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 14 
Abstract 15 

Effective policy making based on ongoing COVID-19 pandemic is an urgent issue. We 16 
present a mathematical model describing the viral infection dynamics, which reveals two 17 
transmissibility parameters influenced by the management strategies in the area for control 18 
of the current pandemic. The parameters readily yield the peak infection rate and means for 19 
flattening the curve. Model parameters are shown to be correlated to different management 20 
strategies by employing machine learning, enabling comparison of different strategies and 21 
suggesting timely alterations. Treatment of population data with the model shows that 22 
restricted non-essential business closure, school closing and strictures on mass gathering 23 
influence the spread of infection. While a rational strategy for initiation of an economic 24 
reboot would call for a wider perspective of the local economics, the model can speculate 25 
on its timing based on the status of the infection as reflected by its potential for an 26 
unacceptably renewed viral onslaught. 27 

 28 
 29 
Introduction 30 

The pandemic of coronavirus (SARS-COV-2) infection has gripped the world with 31 
unparalleled anxiety. An alarming number of deaths have occurred within the short span of 32 
a little over four months! In US, more than one hundred thousand have died at the time of 33 
compiling this article with prospects of many more in the horizon. Despite the epidemic 34 
slowing, it appears to be abating at an unacceptable rate. There has been a scramble for 35 
controlling the spread of infection by people of various backgrounds including medical 36 
professionals, scientists, engineers, economists, the media, and political leaders. Although 37 
considerable insight has accumulated over efficient ways to confront this cataclysm (1, 2), 38 
much more remains to be learned about the disease transmission, its treatment, and 39 
prevention by a suitable vaccine for the future. While the government has taken actions to 40 
relieve the economic burden of coronavirus on certain industries, businesses, and American 41 
workers (e.g., paycheck protection program), the looming prospects of an economic 42 
breakdown of catastrophic proportions are a further complication that must also somehow 43 
influence the mode of confrontation of the pandemic. 44 
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An essential prerequisite to facing the coronavirus pandemic is understanding of the 45 
various factors that have a potential contribution to limiting the spread. The spread of 46 
infection occurs in multifarious ways. Thus one that is cited the most frequently is spread 47 
of the virus through droplets from coughing and sneezing (3). Another is from unwitting 48 
contact with infected surfaces (4) such as glassware, boxes and so on. Intimate contact 49 
through handshakes and hugs are even more efficient ways to transmit infection. Each 50 
occurs through different scenarios that must be envisaged with their respective frequencies 51 
of occurrence for a model formulation.  For symptomatic disease associated with a pathogen 52 
transmissibility (marked by a basic reproduction number), different transmission routes are 53 
aligned to their implications for prevention; specifically, there may be four categories: 54 
symptomatic transmission, pre-symptomatic transmission, asymptomatic transmission, and 55 
environmental transmission. Given recent evidence of SARS-CoV-2 transmission by mildly 56 
symptomatic and asymptomatic persons (5), its incubation period is about 5.1 days and 57 
about 12 days of infection from exposure to symptom development (latent period).  58 
Therefore, unusually long term of latency period and pre-symptomatic transmission could 59 
have important implications for transmission dynamics (6).  60 

Analysis of data accumulated from numerous sources have provided the general 61 
features of the spread in terms of when to expect the peak infection rate and what it takes to 62 
flatten this curve. Yet this understanding must be said to be qualitative without notable 63 
predictive features. A mathematical model is presented here of the spread of coronavirus 64 
(COVID-19) in terms of three parameters that control the rate of its spreading and flattening 65 
the infection rate curve when intervention by a vaccine is not available. Our model is 66 
concerned with a specific geographic domain of the United States with a given population 67 
of specified density (number per unit area) of which a fraction is initially infected. The 68 
infected population contributes virus within the domain which, for the present, is completely 69 
isolated from other domains. The spread of infection within the domain depends on the 70 
uninfected population and occurs at a rate governed by the extent of protective measures 71 
adopted to avoid infection from those infected. This spread obviously depends also on the 72 
viral population in the domain which grows by contribution from the infected (exhaled 73 
droplets, aerosol, contaminated surfaces, and possibly fecal-oral contamination (7)) and 74 
disappears by death/isolation/herd immunity etc. We should note that while there are 75 
numerous reports on reinfection of COVID-19 (8), majority of recovered patients retain 76 
certain immunity against the virus. 77 

