79	16.74
chr9	95086093	MIR3074	0.14	0.00	16.61
chr19	40890825	CYP2G1P	1.80	0.00	16.26
chr16	1773150	MRPS34	3.54	0.94	15.79
chr5	43067022	LOC100506639	0.16	0.00	15.41
chr1	84997121	MCOLN2	0.09	0.00	15.36
chr22	48274363	MIR3201	0.22	0.79	15.31
chr6	138435293	MIR3145	2.25	0.82	15.05
chr19	1026274	CNN2	0.16	2.74	14.74
chr22	30289626	GATSL3	0.75	0.00	14.74
chr9	21239978	IFNA14	2.27	0.92	14.74
chr12	15911171	DERA	0.00	0.00	14.64
chr7	103347523	PSMC2	0.42	1.17	14.63
chr12	7749472	CLEC4C	2.25	5.84	14.61
chr6	42746145	TBCC	0.00	1.79	14.21
chr13	24825651	RNF17	0.49	0.00	14.20
chr11	57335876	SSRP1	1.31	1.54	13.98
chr11	79422225	MIR5579	2.47	0.00	13.86
chr16	28925210	RABEP2	0.10	0.00	13.59
chr4	99511023	C4orf17	0.23	0.09	13.55
chr3	10026135	CIDECP	2.67	2.74	13.47
chr21	34737181	LINC00160	0.79	0.21	13.45
chr6	98834703	POU3F2	0.24	4.43	13.42
chr6	35921179	SRPK1	1.65	1.05	13.42
chr13	42781549	FAM216B	0.03	1.27	13.28
chr6	53262802	GCM1	1.29	1.36	13.22
chr7	143959926	OR2F1	1.09	0.83	13.09
chr20	63037027	LINC00029	2.70	3.97	12.83
chr5	76290530	SV2C	0.52	1.01	12.73
chr3	100993507	ABI3BP	0.65	0.84	12.70
chr8	99536860	MIR875	0.82	2.10	12.70
chr1	9093406	SLC2A5	0.44	0.99	12.69
chr1	150765956	CTSS	1.58	0.00	12.65
chr16	67150998	B3GNT9	0.87	0.99	12.55
chr12	10390053	KLRK1	0.32	1.45	12.55
chr16	1782604	SPSB3	4.29	2.96	12.51
chr17	49678162	SPOP	0.75	0.00	12.44
chr1	2352660	LOC100129534	2.29	0.03	12.41
chr2	91775341	GGT8P	1.94	0.17	12.27
chr2	55983075	MIR217	0.35	0.00	12.24
chr3	52226162	TLR9	2.35	0.65	12.23
chr6	73354275	DPPA5	1.02	1.02	12.19
chr16	66967474	CES3	0.58	1.27	12.16
chr11	75717818	MOGAT2	1.32	2.76	12.02
chr12	75390940	CAPS2	0.74	0.00	12.00
chr10	31355206	ZEB1	0.63	0.00	11.93
chr19	42528508	CEACAM1	0.70	0.00	11.87
chr17	63773727	CCDC47	0.00	0.00	11.85
chr3	48717277	IP6K2	1.70	1.08	11.82
chr1	173866714	SNORD76	0.52	0.79	11.70
chr9	102995310	CYLC2	1.41	3.92	11.65
chr16	28931938	CD19	1.92	2.51	11.60

Table S4. All significantly different genes between mild and severe cases¹.

chr1	161631962	FCGR3B	0.92	2 97	11.60
chr9	133377948	SURF4	0.88	1.06	11.36
chr6	45197769	MIR586	0.37	0.79	11.23
chr5	67196788	CD180	0.12	0.00	11.20
chr3	112847003	CD200R1I	0.95	0.73	11 13
chr7	99784187	CYP3A4	0.82	0.00	11.10
chr6	7402646	RIOK1	0.00	0.00	11.08
chr10	96304327	DNTT	1 61	0.10	11.00
chr3	46736430	PRSS46	0.36	3.08	10.98
chr13	48580900	LINC00462	1.63	0.98	10.00
chr5	88439089	100102546226	0.94	0.92	10.91
chr10	79560460	SETPA2	0.86	0.12	10.81
chr3	47011541		0.83	0.00	10.00
chr10	4/011341		0.59	0.00	10.02
chrQ	122800122		3 25	0.97	10.81
chr1	196774815	CEHR3	2 71	1 19	10.01
chr16	20863287	CDIPT	0.00	3.08	10.70
chr22	29003207		1.27	0.77	10.03
chr12	48203201		0.05	4.85	10.53
chr11	40203291	SI C1A2	1.77	4.05	10.57
chr?	240969744	ACYT	0.42	0.82	10.57
chr14	240000744	ROADNA12	0.42	2.00	10.57
chi 14	90000020	MARKORO	0.45	2.09	10.50
chrit	92418060		0.30	0.14	10.54
child child	7255252	LAIST	1.90	0.14	10.44
chi8	1300303		2.82	0.00	10.40
	75007470		2.74	0.91	10.38
Chr16	/520/1/3		0.05	0.85	10.31
chr19	48637549	DBP	2.08	1.86	10.29
chri3	21145126	SAP18	1.02	1.54	10.29
cnr5	43066970	LOC100132356	0.55	0.00	10.29
cnr5	147081519	PPP2R2B	1.66	0.39	10.27
chr1	32362260	ISSK3	0.74	0.00	10.27
cnr5	122160175	LOC100505841	1.55	0.59	10.27
chr5	100816564	MIR548P	0.36	0.23	10.25
chr12	19255048	PLEKHA5	0.12	0.49	10.23
chr1	54998943	BSND	0.90	0.46	10.16
chr4	140154078	MAML3	0.19	0.00	10.12
chr6	108751653	LINC00222	0.63	0.33	10.10
chr9	41074624	PGM5P2	3.31	0.30	10.06
chr1	24415532	STPG1	2.26	0.98	10.05
chr11	5857701	OR52E8	1.43	1.06	10.00
chr19	5690334	RPL36	0.30	1.02	9.98
chr10	123154243	BUB3	0.57	1.64	9.95
chr11	121102665	TECTA	0.77	2.55	9.91
chr19	49930203	AIF5	0.19	0.00	9.89
chr21	42113146	UMODL1	0.18	1.75	9.88
chr5	111512596	STARD4	0.97	1.19	9.87
chr17	81125372	MIR657	2.09	0.96	9.85
chr16	3578372	NLRC3	1.28	0.00	9.85
chr19	9786173	ZNF846	0.26	1.37	9.83
chr20	38033467	1111	0.68	0.00	9.82
chr1	161118075	PFDN2	1.20	0.00	9.77
chr5	42565863	GHR	1.54	0.94	9.69
chr1	173705429	ANKRD45	0.31	0.00	9.68
chr17	44170705	ASB16	0.84	3.33	9.66
chr1	54802378	TTC22	0.07	2.53	9.66
chr11	56093307	OR8I2	1.14	0.00	9.65
chr8	109540625	EBAG9	0.38	0.00	9.59
chr19	15934865	CYP4F11	0.29	0.79	9.50
chr6	41217946	TREML3P	2.58	0.87	9.43
chr19	43840523	ZNF283	0.06	0.00	9.42
chr7	100969622	MUC12	2.23	0.17	9.39
cnr14	88839455	TTC8	1.71	0.68	9.38
cnr2	53767791	CHAC2	0.64	2.42	9.30
chr11	128909843	KCNJ5	0.00	2.23	9.27

