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Contact tracing is suggested as an effective strategy for controlling
an epidemic without severely limiting personal mobility. Here, we ex-
plore how social structure affects contact tracing of COVID-19. Using
smartphone proximity data, we simulate the spread of COVID-19 and
find that heterogeneity in the social network and activity levels of
individuals decreases the severity of an epidemic and improves the
effectiveness of contact tracing. As a mitigation strategy, contact
tracing depends strongly on social structure and can be remarkably
effective, even if only frequent contacts are traced. In perspective,
this highlights the necessity of incorporating social heterogeneity
into models of mitigation strategies.
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Epidemics are typically modeled by well-mixed compartmen-1

tal models (1–4) where some degree of social heterogeneity2

can be introduced by sub-dividing the model population ac-3

cording to e.g. age, occupation, household and social spheres4

(5–10). Despite the possibility of adjusting interaction rates5

between sub-populations, well-mixed models may fail to pre-6

dict the evolution of an epidemic when social interactions7

are spatio-temporally restricted (10), like in real contact net-8

works. The social interactions of individuals tend to follow a9

characteristic pattern; you meet the same people at specific10

times during a week, form groups based on social preferences11

and, in addition, the number of weekly contacts varies signifi-12

cantly from person to person – phenomena which contribute13

to transmission heterogeneity. In a well-mixed model – even if14

stratified by e.g. age – your contacts are essentially drawn at15

random at each new instant, neglecting the monotony seen in16

real networks. In previous epidemics, perhaps most notably17

the Ebola epidemic of 2014-16, transmission heterogeneity18

and mobility patterns have been shown to be decisive factors19

(11). Lately, contact tracing – a mitigation strategy which20

relies directly on the contact network structure – has been21

the center of much attention due to its promises of epidemic22

control in a relatively open society (12–17). In order to asses23

contact tracing strategies, detailed information on contact net-24

works is indispensable, and the usual well-mixed approach is25

inadequate – even more so than when modelling unmitigated26

spreading (18, 19).27

In this paper, we utilize Bluetooth proximity data obtained28

from a cohort of university students at a large European uni-29

versity (see Methods for details). These data are similar in30

nature to the sort of readings one might obtain from contact31

tracing smartphone applications (20), meaning that they pro-32

vide a useful virtual laboratory for contact tracing. Whereas33

our data only comprise a section of the total contact network34

of each participant, they display well-defined and robust het-35

erogeneity, the effects of which can be studied, and compared36

with analogous homogenized networks.37

The participant group is homogeneous in age and occupa- 38

tion, and would consequently be treated as undifferentiated 39

in typical epidemiological models – an assumption that we 40

can directly probe the validity of, in the context of contact 41

tracing. Specifically, we will consider the effects of contact 42

heterogeneity on the spread of COVID-19. For that purpose, 43

we introduce three degrees of heterogeneity: i) an unaltered 44

real network. ii) an edge-swapped version of the network 45

(21), retaining contact heterogeneity but eliminating group 46

formation preferences, including spatial preferences. iii) a 47

randomized network, retaining only the overall (mean) contact 48

frequency, but eliminating heterogeneity. This allows us to 49

investigate questions such as whether it affects the spread of 50

COVID-19 if some people are more social than others or if the 51

the social network has distinct sub-communities. Furthermore, 52

we suggest a realistic and easy-to-implement contact tracing 53

scheme. We quantify the influence of contact heterogeneity on 54

contact tracing in terms of two key parameters, the frequency 55

by which symptomatic individuals are tested and the duration 56

of social contacts with exposed individuals that would trigger 57

a self-quarantine. The latter is especially interesting, since 58

it is a directly controllable parameter when e.g. designing 59

contact tracing smartphone applications (20). 60

Materials and Methods 61

We analyze social proximity and contact dynamics from data col- 62

lected by smartphones distributed among around 1000 participants 63

(undergraduate students at the Technical University of Denmark 64

(22, 23)). The smartphones were equipped with an application that 65

collected communication in the form of call and text messaging 66

logs, geolocation (GPS coordinates) and social proximity using the 67

Bluetooth port. All smartphones in the study were programmed 68
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Fig. 1. Simulating the spread of COVID-19 on the contact network. Here, a zoom on the geographical positions of individuals (based on GPS coordinates) during a typical work
day and for a representative run of the epidemic model. Regions of contact (defined by signal strength exceeding the−85dBm cutoff) are shown as diffuse clouds of pink.
Snapshots shown are at day 2, 23 and 44 of the outbreak.