Our goal here is to find a suitably simple framework to produce a mathematical 78 
model that contains a limited number of parameters which can be readily identified from 79 
gross observations. Furthermore, they should relate in some way to various strategies that 80 
may be envisaged to control the spread of infection. To simulate both dynamics of viral and 81 
infected population, the modeling of the system in a considered geometric domain can be 82 
abstracted as its dimensionless form 83 

( )1 ,dx x y x
d

γ
τ
= − −

         (1) 84 
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,dy x y
d

α β
τ
= −

         (2) 85 

where / ox n N= is the infected population density ( n ) normalized by the population density 86 

in the domain ( oN ), / oy V V= is the dimensionless viral population density, inf/t Tτ = is the 87 

time scaled by the average time for an individual to be infected ( infT ); The explanations of 88 

both dynamic equations are elaborated in supplementary material. Three dimensionless 89 
parameters (see physical interpretation of α , β ,γ  in Table 1) presented in above 90 

differential equations compare the rates of different processes and have the capacity to 91 
control the spread of infection. Daily infection data must be fitted to the model by 92 
appropriate choice for the values of the dimensionless parameters (see the model fitting in 93 
Fig. S1 in supplementary material). The socio-economic behavior has diversified the 94 
dynamics of the infection curve; Furthermore, major regulatory governmental strictures 95 
may enforce more discipline in public behavior thus seriously affecting the parameters. This 96 
effect, it must be conceded, is buried in subtle empiricism of the model that we must seek 97 
to unearth. In doing so, we emulate the currently popular practice of machine learning 98 
towards estimating the parameters in each domain to assess the local government policy. In 99 
this regard, the informative results delivered by combining both approaches (i.e. 100 
mechanistic model and machine learning) could promote effective policy implementations 101 
against the transmission of disease (Fig. 1(A)). In Fig. 1(B), the national scale social 102 
distancing is undertaken with the administration guideline “15 Days to Slow the Spread” 103 
that divides the pre-guideline enforcement period (P1) and the post-guideline enforcement 104 
period (P2). Furthermore, to consider the heterogeneity of the population density, we model 105 
the infection dynamics in the leading county of every state (50 states plus Washington D.C.) 106 
Within different periods and regions, their parameter values will reflect the quality of 107 
management of the spread of infection in the area under consideration. The different 108 
mechanisms of transmission of infection may operate to varying extents in different areas 109 
depending on how the infection is managed locally. Thus one must regard the model as only 110 
“broadly” mechanistic and the relationship of model parameters to different strategies 111 
would be somewhat diffuse. Therefore, in connecting the model to guide strategies we resort 112 
to a statistical methodology based on machine learning tools, which could overcome the 113 
limitation just mentioned. 114 
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Results  115 
 116 
 117 

Role of Parameters in Spread of Infection.  118 

We first examine role of model parameters in the spread of infection. The P1 duration 119 
reveals the period of pathogen transmission with limited prevention in the United States. 120 
The early state of virus transmissibility can be characterized by ‘R-naught’ (R0), which is 121 
the basic reproduction number. Our estimate of R0 is about 2.8 (the median from data is 122 
2.75; our model is 2.90) whose transmission is stronger than influenza (R0:1.4-1.6) (9) and 123 
weaker than Measles (R0:12-18) (10). The speed of infection of an individual would depend 124 

on the value of infT : a large infT  would imply a longer real time and thus a slower rise in 125 

infection. For instance, in New York at P1 period without government policy intervention, 126 

it typically takes about inf 10T ≈ minutes to infect an individual. With the implementation of 127 

government policy about social distancing, in P2 period, infT  increases 25 times, and the 128 

approximation of an individual infection takes about 4 hours! To measure parameters (α ,129 
β ,γ ), it is purposeful to examine the steady state solutions of the model represented by 130 