chr5	135803074	MIR5692C1	0.13	0.97	9.27
chr2	33728216	MYADML	1.15	0.97	9.25
chr8	12134008	USP17L7	2.91	1.70	9.24
chr14	81221230	GTF2A1	0.10	0.00	9.18
chr9	116207520	PAPPA	0.33	0.00	9.18
chr11	60334881	MS4A6E	0.36	0.75	9.14
chr16	10183363	GRIN2A	1.46	1.32	9.10
chr8	30638599	SMIM18	0.86	0.00	8.93
chr14	20891402	RNASE3	3.24	2.23	8.91
chr8	94641135	ESRP1	0.26	0.00	8.86
chr20	47166966	MIR3616	1.33	0.00	8.86
chr3	114316568	MIR568	1.10	0.07	8.84
chr4	77605794	CXCL13	1.54	0.00	8.79
chr6	71420744	LINC00472	1.01	0.00	8.74
chr11	59810871	MRPL16	0.83	1.77	8.69
chr17	49848016	TAC4	0.05	0.22	8.66
chr3	126655123	TXNRD3	1.62	0.00	8.61
chr2	233718791	UGT1A4	1.28	0.93	8.61
chr10	104122294	SFRI	2.67	0.16	8.60
chr10	13234327		1.76	1.45	8.59
chr20	200800147	PMZUD I MXLO	0.17	2.68	0.00
chr11	11207/297		1.08	0.00	0.00
chr20	12074207	LOC102606466	0.94	2 38	8.53
chr17	58540817	4-Sen	1 15	0.94	8.53
chr17	56884912	MTVR2	0.04	1 02	8.51
chr2	79120457	REG1A	2 21	0.82	8.50
chr12	121133014	P2RX7	1.24	0.94	8.50
chr16	79600724	MAF	2.10	2.64	8.48
chr19	7763261	CLEC4M	2.00	1.94	8.47
chr9	92424553	OMD	0.00	0.97	8.43
chr19	23914881	ZNF726	0.18	0.00	8.43
chr11	75351830	ARRB1	0.41	0.00	8.40
chr1	92218015	C1orf146	1.13	0.81	8.40
chr11	59514912	OR4D9	0.33	0.74	8.37
chr1	78620943	IFI44L	1.07	0.00	8.35
chr2	219906564	MIR4268	3.06	1.42	8.34
chr2	202961346	CARF	0.34	1.30	8.33
chr7	50319047	IKZF1	0.05	0.00	8.33
chr2	110222939	LINC00116	0.73	0.00	8.26
chr6	38723394	DNAH8	2.10	0.86	8.26
chr11	65018504	MIR6879	0.18	0.00	8.24
chr12	48106307	SENP1	0.07	0.00	8.24
chr14	25050296	SIXBPO	0.78	1.10	8.24
chr8	18084997	ASAHI	0.96	0.00	8.21
chr?	207625027		0.23	0.00	0.21
chr22	207023927	RASI 10A	0.23	0.00	8.21
chr12	29499692	OVCH1	1.46	0.00	8.18
chr3	146606215	PLSCR5	1 79	2.97	8.18
chr16	70529498	SNORD111B	0.83	0.13	8.17
chr14	73851917	PTGR2	0.53	2.03	8.12
chr7	128241277	LEP	2.94	0.00	8.11
chr19	3178737	S1PR4	0.58	3.44	8.10
chr4	119304444	C4orf3	0.33	0.82	8.04
chr6	142147204	NMBR	0.97	0.13	8.00
chr11	90002507	TRIM53AP	0.92	2.21	8.00
chr9	135521437	LCN1	3.09	1.14	7.93
chr14	90455229	LINC00642	3.20	0.78	7.91
chr7	101238819	CLDN15	0.96	0.81	7.88
chr9	27297138	EQTN	0.43	0.72	7.88
chr10	68332957	PBLD	0.06	0.00	7.88
chr8	86069986	PSKH2	0.34	0.06	7.88
chr2	28870308	TRMT61B	1.70	1.25	7.88
chr1	12716114	AADACL3	1.29	0.96	7.87

chr5	160929410	ATP10B	0.59	3.30	7.87
chr19	15898119	CYP4F2	0.38	0.00	7.87
chr17	73828536	LINC00469	0.48	0.09	7.87
chr17	18644430	TBC1D28	0.93	2.36	7.87
chr13	27969367	CDX2	0.71	1.04	7.87
chr3	184138895	EIF2B5	0.07	0.00	7.85
chr11	110429936	FDX1	0.71	0.00	7.84
chr11	47395639	SPI1	1.39	0.00	7.84
chr10	72893555	OIT3	1.40	0.75	7.83
chr3	156817061	LINC00886	0.07	1.16	7.82
chr9	87148643	C9orf170	1.36	0.00	7.81
chr2	232539726	CHRNG	0.25	0.84	7.81
chr8	12129296	LOC392196	2.61	0.00	7.81
chr5	149732824	MIR378A	0.33	0.66	7.81
chr17	43125582	NBR2	1.02	0.00	7.81
chr11	104164298	PDGFD	0.28	0.00	7.81
chr6	42879615	RPL7L1	0.18	0.00	7.81
chr15	74614993	CLK3	0.34	1.24	7.79
chr17	4796143	PSMB6	0.18	0.64	7.79
chr8	104467074	DPY5	2.85	0.00	7.78
chr2	224401993		0.89	2.62	7.78
chr2	239943093	EBLN2	1.73	2.00	7.78
chr7	53035655		0.47	2.19	7.74
chr22	20086057	MIR1306	0.12	0.01	7.69
chr5	174751733	MIR4634	1.57	1 10	7.68
chr17	4969770	MIR6864	1.65	0.07	7.68
chr1	149886681	HIST2H2BE	0.07	0.00	7.67
chr17	18315279	SMCR8	1.02	0.00	7.67
chr15	40039201	SRP14	1.94	0.00	7.67
chr2	113072317	IL1F10	1.55	0.21	7.61
chr3	69013960	EOGT	1.10	1.08	7.57
chr2	222656354	FARSB	0.37	0.00	7.57
chr1	113206252	LOC643441	1.78	0.10	7.57
chr18	59899959	PMAIP1	0.30	1.19	7.57
chr5	54075582	MIR4459	1.20	0.00	7.56
chr1	158420865	OR10K2	0.35	0.00	7.56
chr1	206772493	IL10	1.33	0.06	7.55
chr20	38429803	SNORA71C	0.07	1.56	7.55
chr16	19456449	TMC5	1.66	0.07	7.55
chr10	102837532	CYP17A1	1.35	1.84	7.54
chr7	28979966	LOC100506497	1.18	0.03	7.54
chr9	92292592	SNORA84	1.00	0.00	7.51
chr5	39364552	C9	1.91	0.34	7.47
chr15	76062996	NRG4	0.39	2.09	7.46
chr1	15726212		3.49	3.13	7.44
chr4	120697664	SLC25A34 MCST2	0.51	0.89	7.44
chr21	139087004	MIR5602B	0.07	2.94	7.42
chr2	230327192	SP140I	0.70	0.00	7.42
chr17	15682878	TRIM16	0.87	0.26	7.42
chr8	96235633	UQCRB	2.26	0.00	7.42
chr4	5019469	CYTL1	2.22	0.07	7.41
chr4	138130684	LINC00616	0.08	0.08	7.41
chr10	102359272	GBF1	1.20	1.30	7.40
chr11	59443168	OR5A1	1.45	0.24	7.39
chr5	149960736	SLC26A2	0.28	0.00	7.38
chr8	10672636	C8orf74	3.37	2.09	7.36
chr3	109409989	LINC01205	0.19	1.02	7.35
chr11	59713844	OR10V1	2.27	0.00	7.35
chr20	4721853	PRND	3.17	0.20	7.34
chr19	10817495	MIR199A1	1.29	0.00	7.31
chr17	81309247	LINC00482	0.76	0.00	7.29
chr1	3873296	DFFB	0.52	0.00	7.28
chr15	98900610	IGF1R	1.52	0.00	7.28