to open their Bluetooth ports every 5 minutes to scan for nearby69

devices included in the study and to record the GPS coordinates.70

The data we consider have been collected over a period of two years,71

2013-2015.72

The distance between participants is inferred from the strength73

(RSSI) of the Bluetooth signal being sent between the devices. The74

signal strength can resolve distances in the range of ≤ 1 meter to75

approximately 10-15 meters (24). We define a contact between76

two individuals whenever the Bluetooth signal strength between77

their respective devices exceeds −85dBm. This definition of contact78

captures essentially all ≤ 1m interactions while excluding a large79

portion of the 3m interactions and above (24), in line with the80

recommendations of public health authorities (25, 26). This allows81

us to create a well-defined time-dependent contact network where82

individuals are represented by nodes and social contact by time-83

dependent links, similarly to the work of (27). The link activity, or84

the contact between nodes, is resolved in temporal windows of 585

minutes. This time-dependent contact network will be the basis for86

our modeling of the transmission of COVID-19.87

We model the spread of COVID-19 by an agent-based model88

(where the study participants serve as the agents) with five89

states: Susceptible to the disease, Exposed, Pre-symptomatic90

(but infectious), Infected (potentially with symptoms) and91

Recovered/Removed. In the absence of contact tracing (described92

below), the P and I states are identical, in that an individual in93

one of these states can infect others. Aside from these mutually94

exclusive states, persons can also be flagged as Quarantined. When95

a susceptible person comes into contact with a person in the I or96

P state, there is a probability pinf of transmission of the disease in97

each 5-minute window. The basic model (without contact tracing)98

thus has four parameters: Transmission probability upon contact99

pinf, a time-scale characterizing the exposed state τE, a time-scale100

characterizing the pre-symptomatic state τP and a time-scale char-101

acterizing the infected state τI.102

As shown in the model illustration of Fig. 2, the incubation time103

is assumed to be gamma-distributed with a mean of 3.6 days, of104

which 1.2 days comprise the presymptomatic infectious state. The105

infectious state, where symptoms may be displayed, is set to be 5106

days. The last parameter in the model, the transmission probability107

in each window of time, is fitted to reproduce a daily growth rate108

of 23% in the early epidemic, based on estimates from (28).109

By employing two different ways of shuffling the network con-110

nections (edges), we study the effects of contact heterogeneity on111

the one hand, and spatial constraints and group formation on the112

other. The first method, edge swapping, preserves the degree of113

connectivity of each person (node), while destroying any spatial and114

b)

c)

a)

Susceptible Exposed Presymptomatic Infected Recovered

1.2 1.2 1.2 5

Fig. 2. a) A small subset of a contact network for one week. Link thickness indicates
the cumulative contact time, with links with less than 2 hours cumulative activity being
omitted. Black lines represent the links recurring from the previous week, whereas
the red lines are new links. b) Top: Histogram of contact events over a single day
(semi-logarithmic plot). The coefficient of variation is cV = 1.03 and the mean is
µ = 131. Bottom: Histogram of contact events over a seven week period, divided
by the number of days to obtain an average daily rate (semi-logarithmic plot). Here,
cV = 0.95 and µ = 86. Both plots show a marked heterogeneity, demonstrating
that contact heterogeneity is approximately a quenched disorder on the timescale of a
few weeks. c) Our agent-based model of COVID-19 spreading on a contact network.
Individuals in the Susceptible state may be exposed by those in the Presymptomatic
as well as Infected states. The Exposed-Presymptomatic triplet of states together
comprise the gamma-distributed incubation period.
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group formation preference (21). The second method, randomiza-115