Eqs. (1) and (2). We show that the only relevant solution is 11 ( / )x γ α β −= − and131 

/y α β γ= − where the projected total infected population ( x ) and viral population ( y ) are 132 

determined by /α β  and γ . Parameter /α β  represents the ratio of viral growth rate to its 133 

death rate, which represents the extent of environmental virulence. Fig. 1(C) shows that 134 
severe virulence environment (large /α β ) are associated with the large counties (i.e. Los 135 

Angeles-CA (P1,P2), New York City-NY(P1,P2)). In particular, Wayne county at Michigan 136 
State shows significant improvement (severe→moderate) as the proper social distancing is 137 
taken and thereby there would be a significant reduction of the virus in circulation. In 138 
general, counties with populous majority remain as small virulence during the entire period 139 
(Fig. 1(C)). Parameter γ  represents the removal rate of infected patients (by 140 

recovery/death). Our model implies that γ  is associated with /α β  positively: despite the 141 

infection, its percentage in each county remains low (e.g. the percentage of infection at New 142 

York City is about 2(10 )O − ); Therefore, 1( / ) ~ 1γ α β −  and always ( / )γ α β< . Here, we 143 

ought to demonstrate two significant points: (1) mathematically, ( / )γ α β<  is the necessary 144 

and sufficient condition for the stability of the solution; (2) as the difference between γ  and 145 

/α β  becomes smaller, the eventual infected population is smaller. The most direct way of 146 

containing infection depends on the availability of effective vaccines and therapies that can 147 
raise the value of γ . However, we should note that, without further modification, the current 148 

model would not directly account for the possibility of using experimental prescriptions 149 
such as Remdesivir recently authorized by Food and Drug Administration (FDA) (11). 150 

Indicators of COVID-19 Transmissibility: /α β & x  151 

Based on our model, we propose two indicators /α β  and x  to characterize the infection 152 

dynamics. Reducing /α β  is accomplished by slowing the viral transfer from the infected 153 
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to the uninfected which can be accomplished by several ways such as social distancing 154 
(individual precautions can be washing, wearing masks, physical distancing 6 or 12 feet, 155 
and so on). In Fig. 2(A), we find that /α β  is strongly correlated with the county population 156 

(R=0.91, p=2.1e-6; p<0.05 considered as significant), which is consistent with the physical 157 

explanation of ( / ) ( / )o oN Vα β ∝  in Table 1; given any domain, ( / )o oN V  increases with 158 

large population number but independent of population density oN . On the other hand, the 159 

projected total infection fraction x , which characterizes the pathogen transmissibility, is 160 
positively correlated with the county population density (R=0.61, p=0.016 in Fig. 2(B)) 161 

because of oN ; the transmission of the infection becomes faster when the population density 162 

is high. Other factors such as weather (temperature, humidity) remain insignificant (weak 163 
correlation) to the infection dynamics (see supplementary material; also (12)). Fig. 2(C) 164 
exhibits how parameters /α β  and x  affect the peak infection rate. The peak infection rate 165 

represents the stage beyond which the infection rate will drop. It is now possible to address 166 
the much debated strategy of “flattening the curve” by lowering peak infection rate. To 167 
reduce the transmissibility (i.e. lower x ), the peak infection rate has to be small (see Fig. 168 
2(C)). Our model recommends that this is accomplished when /α β  is low, suggesting the 169 

reduction of virus circulation (Fig. 2(D)).  170 

 171 

Impact of Lockdown: New York City 172 

We now proceed to model the effect of lockdown on COVID-19 transmissibility in New 173 
York City, as an example. Additionally, considering recently published policy of “Opening 174 
Up America Again” by the white house administration, we will study the effect of reopening 175 
economy on the dynamics of transmissibility in the New York metropolitan area. Here, we 176 
consider the influence of lockdown policy at New York City, where the isolation is 177 
determined by the geographic constraint of five boroughs (the Bronx, Brooklyn, Manhattan, 178 
Queens, and Staten Island) within the New York City (Fig. 3(A)). From Fig. 3(B), our model 179 
suggests that the mitigation brought about by lockdown is sensitive to the moment of 180 
implementation; an early enforcement of lockdown could delay its occurrence. Our study 181 
also shows that if the implementation happens after the peak infection, the strategy of 182 
slowing works less efficiently. However, the lockdown likely results in a long-term 183 
dynamics and the associated economic damage has to be considered as well. 184 