chr11	66052344	SE3B2	0.25	0.00	7 28
chr8	17276395	VP\$374	1.87	0.00	7.20
chr7	5072059	RBAKON	0.79	0.60	7.20
chr6	2087066		0.73	0.04	7.20
chr14	101025563	MIR1107	1 78	0.00	7.23
chr17	17770528	SMCR5	0.07	4.25	7.23
chrf	6599700		1.00	4.25	7.22
chito	17272105		0.21	0.00	7.10
chr10	1/3/2195	PADIO	0.21	0.75	7.18
chi 12	00217310	DIDGL	1.00	2.15	7.13
Chr11	102317483	BIRU3	0.46	0.00	7.13
	234373700		0.13	0.00	7.13
	43171187	NBR1	1.20	1.45	7.13
chr1	31704166	COL16A1	0.37	0.00	7.12
chriu	114282512	VVVAZ	0.75	0.80	7.12
cnr8	85438826	CA3	2.55	0.73	7.11
chr15	52709816	FAM214A	0.95	1.02	7.11
chr1/	28861729	MIR4732	0.75	0.13	7.11
chr/	64794387	ZNF138	1.32	0.00	7.11
chr6	159805642	PNLDC1	0.22	0.00	7.10
chr13	102880098	METTL21EP	0.89	0.96	7.09
chr20	45705179	MIR3617	0.38	1.55	7.09
chr8	78724373	LOC101241902	1.19	0.00	7.09
chr22	20114750	MIR6816	0.21	0.00	7.09
chr12	102120138	NUP37	0.22	0.00	7.09
chr3	39406688	RPSA	0.71	0.91	7.09
chr8	23854806	STC1	1.51	0.00	7.08
chr3	105366712	ALCAM	0.11	0.00	7.06
chr1	114758049	CSDE1	0.06	2.98	7.06
chr19	14529542	MIR639	0.52	0.00	7.06
chr9	102519636	LINC00587	0.10	1.56	7.03
chr9	122477925	OR1J1	1.18	1.27	7.02
chr10	105086568	SORCS3	0.09	1.10	7.00
chr3	169911571	SAMD7	0.59	0.00	7.00
chr13	46797680	ESD	0.10	0.07	6.97
chr22	16592809	CCT8L2	0.10	0.62	6.94
chr20	18379048	LINC00851	0.88	0.62	6.94
chr1	103108579	COL11A1	0.32	0.00	6.91
chr16	2033664	SLC9A3R2	0.25	0.19	6.91
chr11	16476387	SOX6	0.16	0.51	6.90
chr10	110871794	PDCD4	2.52	0.00	6.89
chr13	70107212	ATXN8OS	1.13	1.49	6.88
chr7	111091005	LRRN3	0.67	0.91	6.88
chr6	46687874	TDRD6	1.12	0.00	6.86
chr1	145707506	PDZK1	2.71	0.88	6.84
chr22	20917425	CRKL	0.09	0.00	6.83
chr14	104699406	INF2	1.04	1.25	6.83
chr20	57321590	MIR4325	1.48	0.73	6.82
chr17	2329209	SNORD91B	1.28	2.55	6.81
chr22	20249210	MIR1286	1.87	0.40	6.80
chr16	67936876	PSMB10	0.05	0.14	6.80
chr21	42219897	ABCG1	0.01	0.00	6.80
chr3	8733799	CAV3	0.60	0.66	6.80
chr16	86578508	FOXL1	2.26	3.80	6.80
chr5	170199140	LINC01187	0.66	0.00	6.80
chr6	89828020	MDN1	0.15	1.08	6.80
chr1	157700984	FCRL3	0.95	0.00	6.79
chr13	38349770	UFM1	0.49	0.00	6.77
chr12	124915546	MIR5188	0.55	1.97	6.75
chr5	140867512	PCDHA11	0.96	0.00	6.73
chr14	94640724	SERPINA13P	0.73	2.72	6.73
chr1	145910188	ITGA10	2.33	1.10	6.73
chr3	155745722	PLCH1	3.06	1.34	6.73
chr16	81077266	C16orf46	2.08	0.00	6.72
chr11	128587592	ETS1	0.00	0.07	6.70
chr6	40378423	TDRG1	0.74	0.50	6.70

chr7	29483815	CHN2	2.64	0.64	6.69
chr7	100642779	TFR2	1.45	2.51	6.68
chr16	5066144	C16orf89	0.54	0.64	6.66
chr6	46746928	ANKRD66	1.17	2.32	6.65
chr16	68236232	ESRP2	2.37	0.77	6.65
chr10	5666594	ASB13	1.13	0.00	6.63
chr3	138947139	FOXL2	3.59	0.00	6.63
chr7	30594892	GARS	0.29	0.00	6.63
chr20	32052187	HCK	0.00	0.00	6.63
chr1	1013466	ISG15	0.21	0.00	6.63
chr1	175023454	MRPS14	0.98	1.37	6.63
chr13	31739552	RXFP2	2.11	0.61	6.62
chr2	14400957	LINC00276	2.32	1.87	6.61
chr12	7670598	APOBEC1	1.13	0.90	6.61
chr17	48579946	MIR10A	1.81	0.82	6.61
chr15	74812852	LMAN1L	2.36	0.81	6.58
chr6	89595925	ANKRD6	1.68	0.88	6.56
chr5	54744257	LOC102467080	0.78	1.67	6.56
chr3	75630762	MIR1324	0.00	3.62	6.56
chr14	64215953	SYNE2	0.68	0.72	6.56
chr4	172697628	GALNTL6	0.24	0.00	6.55
chr11	62299063	SCGB1D4	1.61	0.00	6.55
chr15	76336723	ISL2	1.35	0.91	6.51
chr1	3458701	ARHGEF16	0.63	0.00	6.49
chr8	65634216	ARMC1	0.16	0.99	6.49
chr2	180007358	CWC22	1.08	0.00	6.49
chr3	25664938	MIR4442	0.67	2.62	6.49
chr5	41510627	PLCXD3	0.08	1.16	6.49
chr13	19561573	IPIE2	2.10	1.36	6.48
chr5	40841307	CARD6	1.54	1.97	6.45
chr6	49463327	MUT	2.67	5.01	6.42
chr15	52295797	MYO5C	0.82	0.00	6.41
chi9	09012224	MIR3133	0.70	1.14	6.40 6.20
chr17	30337300		0.18	0.76	0.39
chr?	32992030	MPDI 10	0.62	0.00	0.39
chr2	157122001		0.02	0.00	6.37
chr14	70564741		0.10	0.00	6.36
chr20	18/6718/		0.12	0.04	6.33
chr1	100178272	LRRC39	2.18	0.00	6.32
chr7	102293102	MIR4285	1 45	0.04	6.31
chr4	164977665	TRIM61	3 22	1.02	6.31
chr6	100881371	ASCC3	0.35	0.00	6.30
chr1	161707228	FCRLA	2.57	0.65	6.30
chr19	37507167	ZNF793	1.36	0.00	6.30
chr11	61362298	CYB561A3	0.55	0.00	6.30
chr12	57547330	DCTN2	0.96	1.65	6.30
chr7	27165529	HOXA9	0.47	2.53	6.30
chr19	55334042	TMEM150B	1.96	0.00	6.30
chr17	4264025	ANKFY1	1.71	1.91	6.28
chr1	15976131	ZBTB17	2.13	0.05	6.28
chr22	24181475	SUSD2	1.66	0.34	6.28
chr13	19181851	TUBA3C	0.11	0.89	6.28
chr7	130543452	COPG2IT1	0.28	1.10	6.26
chr16	66918983	CDH16	1.33	0.99	6.26
chr16	86196180	LINC01082	0.27	0.00	6.26
chr1	86156986	COL24A1	0.93	3.07	6.26
chr17	31321748	EVI2A	0.30	0.73	6.26
chr2	186600204	ITGAV	1.23	0.19	6.26
chr4	146176008	LSM6	0.15	0.97	6.26
chr22	30425622	MTFP1	0.99	1.02	6.26
chr16	19522144	GDE1	0.73	0.99	6.25
chr3	151329548	P2RY13	0.99	1.51	6.24
chr5	34043265	C1QTNF3	2.25	2.23	6.23
chr8	87874067	DCAF4L2	0.60	0.00	6.21

chr19	39498916	DLL3	0.43	0.00	6.20
chr6	3094001	RIPK1	0.88	0.00	6.20
chr6	24495162	GPLD1	0.06	0.00	6.20
chr8	98944328	STK3	1.79	0.15	6.19
chr1	230714589	AGT	2.96	1.05	6.17
chr1	171338895	TOP1P1	4.13	0.00	6.15
chr4	176002690	GPM6A	1.57	1.75	6.15
chr1	217137756	ESRRG	0.45	1.51	6.13
chr16	56904263	MIR6863	1.65	0.92	6.12
chr19	42740515	PSG3	1.70	1.96	6.10
chr1	47190098	PDZK1IP1	0.46	0.85	6.10
chr14	71398336	SNORD56B	0.09	1.60	6.10
chr7	29990288	SCRN1	0.59	0.55	6.08
chr2	219218989	ABCB6	0.39	0.00	6.08
chr7	1056103	GPR146	0.19	0.76	6.06
chr12	56362798	APOF	1.19	0.71	6.06
chr11	90555856	MIR4490	1.05	2.23	6.05
chr1	158831377	MNDA	0.12	0.73	6.04
chr12	57430998	R3HDM2	0.30	0.23	6.04
chr6	44342659	SPATS1	0.79	0.76	6.04
chr7	149776041	SSPO	0.74	1.19	6.04
chr16	29790967	KIF22	1.73	2.46	6.03
chr1	233624151	MIR4427	1.03	2.16	6.03
chr5	27472291	LINC01021	0.42	0.71	6.01