tion, preserves only the overall connectivity level in each window of116

time, but homogenizes the number of contacts for each person. In117

Fig. 3, we plot an epidemic trajectory averaged over 20 simulations.118

Contact tracing. The entire scheme around contact tracing con-119

sists of two parts: regular testing of symptomatic individuals (with120

a testing probability ptest < 1) and the contact tracing algorithm121

itself, which is activated once an individual tests positive. Once a122

positive individual is found by regular testing, their recent contacts123

are put in quarantine for a specified time (5 days as suggested by124

(17)) and tested once the quarantine period has elapsed (before po-125

tential release). In other words, the contact tracing scheme proceeds126

as follows:127

• For each individual, a list of contact events is kept. When a128

person is tested positive, all contacts older than 5 days (the129

retention time) are discarded, the person is quarantined for 5130

days, and all individuals on the contact list are traced.131

• If a traced individual has been in contact with the positive132

person for longer than a certain contact threshold, the traced133

individual is also quarantined for 5 days.134

• After the quarantine period has elapsed, the individual is tested.135

If negative, the individual is released. Otherwise a new 5-day136

quarantine is issued.137

The quarantine is assumed to be instantaneous and a quarantined138

person has no contact with others. The two simplest assumptions139

regarding the regular testing scheme are that symptomatic individ-140

uals are tested at a constant rate (throughout their illness), or that141

they have a fixed probability of being tested when first developing142

symptoms. We have compared the two approaches and found that143

they perform comparably (see Supporting Information), and thus144

we work with the fixed probability scheme here, for simplicity.145

Results146

Heterogeneous activity levels. The distribution of the147

number of daily contact events for all individuals in our study148

is shown in Fig. 2. The distribution reflects a marked het-149

erogeneity in activity levels, characterized by an exponential150

shape (see Fig. 2b) with a coefficient of variation of 1.03 and151

a mean of 131. Even more importantly, a significant degree of152

contact heterogeneity is retained, albeit with some attenuation,153

when exploring an entire 7-week window. Here the coefficient154

of variation is 0.95, still close to the value for an exponential155

distribution, and the mean is 86. It is clear that extreme social156

behaviour becomes less frequent over this longer time-window,157

reflecting that individuals do not come into university every158

single day, with the mean value of 86 corresponding to159

being inactive on 34% of workdays. However, the significant160

degree of contact heterogeneity still present shows that161

it approximately represents a quenched disorder, which162

affects the entire epidemic trajectory and does not simply163

average out over the course of an epidemic. In the following164

we explore the profound consequences of contact heterogeneity.165

166

Heterogeneity reduces epidemic severity. In Fig. 3, we167

show the simulated evolution of COVID-19 on three different168

contact networks: The true network (unshuffled), the edge-169

swapped and the fully randomized network where each person170

is assigned an average contact frequency. Each trajectory is171

averaged over 20 runs, each similar in nature to the one shown172

in the inserts of Fig. 1.173

The overall findings are that:174

• The total number of exposed individuals is very sensitive175

to heterogeneity in activity levels, but not to network176

Fig. 3. Comparison of exposed + presymptomatic + infected (red) and recovered
(blue) individuals in the three networks types. Each curve represents an ensemble
average over 20 simulations. True network (full lines): Total fraction exposed: 71%.
Infection peak: 28%. Edgeswapped network (dashed lines): Total fraction exposed:
71%. Infection peak: 33%. c) Randomized network (dotted lines): Total fraction
exposed: 94%. Infection peak: 37%. The infection probability per 5-minute contact is
pinf = 0.5%, fitted to produce a daily growth rate of 23% in the early epidemic, for
the true network.

structure. Heterogeneous activity evidently prevent the 177

disease from spreading to all parts of the network, with the 178

total fraction exposed reaching 71% in the true network 179

and 94% in the randomized network. 180

• The infection peak, on the other hand, is sensitive to 181

spatial effects as well as contact heterogeneity. As such, 182

the peak load increases by some 5 percentage points when 183

spatial structure is destroyed, and by 9 percentage points 184

when contact structure is homogenized as well. 185

• Overall, the group formation and spatial structure only 186

has the effect of slowing the progression somewhat, but 187

does not affect the attack rate. 188

Repeated contacts are essential for contact tracing. The 189

effects of contact heterogeneity and social preference on contact 190

tracing can be probed by utilizing the same two modes of 191

network re-shuffling as in the previous section. In Fig. 4 192

we compare how the contact tracing algorithm performs on 193

the three networks. It is clear that the epidemic trajectory 194

of the true network is drastically altered by contact tracing, 195

with the attack rate and infection peak being profoundly 196

attenuated. In the two shuffled networks, on the other hand, 197

we see very little benefit from contact tracing. This leads to 198

the conclusion, that contact tracing depends strongly on social 199

network structure. Both edge-swapping and randomization 200

reduce contact monotonicity. To quantify this, we find that the 201

median fraction of contacts (of at least 60 minutes cumulative 202

duration) which are repeated from one week to the next is 30% 203

in the real network, while edge-swapping reduces this number 204
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Fig. 4. Contact tracing. Comparison of exposed + presymptomatic + infected (red)
and recovered (blue) individuals in the three networks types. Disease parameters are
identical to those of Fig. 3. The contact threshold for quarantining is approximately 2
hours (125 minutes) while the testing probability is set at 25%.