 185 

Reopening Economy on Second Wave: New York Metro Area 186 

During this pandemic, the financial center of the world--New York City area has been hit 187 
by massive layoffs and anticipates looming recession (13). This situation, spells some 188 
urgency for reopening the economy and resuming normal daily activity. However, we stress 189 
that opening the economy has to be cautious to the possible appearance of a second wave 190 
thus making the timing of the reopening very important. To simulate the impact of normal 191 
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daily activity on the current dynamics of infection, we study the transmissibility in both 192 
New York City and Bergen County (Inner New Jersey) within the metropolitan area. These 193 
two regions represent the most active interactions in the United States (leading out-194 
computing in the metro area, NYC Planning 2018) and yet both have the leading 195 
coronavirus infections in their states. In the model, we relax the current government 196 
restraints and resume normal daily operations and activities, which allows the model to 197 
consider the worst scenario of the infection curve. Fig. 3(C) show that the economy 198 
reopening (with the least precaution) inevitably brings the second wave and thereof more 199 
mortality. However, the extent of infection outbreak can be drastically reduced by delaying 200 
the opening date (35% increase at 5.5th week vs. 4% increase at 7.5th week). We note that 201 
an effective policy intervention may reduce the drastic increment of the infected population. 202 
In the next section, we discuss how to quantify the effectiveness of current implemented 203 
policy on coronavirus transmissibility. 204 

 205 

Influence of Policy Measures in States 206 

With the U.S. administration declaring the social distancing guideline since March 16th, 207 
local governments have implemented more than 300 executive orders in fifty states, Puerto 208 
Rico, the District of Columbia, Guam, and the Virgin Islands. The executive actions and 209 
policies are related to declarations of states of emergency, school/business closure, 210 
prohibition of mass gathering, stay at home order, etc. Central issues stand as the 211 
effectiveness of ongoing individual policy is unclear. In our study, while the coronavirus 212 
transmissibility is strongly influenced by the local population dynamics (Figs. 2(A, B)), the 213 
statistical inference suggests the relevance of several ongoing policies on the coronavirus 214 
transmission (Fig. 4(A)). With our model empowered by machine learning tools, we 215 
perform the regression of both parameters /α β  and x  based on all policy influences. By 216 

examining the weight associated with each policy measure and its significance (p-value) in 217 
Fig. 4(B-1), we should conclude that factors such as non-essential business closure, 218 
gathering ban and school closure possess strong impact on x  (adjusted-R2=0.59, p=2e-6), 219 
which represents the total infected population. Both gathering ban and school closure 220 
emphasize the activity of population in young age, which is consistent with the recent 221 
finding that young people play a vital role in spread of COVID-19 (14,15). For virulence 222 
environment ( /α β ), while the severity of coronavirus spread is largely determined by the 223 

local population number, nonessential business closure plays a role in its attenuation effort 224 
among other considered policies (adjusted-R2=0.30, p=1e-3; see Fig. 4(B-2)). With the 225 
context of reopening the economy (since May 1st 2020), there are several reports on the 226 
surge of coronavirus infection in multiple states and most contagious region remains at the 227 
leading counties. Policies on both certain non-essential business limitation and gathering 228 
ban have been revised in almost all states (note: schools remain closed across the United 229 
States). Our model enables to incorporate these policy changes to predict and diagnose many 230 
states having surges of positive cases (Fig. 4(C)). By predicting the increase of  /α β  and 231 