Date	Clinical medication	Increase/Decrease Dosage	Auxiliary Survival
Hospital Day 2	Use Doxycycline Use Interferon atomization Use Methylprednisolone (80mg) Use Thymopentin + Immunoglobulin (10g) Use Meropenem + Linezolid Use Abidor + Kridge Use Xuebijing + Ulinastatin Use Norepinephrine Use Norepinephrine Use Human albumin (10g)		Invasive Ventilator (SIMV mode VT 450 mL PS 15 cmH2O PEEP 12 cmH2O FiO2 70% Respiration ratio 1:1.5 Frequency 20 bpm.) Right subclavian vein puncture ca theterization Right femoral vein catheterization
Hospital Day 3	Stop Linezolid Stop Kridge Use Midazolam Use Morphine + Fentanyl Use Amiodarone (Intravenous injection) Use Enteral nutrition (1000 mL)	Maintain CRRT 12 hr. Maintain Meropenem Maintain Thymopentin	Invasive Ventilator (Decrease PS from 15 to 12 cm H2O Decrease FiO2 from 70%to 50 %)
Hospital Day 4	Stop Amiodarone Use Simendan	Maintain CRRT 12 hr. Maintain Meropenem Maintain Thymopentin Maintain Midazolam + Fentanyl Maintain Enteral nutrition Decrease Morphine to 1 mg/h	Invasive Ventilator (Increase VT from 450 to 500 mL Increase PS from 12 to 15 cm H2O Increase PEEP from 12 t16 cm H2O Decrease Frequency from20 to 18 bpm.
Hospital Day 5	Stop Morphine	Maintain CRRT 12 hr. Maintain Meropenem Maintain Thymopentin Maintain Midazolam + Fentanyl Increase Enteral nutrition from 1000 to 1500 mL	Intermittent non-invasive ventilato r (ST mode FiO2 60% IPAP 15 cmH2O EPAP 11 cmH2O Frequency 20 bpm.)
Hospital Day 6	Use Human albumin (40g, 10 mg/ h)	Maintain CRRT 12 hr. Maintain Meropenem Maintain Thymopentin Maintain Midazolam + Fentanyl	Invasive Ventilator (Increase VT from 500 to 550 mL Increase PS from 12 to 15 cm H2O Decrease PEEP from 16 to 11 cmH2O Increase FiO2 from 50% to 70 % Increase Frequency from18 to 24 bpm.
Hospital Day 7	Stop Meropenem Use Caspofungin + Tezhixing + Daltotropin Use Amiodarone (oral)	Maintain CRRT 8 hr. Maintain Thymopentin Maintain Midazolam + Fentanyl	
Hospital Day 8	Stop Xuebijing Stop Mucosolvan	Maintain Amiodarone (oral) Maintain CRRT 8 hr. Maintain Caspofungin + piperacillin + tazobactam + Daltotropin Maintain Abidor Maintain Thymopentin Maintain Thymopentin Maintain Human albumin (at least 30g, 10 mg/h) Decrease Enteral nutrition from 1500 to 1000 mL	Invasive Ventilator (Increase VT from 550 to 650 mL Decrease PEEP from 11 to 10 cmH2O Increase FiO2 from 70% to 100 %
Hospital Day 9	Use Remifentanil (0.04 ug/Kg-min) Stop CRRT Stop Caspofungin (1 day)	Maintain Midazolam (3 ug/Kg-min) Maintain piperacillin + tazobactam	Invasive Ventilator (Decrease FiO2 from 100% to 9 0%)

Table S5. Clinical medication records of the severe case.

	Use Saline (100 mL,	+ Daltotropin	
		Maintain Amiodarone (oral)	
	total <= 2500 mL)	Maintain Abidor	
		Maintain Thymopentin	
		Maintain Fentanyi Maintain Midazolam	
		Maintain Midazolam	
	Use Ceylon Use Amiodarone	(3 ug/Kg-min) Maintain Remifentanil	Invasive Ventilator (Decrease VT from 650 to 600 mL
		(0.04 ug/Kg-min)	Increase PEEP from 11 to 12 c
Hospital Day 10	(Intravenous Injection, 0.15g) Remove subclavian and	+ piperacillin	Decrease EiO2 from 90%to 65
	Remove Subclavian and	+ tazobactam	%
	femoral vein catheters	+ Daltotropin)
	Use Rivaroxaban	Maintain Amiodarone (oral)	Left subclavian vein puncture cath
		Maintain Abidor	eterization
		Maintain Fentanyl	
		Maintain Midazolam	
	Use Norepinephrine	(3 ug/Kg-min)	
		Maintain Remifentanil	Invasive Ventilator (
Hospital Day 11	(0.4 ug/Kg-min) Stop Tozbixing	(0.04 ug/Kg min)	Increase FiO2 from 65% to 70
Hospital Day 11	Stop Daltotropin	Maintain Caspofungin	%
	Use Supran + Tigecycline	Maintain Amiodarone (oral))
	Stop Rivaroxaban (10mg)	Maintain Abidor	
		Maintain Thymopentin	
		Maintain Fentanyi Maintain Midazolam	
		Manan	
		(3 ug/Kg-min) Maintain Remifentanil	
	Use Furosemide diuretic	(0.04 ug/Kg-min) Decrease Norepinephrine	Invasive Ventilator (Decrease FiO2 from 70%to 45
Hospital Day 12	+ calcium gluconate	(frame 0.4 to 0.2 us//(a.main)	%
	Use inmetazidine tablets	(from 0.4 to 0.3 ug/Kg-min) Maintain Supran) CRRT 6 br
	+ glycyrrhizin tablets	+ Tigecvcline	Left femoral vein catheterization
	3., -,	+ Caspofungin	
		Maintain Amiodarone (oral)	
		Maintain Abidor	
		Maintain Fentanyl	
		Decrease Amiodarone	
		to 0.2g qd.	Invasive Ventilator (
Hospital Day 13	Use Bisorol 2.5mg qd.	Increase Albumin	%
		Decrease Remifentanil)
		(Trom 0.04 to 0.01 ug/Kg -min)	
		(3 ug/Kg-min)	
		Maintain Remifentanil	
		$(0.01 \mu g/K_{g}min)$	
		Maintain Noreninenhrine	
		Reception in the second	Invasive Ventilator (
Hospital Day 14		(0.3 ug/Kg-min)	111Crease FIO2 from 55% to 60
		Maintain Supran)
		+ rigecycline + Caspofungin	
		Maintain Amiodarone (oral)	
		+ Trimetazidine	
		Maintain CRRT	
		Maintain Enymopentin Maintain Fentanyl	
		Maintain Midazolam	Blood transfusion (
			02/16 01:45-03:00
		(3 ug/Kg-min)	A+ 400 mL
Hospital Day 15	Stop Supran	Increase Remifentanil	02/16 20:45-23:00
ποομιαί μαγ το	Stop CRRT	(from 0.01 to 0.04 µa/Ka -min)	02/16 23:25 to
		Maintain Supran	02/17 04:00
		+ Tigecycline	Suspended red blood cells 4U
		+ Caspofungin)

		Maintain Thymopentin Maintain Fentanyl	Invasive Ventilator (Decrease PEEP from 12 to 10 cmH2O
Hospital Day 16	Stop Anticoagulant related medicine Stop CRRT Use Albumin (20g) Use Somatostatin Use Omeprazole Use Cavin + Vitamins	Maintain Midazolam (3 ug/Kg-min) Maintain Remifentanil (0.04 ug/Kg-min) Maintain Tezhixing + Tigecycline + Caspofungin) Invasive Ventilator (Decrease FiO2 from 60%to 50 %)
Hospital Day 17	Remove femoral vein catheters Stop CRRT	Maintain Cavin (800 mL) + Enteral nutrition (500 mL) Maintain Tezhixing + Tigecycline + Caspofungin	Invasive Ventilator (Decrease PEEP from 10 to 8 c mH2O)
Hospital Day 18	Use Propofol (15ug/Kg-min) Stop Somatostatin Stop Omeprazole Use Pantoprazole (oral) Stop Amiodarone Use Bisorol 2.5mg qd. Stop Cavin Stop Tezhixing Use Ceftazidime avitastat Use Albumin (30g) Use Chloroquine (oral)	Decrease Remifentanil (from 0.04 to 0.02 ug/Kg -min) Maintain Tezhixing + Tigecycline + Caspofungin Increase Enteral nutrition from 500 to 1000 mL	Invasive Ventilator(Increase PEEP from 8 to9 cmH 2O)
Hospital Day 19	Use Rivaroxaban Stop Caspofungin Use Voricone Stop Chloroquine phosphate Use Albumin (20g, 10mL/h)	Maintain Tigecycline + Ceftazidime avitastat	Invasive Ventilator (Decrease FiO2 from 60%to 45 % Decrease VT from 600 to 500 mL Decrease PEEP from 9 to 8 c mH2O Decrease Frequency from24 to 19 bpm
Hospital Day 20	Use Linezamide + Caspofungin + Daltotropin Use Somatostatin Use Omeprazole Stop Enteral nutrition Use CRRT 6 hr. Stop Traditional Chinese medicine Use Acetylcysteine nebulization	Decrease Propofol to 20 ug/Kg-min Midazolam Maintain Midazolam (3 ug/Kg-min) Remifentanil (0.04 ug/Kg-min) Remifentanil (0.04 ug/Kg-min) Ceftazidime avitastat Increase Ambroxol to 240mg ql2h Maintain Maintain	Invasive Ventilator (Decrease FiO2 from 45%to 40 % Decrease VT from 500 to 450 mL Decrease PS from 15 to12 cm H2O Decrease PEEP from 8 to 4 c mH2O Increase Frequency from19 to 20 bpm
Hospital Day 21	Use Chloroquine (0.4g) Stop Daltotropin Use Vancomycin (0.5g q8h) Use Recovery patient's plasma Use Albumin (20g, 10mL/h) Use CRRT	Maintain Linezamide + Caspofungin + Ceftazidime avitastat	Invasive Ventilator (Increase FiO2 from 40% to 70 % Decrease VT from 450 to 440 mL Increase Frequency from20 to 35 bpm)

Table S6. Clinical medication records of the mild case.