to zero. Evidently, this repetition of contacts is necessary for205

contact tracing.206

Estimating an optimal contact threshold for efficient trac-207

ing. When making public health decisions about COVID-19208

mitigation schemes, it is first and foremost important to have209

reliable predictions regarding the effectivity of the schemes.210

Next, however, it is advantageous to identify the parameters211

which influence the effectiveness. Some of these parameters are212

beyond our control – for example properties which are intrinsic213

to SARS-CoV-2 – while others can be partially controlled, or214

even constitute design decisions on our part.215

In the two following sections, we explore two central pa-216

rameters, namely the testing probability and contact threshold.217

The former determines the probability of being tested if sick,218

while the latter determines how readily quarantines are issued219

when contact with an infectious person has been established.220

The testing probability. The regular testing required in contact221

tracing is determined by a testing probability which reflects222

several factors not individually modeled here, such as general223

testing availability, symptom development and willingness to224

participate in testing. In Fig. 5a, we explore the influence of225

the testing probability on the peak load in terms of quarantined226

and exposed individuals.227

Unsurprisingly, the quarantine fraction vanishes at very228

low testing probabilities, where the infection peak attains229

its maximal value. While the infection load is a decreasing230

function of testing, the quarantine fraction does not display a231

simple monotonic response to an increase in testing. Rather, it232

attains a maximum around 10%, followed by a gradual decline.233

This clearly shows that changes in testing availability should234

go hand-in-hand with considerations of the influence on the235

quarantine fraction, and that the relation is nontrivial.236

Fig. 5. Contact tracing effectiveness. Disease parameters are identical to those of
Fig. 3. a) Testing probability vs peak infection and quarantine fraction. The contact
threshold is set at 125 minutes. b) Contact threshold vs peak infection and quarantine
fraction. The testing probability is set at 25%. For each value of the parameter, 50
simulations were run. The error bars indicate the standard deviation of outcomes of
individual simulations.
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The contact threshold. When performing contact tracing, it is237

necessary to define a contact threshold, meaning the minimum238

duration of proximity between an infectious and a susceptible239

person which results in quarantine. Setting a low contact240

threshold will thus intuitively lead to a large fraction of contact241

persons being placed in quarantine, when a positive individual242

is found. In Fig. 5b, the contact threshold is shown to have243

a profound effect on the infection peak as well as the peak244

fraction of the population in quarantine. As intuition would245

have it, the infection peak is clearly an increasing function of246

the contact threshold, while the quarantine fraction decreases.247

Above a contact threshold of approximately two hours of248

cumulative proximity, the quarantine fraction decreases only249

slowly. The peak infection load, on the other hand, increases250

steadily with the threshold, with a reduction of the epidemic251

peak down from 25% in the absence contact tracing to 8%252

when requiring at least 4 hours of cumulative contact within253

a 5 day window before quarantining. This goes to show that254

contact tracing is effective, even if it is only possible to locate255

frequent contacts (and 25% of the infected people).256

Discussion257

This paper explores the effect of contact heterogeneity on the258

dynamics and mitigation of an epidemic. In general, we observe259

that the social activity level of individuals is well approximated260

by an exponential distribution (see Fig. 2). This observation261

is consistent with the findings of (5), where a coefficient of262

variation of social contacts of about 0.8 was reported for263

people between 20 and 30 years. Further, person-specific social264

activity remains constant over longer time intervals where both265

the 1 day and the 7 week activity patterns have coefficients266

of variations close to 1. Thus the social activity represents267

a quenched disorder that significantly impedes the spread of268

the disease and makes the mitigation by contact tracing more269

efficient. In comparison with our results, traditional well-mixed270

S(E)IR models overestimate the severity of the epidemic, or,271

conversely, lead to an underestimation of transmission risk272

when fitted to an epidemic trajectory. In a previous modelling273

study (29), it was shown that heterogeneity in the susceptibility274

of individuals likewise reduces the overall severity.275

Recently, several studies have found significant heterogene-276

ity in COVID-19 transmission (30, 31). Relatedly, it was shown277

in an agent-based model that heterogeneity in infectiousness278

has a considerable impact on the feasibility of COVID-19279

mitigation strategies (32). Our main finding is that another280

type of heterogeneity, namely the social kind, has a similarly281

profound effect on the effectiveness of contact tracing (Fig. 4):282

Structured social networks make mitigation by tracing much283

more cost-effective. Correspondingly, models which neglect284

social clustering are likely to underestimate the feasibility of285

contact tracing schemes.286

We explore the effects of two central parameters, the testing287

probability and the contact threshold on the contact tracing288

scheme. The testing probability is influenced both by factors289

which are within our control, such as the overall availability of290

testing, and by factors which are essentially intrinsic to SARS-291

CoV-2, such as the rate at which symptoms develop. We find a292

non-trivial relation between testing probability and quarantine293

fraction, with a peak in quarantined individuals occurring at294

around 10% testing probability. The contact threshold, on295

the other hand, is a controllable parameter and essentially296

constitutes a design decision when e.g. developing contact 297

tracing applications (20). We conclude that contact tracing 298

remains effective, even if only relatively frequent contacts are 299

quarantined. 300
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