x  using machine learning, we find that the strong surges (marked as ‘severe’ in Fig. 4(C)) 232 
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in states like Utah, Nebraska, Ohio, Kentucky, Texas and Virginia could stem from the 233 
relaxation of the gathering ban; Nevada, North Carolina, South Carolina and Mississippi 234 
have observed high daily positive cases, which is interpreted by our model as due to the 235 
non-essential businesses; We also find that several states (e.g. California, Wisconsin, 236 
Arizona, Alaska, Tennessee, Maine, etc.) have strong infection due to both factors (non-237 
essential business closure and gathering ban). Our model captures all currently emerging 238 
states, indicating significant impact of government policy on the spread of coronavirus when 239 
a vaccine is unavailable. In Fig. 4(C), several states (marked as ‘moderate’) should be 240 
cautiously optimistic when relaxing social distancing measures despite downward trending 241 
of daily positive number because we observe increases in either /α β  (elevated virulence) 242 

or x  (increased projected total infection number) in our model. In particular, the state of 243 
Massachusetts should retain strong measures (increments in both /α β  and x ).  244 

 245 

Discussion  246 
 247 
In this report, we have proposed a new mechanistic model describing the transmission of 248 
COVID-19 in the United States. Our model is established in conjunction with administration 249 
policy, from which we propose two significant parameters. The parameter /α β  quantifies 250 

the severity of the coronavirus circulation, and the parameter x  represents the projected 251 
total infected fraction. To be consistent with CDC county-by-county guideline, we studied 252 
the infection dynamics of the leading county in each state. Our study shows that New York 253 
City in New York, Los Angeles county in California, and Wayne county in Michigan exhibit 254 
strong coronavirus circulation. By examining the peak infection rate, our suggested strategy 255 
of ‘flattening the curve’ has to deal with lowering /α β ,  towards drastically diminishing 256 

the virus population in the environment. Our study of lockdown suggests that it be 257 
implemented before the peak infection rate, since its arrival can be sensed well by the 258 
parameters. We have quantified the impact of current social distancing policies with /α β259 

and x , suggesting that polices such as, restrictive non-essential business closure, a ban on 260 
gathering, and that of school closure are critical. This may strongly associate with the 261 
restricted activity of young people (young adults and teenagers). The novelty of this 262 
contribution is derived from two specific features. One locates each geographic region in 263 
our parameter space at any stage providing for a diagnosis of the disease status in the region, 264 
and the prevailing quality of its management. The other affords a direction in which changes 265 
in strategy must be brought about for controlling the disease. Although a rational analysis 266 
for an economic reboot should be based on a considerably expanded view of the local 267 
economics, it is possible to derive some useful guidelines from our model study.  To this 268 
extent, we conclude, perhaps somewhat speculatively, that our suggestion for an economic 269 
reopening may be viable if non-essential business closure is conditional, mass gathering is 270 
limited and school opening is delayed. At any rate, in the absence of such restrictive 271 
measures, the prospect of an economic recovery is less likely. 272 
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 371 

Fig. 1. Parametric study on coronavirus infection in United States. (A) By incorporating both 372 
mechanistic modeling and data analysis (in blue) into the traditional workflow of the policy making 373 
(in black), a refreshed framework forms a three-way communication among expert 374 
(doctor/epidemiologist), engineers/scientists and lawmakers, thus improving the implementation of 375 
health policies against the infectious disease. (B) The timeline of total population with COVID-19 376 
positive in conjunction with the policy of “15 Days to Slow the Spread” in the United States, in which the 377 
infection period is divided into the pre-guideline enforcement period (P1) and the post-guideline 378 
enforcement period (P2). (C) The phase space in terms of /α β  and γ  is plotted for the leading infected 379 
counties in first fifteen states: P1 duration and P2 duration. The phase space is segregated as three regions: 380 
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‘severe’ (labeled as green; / (1.0, )α β ∈ ∞ ), ‘moderate’ (labeled as red; / [0.4,1.0]α β ∈ ), and ‘mild’ 381 
(labeled as blue; / (0,0.4)α β ∈ ). 382 