Date	Clinical medication	Increase/Decrease Dosage	Auxiliary Survival
Hospital Day 1	Use Interferon atomization Use Lopinavilitonavi Use Moxifloxacin Use Abidor + Kreiz		
Hospital Day 1		Maintain Interferon atomization + Lopinavilitonavi Maintain Moxifloxacin Maintain Abidor + Kreiz	
Hospital Day 11		Scheme as before	
Hospital Day 17	Stop Kreiz	Scheme as before	
Hospital Day 22	Stop Chloroquine phosphate		

Sample	Species	Coverate rate	Depth	No. of uniquely mapped reads	Type of microbimes
	Stenotrophomonas maltophilia	82.06	6.51	89132	Bacteria
	Pseudomonas sp. TKP	8.31	1.08	4129	Bacteria
	Pseudomonas fluorescens	9.17	1.11	1088	Bacteria
	Cuti Bacteriaterium acnes	28.39	1.21	7045	Bacteria
Control1	Elizabethkingia miricola	8.32	1.10	1113	Bacteria
	Elizabethkingia anophelis	5.38	1.09	425	Bacteria
	Staphylococcus capitis	4.30	1.04	876	Bacteria
	Staphylococcus haemolyticus	3.45	1.03	851	Bacteria
	Variovorax paradoxus	6.10	1.17	639	Bacteria
	Stenotrophomonas maltophilia	78.30	4.27	56407	Bacteria
	Pseudomonas sp. TKP	9.79	1.08	4937	Bacteria
Control2	Pseudomonas fluorescens	12.09	1.14	1430	Bacteria
Control2	Cuti Bacteriaterium acnes	9.07	1.06	2014	Bacteria
	Elizabethkingia miricola	4.45	1.06	608	Bacteria
	Variovorax paradoxus	6.02	1.15	628	Bacteria
	Chryseo Bacteriaterium indologenes	46.02	1.49	32259	Bacteria
Mild1	Cuti Bacteriaterium acnes	7.48	1.05	1661	Bacteria
	Methylophilus methylotrophus	6.43	1.05	1437	Bacteria
Mildo	Chryseo Bacteriaterium indologenes	42.17	1.42	28162	Bacteria
IVIIIQZ	Methylophilus methylotrophus	5.19	1.03	1148	Bacteria
Mildo	Chryseo Bacteriaterium indologenes	35.68	1.33	22399	Bacteria
IVIII03	Methylophilus methylotrophus	4.27	1.03	940	Bacteria
Milda	Chryseo Bacteriaterium indologenes	47.46	1.54	34338	Bacteria
IVIII04	Methylophilus methylotrophus	7.29	1.05	1641	Bacteria
Severe3	Chryseo Bacteriaterium indologenes	4.99	1.03	2326	Bacteria
Severe4	Chryseo Bacteriaterium indologenes	5.50	1.04	2658	Bacteria
Severe3	Human betaherpesvirus 5	10.60	1.10	249	Virus
Covere 4	Human betaherpesvirus 5	74.81	2.18	3593	Virus
Severe4	Human alphaherpesvirus 1	3.54	1.03	52	Virus

Table S7. Microbiomes infected in plasma of cases and controls¹.

1. Microbiomes with no. of uniquely mapped reads above 10 and coverage rate (coverage of viruses divided by coverage of autosomes) above 3 were included.

Table S8. Results on pathway analysis of the 6 clusters from coverage around 200bp-TSSs from cfDNA of one mild case, one severe case, and two controls¹.

Cluster	Pathway	Found entities	Total entities	Ratio	p value	FDR	Found reaction	Total reaction	Ratio
	Digestion of dietary lipid	1	7	6.14E-04	1.16E-02	1.54E-01	3	8	6.47E-04
	Digestion	1	22	1.93E-03	3.61E-02	1.54E-01	3	24	1.94E-03
	Digestion and absorption	1	27	2.37E-03	4.41E-02	1.54E-01	3	30	2.42E-03
	Tat-mediated HIV elongation arrest	1	35	3.07E-03	5.68E-02	1.54E-01	3	3	2.42E-04
	Pausing and recovery of Tat-mediated HIV elongation	1	35	3.07E-03	5.68E-02	1.54E-01	2	2	1.62E-04
	HIV elongation arrest and recovery	1	36	3.16E-03	5.84E-02	1.54E-01	3	3	2.42E-04
	Pausing and recovery of HIV elongation	1	36	3.16E-03	5.84E-02	1.54E-01	2	2	1.62E-04
	Retinoid metabolism and transport	1	44	3.86E-03	7.09E-02	1.54E-01	1	26	2.10E-03
	Tat-mediated elongation of the HIV-1 transcript	1	47	4.12E-03	7.55E-02	1.54E-01	4	8	6.47E-04
	HIV Transcription Elongation	1	47	4.12E-03	7.55E-02	1.54E-01	4	15	1.21E-03
	Formation of HIV-1 elongation complex containing HIV-1 Tat	1	47	4.12E-03	7.55E-02	1.54E-01	1	5	4.04E-04
	Formation of HIV elongation complex in the absence of HIV Tat	1	48	4.21E-03	7.71E-02	1.54E-01	1	2	1.62E-04
	Metabolism of fat-soluble vitamins	1	48	4.21E-03	7.71E-02	1.54E-01	1	32	2.59E-03
	RNA Polymerase II Transcription Elongation	1	61	5.35E-03	9.70E-02	1.54E-01	4	8	6.47E-04
	Formation of RNA Pol II elongation complex	1	61	5.35E-03	9.70E-02	1.54E-01	1	2	1.62E-04
	TP53 Regulates Transcription of DNA Repair Genes	1	65	5.70E-03	1.03E-01	1.54E-01	3	17	1.37E-03
	Transcription of the HIV genome	1	74	6.49E-03	1.16E-01	1.54E-01	15	47	3.80E-03
	RNA Polymerase II Pre-transcription Events	1	84	7.37E-03	1.31E-01	1.54E-01	7	17	1.37E-03
	Visual phototransduction	1	100	8.78E-03	1.54E-01	1.54E-01	1	82	6.63E-03
	Late Phase of HIV Life Cycle	1	152	1.33E-02	2.25E-01	2.25E-01	15	76	6.14E-03
	HIV Life Cycle	1	165	1.45E-02	2.42E-01	2.42E-01	15	114	9.21E-03
	Metabolism of vitamins and cofactors	1	192	1.69E-02	2.76E-01	2.76E-01	1	185	1.50E-02
	Ub-specific processing proteases	1	205	1.80E-02	2.92E-01	2.92E-01	2	40	3.23E-03
	HIV Infection	1	248	2.18E-02	3.42E-01	3.42E-01	15	157	1.27E-02
	Deubiquitination	1	282	2.47E-02	3.79E-01	3.79E-01	2	77	6.22E-03
	Transcriptional Regulation by TP53	1	367	3.22E-02	4.63E-01	4.63E-01	3	258	2.09E-02
	G alpha (i) signalling events	1	408	3.58E-02	5.00E-01	5.00E-01	1	155	1.25E-02
	Infectious disease	1	1040	9.13E-02	8.38E-01	8.38E-01	15	485	3.92E-02
	GPCR downstream signalling	1	1154	1.01E-01	8.69E-01	8.69E-01	1	248	2.00E-02
	Signaling by GPCR	1	1226	1.08E-01	8.85E-01	8.85E-01	1	427	3.45E-02
	Generic Transcription Pathway	1	1257	1.10E-01	8.91E-01	8.91E-01	3	823	6.65E-02
	RNA Polymerase II Transcription	1	1379	1.21E-01	9.14E-01	9.14E-01	14	884	7.15E-02
	Post-translational protein modification	1	1417	1.24E-01	9.20E-01	9.20E-01	2	513	4.15E-02
	Gene expression (Transcription)	1	1521	1.33E-01	9.34E-01	9.34E-01	14	994	8.03E-02
	Disease	1	1735	1.52E-01	9.57E-01	9.57E-01	15	1201	9.71E-02
	Metabolism of proteins	1	2012	1.77E-01	9.75E-01	9.75E-01	2	874	7.06E-02
	Metabolism	1	2142	1.88E-01	9.81E-01	9.81E-01	1	2001	1.62E-01
Cluster2	Signal Transduction	1	2829	2.48E-01	9.96E-01	9.96E-01	1	2333	1.89E-01
	Transport of nucleosides and free purine and pyrimidine bases across the	2	12	1.05E-03	1.53E-03	2.00E-01	2	16	1.29E-03
Cluster3	Transport of vitamins, nucleosides, and related molecules	2	44	3.86E-03	1.87E-02	3.16E-01	2	39	3.15E-03

PKA-mediated phosphorylation of key metabolic factors	1	5	4.39E-04	2.34E-02	3.16E-01	3	5	4.04E-04
HDL assembly	1	8	7.02E-04	3.72E-02	3.16E-01	1	9	7.27E-04
ROBO receptors bind AKAP5	1	9	7.90E-04	4.18E-02	3.16E-01	1	7	5.66E-04
GP1b-IX-V activation signalling	1	12	1.05E-03	5.53E-02	3.16E-01	5	7	5.66E-04
CREB1 phosphorylation through the activation of Adenylate Cyclase	1	12	1.05E-03	5.53E-02	3.16E-01	4	6	4.85E-04
Regulation of glycolysis by fructose 2,6-bisphosphate metabolism	1	12	1.05E-03	5.53E-02	3.16E-01	1	4	3.23E-04
p130Cas linkage to MAPK signaling for integrins	1	15	1.32E-03	6.87E-02	3.16E-01	3	3	2.42E-04
GRB2:SOS provides linkage to MAPK signaling for Integrins	1	15	1.32E-03	6.87E-02	3.16E-01	2	2	1.62E-04
Platelet Adhesion to exposed collagen	1	15	1.32E-03	6.87E-02	3.16E-01	2	6	4.85E-04
Rap1 signalling	1	16	1.40E-03	7.31E-02	3.16E-01	1	7	5.66E-04
Ub-specific processing proteases	3	205	1.80E-02	7.35E-02	3.16E-01	2	40	3.23E-03
Serotonin Neurotransmitter Release	1	18	1.58E-03	8.18E-02	3.16E-01	2	3	2.42E-04
PKA activation	1	18	1.58E-03	8.18E-02	3.16E-01	2	4	3.23E-04
PKA activation in glucagon signalling	1	18	1.58E-03	8.18E-02	3.16E-01	1	2	1.62E-04
Plasma lipoprotein assembly	1	19	1.67E-03	8.62E-02	3.16E-01	1	19	1.54E-03
PKA-mediated phosphorylation of CREB	1	20	1.76E-03	9.05E-02	3.16E-01	4	7	5.66E-04
CD209 (DC-SIGN) signaling	1	22	1.93E-03	9.91E-02	3.16E-01	1	11	8.89E-04
Dopamine Neurotransmitter Release	1	23	2.02E-03	1.03E-01	3.16E-01	2	4	3.23E-04
Intrinsic Pathway of Fibrin Clot	1	23	2.02E-03	1.03E-01	3.16E-01	2	20	1.62E-03
DARPP-32 events	1	24	2.11E-03	1.08E-01	3.16E-01	4	12	9.70E-04
Triglyceride catabolism	1	24	2.11E-03	1.08E-01	3.16E-01	2	17	1.37E-03
Integrin signaling	1	28	2.46E-03	1.24E-01	3.16E-01	15	24	1.94E-03
Glucagon signaling in metabolic	1	34	2.98E-03	1.49E-01	3.16E-01	1	6	4.85E-04
Deubiquitination	3	282	2.47E-02	1.49E-01	3.16E-01	2	77	6.22E-03
Calmodulin induced events	1	35	3.07E-03	1.53E-01	3.16E-01	4	23	1.86E-03
CaM pathway	1	35	3.07E-03	1.53E-01	3.16E-01	4	24	1.94E-03
Signaling by high-kinase activity BRAF mutants	1	37	3.25E-03	1.61E-01	3.16E-01	4	6	4.85E-04
Ca-dependent events	1	37	3.25E-03	1.61E-01	3.16E-01	4	27	2.18E-03
Triglyceride metabolism	1	38	3.34E-03	1.65E-01	3.16E-01	2	24	1.94E-03
Formation of Fibrin Clot (Clotting Cascade)	1	39	3.42E-03	1.69E-01	3.16E-01	2	57	4.61E-03
Platelet Aggregation (Plug Formation)	1	40	3.51E-03	1.73E-01	3.16E-01	16	27	2.18E-03
MAP2K and MAPK activation	1	41	3.60E-03	1.77E-01	3.16E-01	4	8	6.47E-04
DAG and IP3 signaling	1	41	3.60E-03	1.77E-01	3.16E-01	4	28	2.26E-03
RET signaling	1	41	3.60E-03	1.77E-01	3.16E-01	1	24	1.94E-03
Glucagon-like Peptide-1 (GLP1) regulates insulin secretion	1	43	3.77E-03	1.85E-01	3.16E-01	3	11	8.89E-04
Vasopressin regulates renal water homeostasis via Aquaporins	1	44	3.86E-03	1.89E-01	3.16E-01	3	15	1.21E-03
Signaling downstream of RAS mutants	1	47	4.12E-03	2.00E-01	3.16E-01	4	7	5.66E-04
Signaling by moderate kinase activity BRAF mutants	1	47	4.12E-03	2.00E-01	3.16E-01	4	7	5.66E-04
Paradoxical activation of RAF signaling by kinase inactive BRAF	1	47	4.12E-03	2.00E-01	3.16E-01	4	7	5.66E-04
Signaling by RAS mutants	1	47	4.12E-03	2.00E-01	3.16E-01	4	8	6.47E-04
Neurotransmitter release cycle	1	51	4.48E-03	2.15E-01	3.16E-01	4	32	2.59E-03
PLC beta mediated events	1	53	4.65E-03	2.23E-01	3.16E-01	4	32	2.59E-03
Aquaporin-mediated transport	1	53	4.65E-03	2.23E-01	3.16E-01	3	25	2.02E-03
G-protein mediated events	1	54	4.74E-03	2.26E-01	3.16E-01	4	41	3.31E-03