 383 

 384 

 385 

Fig. 2. Relationship between county population and /α β  & x . (A and B) The statistical correlations 386 
(R: Pearson correlation coefficient) are displayed for (A) virulence ( /α β ) vs. the corresponding county 387 
population and (B) the projected infection fraction ( x ) vs. the corresponding county population density 388 
(sample number is 15). (C) A phase diagram in terms of /α β  and x  for the peak infection rate Γ ; domain 389 

‘Ω ’ represents the region in which the peak infection is not reached and Region { 0.1x > } indicates the 390 

unlikely space where total infection exceeds 10% of the total population in the domain considered. (D) The 391 
effect of dimensionless parameter /α β  on peak infection is studied with 0.01x = . For (C) and (D), the 392 

simulations are conducted for a duration of 1 year (365 days) with inf 40T =  minutes.  393 
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 394 

Fig. 3. Effect of lockdown and reopening economy on the spread of infection in New York City. (A) 395 
The strict policy of lockdown is assumed at the borders of five boroughs - Manhattan(I), the Bronx (II), 396 
Queens (III), Brooklyn (IV) and Staten Island (V) within New York City. (B) The date of initiating lockdown 397 
affects daily positive cases n∆  in New York City scaled by total population density oN , where the start of 398 
policy enforcement is set at different initiation points: zeroth week (B-1), 2nd week (B-2), and 5th week (B-399 
2), respectively. (C) Modeling of infected population (C-1) and increment (C-2) by considering different 400 
opening periods for New York City and Bergen county (inner New Jersey circle): ‘NYC+Bergen (O1)’ 401 
indicates the reopening economy at 5.5th week; ‘NYC+Bergen (O2)’ indicates the reopening economy at 402 
7.5th week; ‘NYC, Bergen (R)’ indicates the economy remains closed. In (C), oN  represents the averaged 403 
resident population density of both New York City and Bergen (New Jersey); Symbols ‘∆ ’ are the data of 404 
the infected population within New York City and Bergen (New Jersey); Plots with shaded area are the 405 
modeling results where solid lines represent the median of the prediction and the shaded area indicates the 406 
uncertainty. The zeroth week is set at the moment when the total number of infections at the New York City 407 
is ten. 408 
 409 
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 410 

Fig. 4. Evaluation of policies on COVID-19 transmissibility. (A) The relevance and significance of 411 
individual policy and population dynamics (population and population density) on model parameters /α β  412 
and x , characterized by adjusted R-square and p-values, respectively. In the diagram, the color of the ellipse 413 
represents the value of adjusted R2 while the size of ellipse accounts for p-value.  (B) The regression analysis 414 
of government policies and local population dynamics against (B-1) the projected eventual infection fraction 415 
x  and (B-2) virulence /α β . The extent of influence from individual factor is reflected by the 416 
corresponding weight (W). In (B), the weights are normalized by the first factor. (C) Upon economy opening, 417 
the modification of polices impacts the trend of infection curve. We can identify the states with the surge of 418 
positive cases by the prediction of  /α β  and x  using machine learning: the blue plots represent the daily 419 

increment n∆ (7-day running averaged) normalized by the total population density oN in the leading county 420 
of all fifty states (including D.C.) For all ‘emerging’ counties in each state, a red filled circle is recognized 421 
by the elevation of /α β from the prediction of the machine learning; A green filled star represents the 422 
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increase of x ; the red square implies the severe situation based on the plateau/ upward-trending daily growth 423 
and the yellow square indicates the moderate scenario based on the downward-trending daily growth curve. 424 
 425 
 426 

Table 1. Emerging indicators from pathogen system 427 

Notation Variables 

2
v o

o

k N
kV

α ≡  

Fractional rate of viral growth during the (average) infection time 
with Vo viral population;  

vk  is the rate constant for production of virus from the infected;  
k is the rate constant for transfer of infection 

v

o

k
kV

β
′

≡  Viral death rate during (average infection time); 
'
vk is the rate of death of virus 

r

o

k
kV

γ ≡  
Removed rate of infected patients relative to infection rate 
with Vo viral population; 

rk  is the rate of removed population (either by death or recovery) 

'
v o

v o

k N
k V

α
β
≡  Ratio of viral growth rate to its death rate 
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