Ion homeostasis	1	54	4.74E-03	2.26E-01	3.16E-01	1	15	1.21E-03
NRAGE signals death through JNK	1	59	5.18E-03	2.44E-01	3.16E-01	1	7	5.66E-04
GLI3 is processed to GLI3R by the	1	60	5.27E-03	2.48E-01	3.16E-01	1	5	4.04E-04
Degradation of GLI2 by the	1	60	5.27E-03	2.48E-01	3.16E-01	1	5	4.04E-04
Degradation of GLI1 by the	1	60	5.27E-03	2.48E-01	3.16E-01	1	6	4.85E-04
Signaling by BRAF and RAF fusions	1	66	5.79E-03	2.69E-01	3.16E-01	4	5	4.04E-04
Plasma lipoprotein assembly, remodeling, and clearance	1	72	6.32E-03	2.90E-01	3.16E-01	1	83	6.71E-03
Oncogenic MAPK signaling	1	74	6.49E-03	2.97E-01	3.16E-01	20	34	2.75E-03
Cell death signalling via NRAGE, NRIF and NADE	1	76	6.67E-03	3.03E-01	3.16E-01	1	17	1.37E-03
Glycolysis	1	78	6.85E-03	3.10E-01	3.16E-01	1	24	1.94E-03
Regulation of insulin secretion	1	79	6.93E-03	3.13E-01	3.16E-01	4	34	2.75E-03
G alpha (12/13) signalling events	1	80	7.02E-03	3.16E-01	3.16E-01	1	14	1.13E-03
Post NMDA receptor activation events	1	84	7.37E-03	3.29E-01	3.29E-01	4	39	3.15E-03
Integrin cell surface interactions	1	85	7.46E-03	3.33E-01	3.33E-01	2	54	4.36E-03
SLC-mediated transmembrane	2	251	2.20E-02	3.34E-01	3.34E-01	2	190	1.54E-02
MAPK6/MAPK4 signaling	1	89	7.81E-03	3.45E-01	3.45E-01	1	40	3.23E-03
Opioid Signalling	1	90	7.90E-03	3.48E-01	3.48E-01	6	59	4.77E-03
Activation of NMDA receptors and	1	97	8.51E-03	3.70E-01	3.70E-01	4	71	5.74E-03
Transmission across Chemical	2	273	2.40E-02	3.72E-01	3.72E-01	8	156	1.26E-02
Glucose metabolism	1	98	8.60E-03	3.73E-01	3.73E-01	1	49	3.96E-03
VEGFA-VEGFR2 Pathway	1	98	8.60E-03	3.73E-01	3.73E-01	1	77	6.22E-03
p75 NTR receptor-mediated signalling	1	99	8.69E-03	3.76E-01	3.76E-01	1	50	4.04E-03
Stimuli-sensing channels	1	107	9.39E-03	3.99E-01	3.99E-01	1	26	2.10E-03
Signaling by VEGF	1	108	9.48E-03	4.02E-01	4.02E-01	1	84	6.79E-03
Integration of energy metabolism	1	109	9.57E-03	4.05E-01	4.05E-01	8	62	5.01E-03
Hedgehog 'off' state	1	114	1.00E-02	4.19E-01	4.19E-01	4	32	2.59E-03
MAPK family signaling cascades	2	306	2.69E-02	4.27E-01	4.27E-01	5	86	6.95E-03
FCGR3A-mediated IL10 synthesis	1	128	1.12E-02	4.57E-01	4.57E-01	4	20	1.62E-03
Platelet degranulation	1	128	1.12E-02	4.57E-01	4.57E-01	1	11	8.89E-04
Transport of small molecules	4	731	6.42E-02	4.59E-01	4.59E-01	7	436	3.52E-02
Response to elevated platelet cytosolic	1	133	1.17E-02	4.70E-01	4.70E-01	1	14	1.13E-03
ADORA2B mediated anti-inflammatory	1	136	1.19E-02	4.77E-01	4.77E-01	4	12	9.70E-04
Cardiac conduction	1	138	1.21E-02	4.82E-01	4.82E-01	1	26	2.10E-03
Rho GTPase cycle	1	141	1.24E-02	4.90E-01	4.90E-01	1	5	4.04E-04
Death Receptor Signalling	1	147	1.29E-02	5.04E-01	5.04E-01	1	90	7.27E-03
Signaling by Hedgehog	1	150	1.32E-02	5.11E-01	5.11E-01	4	82	6.63E-03
Factors involved in megakaryocyte	1	160	1.40E-02	5.34E-01	5.34E-01	1	43	3.48E-03
development and platelet production	1	17/	1 53E-02	5.64E-01	5.64E-01	1	68	5 50E-03
lon channel transport	1	184	1.55E-02	5.85E-01	5.85E-01	1	41	3.31E-03
Neuronal System	2	419	3.68E-02	5.95E-01	5.00E-01	8	209	1.69E-02
	<u>د</u> ۱	207	1 825-02	6.28=-01	6 28E-01	1	203	3 31 -02
Neurotransmitter receptors and	1	201	1 835 02	6 30E 01	6 30 - 01	1	100	8 81E 02
postsynaptic signal transmission	1	200	1.03E-02	0.30E-01	0.302-01	4	109	0.012-03
Signaling by KOBO receptors	1	218	1.91E-02	o.48E-01	0.48⊑-01	1	59	4.776-03
survival	1	259	2.27E-02	7.11E-01	7.11E-01	4	40	3.23E-03

	Anti-inflammatory response favouring Leishmania parasite infection	1	259	2.27E-02	7.11E-01	7.11E-01	4	40	3.23E-03
	RAF/MAP kinase cascade	1	260	2.28E-02	7.12E-01	7.12E-01	4	39	3.15E-03
	Platelet activation, signaling and	1	265	2.33E-02	7.19E-01	7.19E-01	22	115	9.30E-03
	MAPK1/MAPK3 signaling	1	267	2.34E-02	7.22E-01	7.22E-01	4	46	3.72E-03
	FLT3 Signaling	1	278	2.44E-02	7.37E-01	7.37E-01	4	61	4.93E-03
	Metabolism of carbohydrates	1	300	2.63E-02	7.63E-01	7.63E-01	1	236	1.91E-02
	Extracellular matrix organization	1	301	2.64E-02	7.64E-01	7.64E-01	2	318	2.57E-02
	Intracellular signaling by second	1	316	2 77E-02	7.81E-01	7.81E-01	4	114	9.21E-03
	messengers	1	242	2.015.02			-	05	7.005.00
	Diseases of signal transduction by growth factor receptors and second messengers	1	343 393	3.45E-02	8.50E-01	8.50E-01	4 20	95 356	2.88E-02
	G alpha (i) signalling events	1	408	3.58E-02	8.60E-01	8.60E-01	6	155	1.25E-02
	Hemostasis	2	726	6.37E-02	8.66E-01	8.66E-01	27	328	2.65E-02
	Signaling by Rho GTPases	1	426	3.74E-02	8.72E-01	8.72E-01	1	117	9.46E-03
	Olfactory Signaling Pathway	1	432	3.79E-02	8.76E-01	8.76E-01	1	2	1.62E-04
	GPCR downstream signalling	3	1154	1.01E-01	9.21E-01	9.21E-01	8	248	2.00E-02
	Signaling by Receptor Tyrosine	1	523	4.59E-02	9.21E-01	9.21E-01	1	698	5.64E-02
	Axon guidance	1	558	4.90E-02	9.34E-01	9.34E-01	2	296	2.39E-02
	Signaling by GPCR	3	1226	1.08E-01	9.39E-01	9.39E-01	8	427	3.45E-02
	G alpha (s) signalling events	1	577	5.06E-02	9.40E-01	9.40E-01	1	18	1.45E-03
	Nervous system development	1	584	5.13E-02	9.42E-01	9.42E-01	2	322	2.60E-02
	Post-translational protein modification	3	1417	1.24E-01	9.71E-01	9.71E-01	2	513	4.15E-02
	Metabolism of lipids	1	748	6.56E-02	9.74E-01	9.74E-01	2	814	6.58E-02
	Adaptive Immune System	1	944	8 29E-02	9.91E-01	9.91E-01	-	260	2 10F-02
	Cytokine Signaling in Immune system	1	954	8.37E-02	9.91E-01	9.91E-01	4	699	5.65E-02
		1	1040	9.13E-02	9.94E-01	9.94E-01	4	485	3.92E-02
	Developmental Biology	1	1100	0.65E-02	0.04E-01	0.04E-01	2	536	4 33E-02
		1	1187	1.04E-01	9.90E-01	9.90E-01	<u>د</u> 1	662	5 35E-02
	Metabolism of protoing	2	2012	1.040-01	9.97 L-01	9.97L-01	י ר	002	7.06E.02
		3	4705	1.772-01	9.902-01	9.905-01	2	1201	0.745.02
		2	1735	1.52E-01	9.99E-01	9.99E-01	24	1201	9.7 TE-02
	Signal Transduction	4	2829	2.48E-01	1.00E+00	1.00E+00	35	2333	1.89E-01
	Immune System	2	2374	2.08E-01	1.00E+00	1.00E+00	6	1562	1.26E-01
		1	2142	1.88E-01	1.00E+00	1.00E+00	10	2001	1.62E-01
	Ub-specific processing proteases	2	205	1.80E-02	2.21E-02	7.97E-02	2	40	3.23E-03
		2	282	2.47E-02	3.99E-02	7.97E-02	2		6.22E-03
	Post-translational protein modification	2	1417	1.24E-01	4.94E-01	4.94E-01	2	513	4.15E-02
Cluster4	Metabolism of proteins	2	2012	1.77E-01	6.97E-01	6.97E-01	2	874	7.06E-02
	Respiratory electron transport	8	115	7.92E-03	9.51E-14	4.66E-12	8	19	1.50E-03
	synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.	8	150	1.03E-02	7.85E-13	1.88E-11	8	31	2.44E-03
	The citric acid (TCA) cycle and respiratory electron transport	8	233	1.61E-02	2.57E-11	4.11E-10	8	67	5.28E-03
	Complex I biogenesis	5	57	3.93E-03	2.71E-09	3.26E-08	6	13	1.02E-03
	TP53 Regulates Metabolic Genes	3	125	8.61E-03	2.69E-04	2.42E-03	1	34	2.68E-03
	Metabolism	10	3650	2.51E-01	8.36E-04	6.69E-03	23	2241	1.76E-01
Cluster5	Synthesis of Prostaglandins (PG) and Thromboxanes (TX)	2	58	4.00E-03	1.62E-03	1.13E-02	7	32	2.52E-03

	Interleukin-10 signaling	2	86	5.93E-03	3.50E-03	2.10E-02	1	15	1.18E-03
	COX reactions	1	9	6.20E-04	9.26E-03	4.63E-02	2	2	1.57E-04
	Arachidonic acid metabolism	2	166	1.14E-02	1.24E-02	4.98E-02	8	77	6.06E-03
	Transcriptional Regulation by TP53	3	486	3.35E-02	1.26E-02	5.05E-02	1	259	2.04E-02
	Interleukin-4 and Interleukin-13 signaling	2	211	1.45E-02	1.96E-02	6.70E-02	1	46	3.62E-03
	Synthesis of 15-eicosatetraenoic acid derivatives	1	22	1.52E-03	2.25E-02	6.70E-02	1	4	3.15E-04
	RNA Polymerase II Transcription	5	1692	1.17E-01	2.36E-02	6.70E-02	13	885	6.97E-02
	Biosynthesis of electrophilic 蠅-3 PUFA oxo-derivatives	1	29	2.00E-03	2.96E-02	6.70E-02	4	20	1.57E-03
	Biosynthesis of DPAn-3 SPMs	1	31	2.14E-03	3.16E-02	6.70E-02	1	18	1.42E-03
	Gene expression (Transcription)	5	1850	1.27E-01	3.35E-02	6.70E-02	13	996	7.84E-02
	Biosynthesis of EPA-derived SPMs	1	33	2.27E-03	3.36E-02	6.71E-02	1	17	1.34E-03
	Glucagon-type ligand receptors	1	35	2.41E-03	3.56E-02	7.11E-02	1	8	6.30E-04
	Biosynthesis of DPA-derived SPMs	1	35	2.41E-03	3.56E-02	7.11E-02	1	21	1.65E-03
	Nicotinamide salvaging	1	59	4.07E-03	5.93E-02	7.11E-02	1	12	9.45E-04
	Formation of RNA Pol II elongation complex	1	63	4.34E-03	6.32E-02	7.11E-02	2	2	1.57E-04
	RNA Polymerase II Transcription Elongation	1	66	4.55E-03	6.61E-02	7.11E-02	5	8	6.30E-04
	Generic Transcription Pathway	4	1553	1.07E-01	6.83E-02	7.11E-02	2	824	6.49E-02
	Fatty acid metabolism	2	429	2.96E-02	7.11E-02	7.11E-02	8	217	1.71E-02
	Nicotinate metabolism	1	84	5.79E-03	8.34E-02	8.34E-02	1	29	2.28E-03
	RNA Polymerase II Pre-transcription Events	1	88	6.06E-03	8.72E-02	8.72E-02	6	17	1.34E-03
	Biosynthesis of DHA-derived SPMs	1	89	6.13E-03	8.81E-02	8.81E-02	1	58	4.57E-03
	Class B/2 (Secretin family receptors)	1	99	6.82E-03	9.76E-02	9.76E-02	1	20	1.57E-03
	Signaling by Interleukins	2	639	4.40E-02	1.39E-01	1.39E-01	1	490	3.86E-02
	ADORA2B mediated anti-inflammatory cytokines production	1	159	1.10E-02	1.52E-01	1.52E-01	1	12	9.45E-04
	Biosynthesis of specialized proresolving mediators (SPMs)	1	159	1.10E-02	1.52E-01	1.52E-01	7	124	9.76E-03
	and cofactors	1	254	1.75E-02	2.33E-01	2.33E-01	1	144	1.13E-02
	Leishmania parasite growth and survival	1	297	2.05E-02	2.67E-01	2.67E-01	1	40	3.15E-03
	Anti-inflammatory response favouring	1	297	2.05E-02	2.67E-01	2.67E-01	1	40	3.15E-03
	Phase I - Functionalization of	1	298	2.05E-02	2.67E-01	2.67E-01	2	98	7.72E-03
	Metabolism of vitamins and cofactors	1	382	2.63E-02	3.30E-01	3.30E-01	1	205	1.61E-02
	Leishmania infection	1	403	2.78E-02	3.45E-01	3.45E-01	1	95	7.48E-03
	Cytokine Signaling in Immune system	2	1261	8.69E-02	3.79E-01	3.79E-01	1	699	5.50E-02
	Biological oxidations	1	545	3.75E-02	4.37E-01	4.37E-01	2	188	1.48E-02
	Metabolism of lipids	2	1445	9.96E-02	4.49E-01	4.49E-01	15	943	7.43E-02
	G alpha (s) signalling events	1	605	4.17E-02	4.72E-01	4.72E-01	3	18	1.42E-03
	GPCR ligand binding	1	652	4.49E-02	4.98E-01	4.98E-01	1	179	1.41E-02
	Infectious disease	1	1174	8.09E-02	7.18E-01	7.18E-01	1	494	3.89E-02
	GPCR downstream signalling	1	1359	9.36E-02	7.71E-01	7.71E-01	3	258	2.03E-02
	Signaling by GPCR	1	1485	1.02E-01	8.02E-01	8.02E-01	4	437	3.44E-02
	Immune System	2	2823	1.95E-01	8.20E-01	8.20E-01	1	1598	1.26E-01
	Disease	1	2171	1.50E-01	9.12E-01	9.12E-01	1	1216	9.57E-02
	Signal Transduction	1	3364	2.32E-01	9.81E-01	9.81E-01	4	2347	1.85E-01
	Ub-specific processing proteases	1	205	1.80E-02	1.96E-01	5.19E-01	2	40	3.23E-03
Cluster6	Deubiquitination	1	282	2.47E-02	2.60E-01	5.19E-01	2	77	6.22E-03

Post-translational protein modification	1	1417	1.24E-01	7.97E-01	7.97E-01	2	513	4.15E-02
Metabolism of proteins	1	2012	1.77E-01	9.03E-01	9.03E-01	2	874	7.06E-02

*1. cluster 1 did not have any entities output

References

- World Health Organization (WHO), Laboratory biosafety guidance related to coronavirus disease 2019 (COVID-19): interim guidance, 12 February 2020 (https://apps.who.int/iris/bitstream/handle/10665/331138/WHO-WPE-GIH-2020.1-eng.pdf).
- Y. Chen, Y. Chen, C. Shi, Z. Huang, Y. Zhang, S. Li, Y. Li, J. Ye, C. Yu, Z. Li, X. Zhang, J. Wang, H. Yang, L. Fang, Q. Chen, SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. *Gigascience*. 7(1), 1-6 (2018).
- 3. H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*. **25**(14), 1754-60 (2009).
- 4. A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, M.A. DePristo, The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome. Res.* **20**(9),1297-303 (2010).
- K.I. Kendig, S. Baheti, M.A. Bockol, T.M. Drucker, S.N. Hart, J.R. Heldenbrand, M. Hernaez, M.E. Hudson, M.T. Kalmbach, E.W. Klee, N.R. Mattson, C.A. Ross, M. Taschuk, E.D. Wieben, M. Wiepert, D.E. Wildman, L.S. Mainzer, Sentieon DNASeq variant calling workflow demonstrates strong computational performance and accuracy. *Front. Genet.* **10**,736 (2019).
- A. Fabregat, S. Jupe, L. Matthews, K. Sidiropoulos, M. Gillespie, P. Garapati, R. Haw, B. Jassal, F. Korninger, B. May, M. Milacic, C.D. Roca, K. Rothfels, C. Sevilla, V. Shamovsky, S. Shorser, T. Varusai, G. Viteri, J. Weiser, G. Wu, L. Stein, H. Hermjakob, P. D'Eustachio, The Reactome Pathway Knowledgebase. *Nucleic Acids Res.* 46(D1), D649-D655 (2018).
- 7. B. Wilkinson, A statistical consideration in psychological research. *Psychol. Bull.* 48(3), 156-8 (1951).
- 8. R. Y. Yang et al., https://www.biorxiv.org/content/10.1101/311563v1.article-info (2020).
- 9. GTEx Consortium, The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580-585 (2013).
- Q. Miao, Y. Ma, Q. Wang, J. Pan, Y. Zhang, W. Jin, Y. Yao, Y. Su, Y. Huang, M. Wang, et al. Microbiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practice. *Clin. Infect. Dis.* 67, S231-S240 (2018).
- 11. R. Schlaberg, C.Y. Chiu, S. Miller, G.W. Procop, G. Weinstock, Validation of metagenomic Next-Generation sequencing tests for universal pathogen detection. *Arch. Pathol. Lab. Med.* **141**, 776-786 (2017).
- C. Langelier, M.S. Zinter, K. Kalantar, G.A. Yanik, S. Christenson, B. O'Donovan, C. White, M. Wilson, A. Sapru, C. C. Dvorak, S. Miller, C. Y. Chiu, J. L. DeRisi, Metagenomic sequencing detects respiratory pathogens in hematopoietic cellular transplant patients. *Am. J. Respir. Crit. Care. Med.* **197**, 524-528 (2018).