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Abstract24

The reproduction number R and the growth rate r are critical epidemiological quantities.25

They are linked by generation intervals, the time between infection and onward transmission.26

Because generation intervals are difficult to observe, epidemiologists often substitute serial27

intervals, the time between symptom onset in successive links in a transmission chain. Recent28

studies suggest that such substitution biases estimates of R based on r. Here we explore how29

these intervals vary over the course of an epidemic, and the implications for R estimation.30

Forward-looking serial intervals, measuring time forward from symptom onset of an infector,31

correctly describe the renewal process of symptomatic cases and therefore reliably link R32

with r. In contrast, backward-looking intervals, which measure time backward, and intrinsic33

intervals, which neglect population-level dynamics, give incorrect R estimates. Forward-34

looking intervals are affected both by epidemic dynamics and by censoring, changing in35

complex ways over the course of an epidemic. We present a heuristic method for addressing36

biases that arise from neglecting changes in serial intervals. We apply the method to early (2137

January – 8 February 2020) serial-interval-based estimates of R for the COVID-19 outbreak38

in China outside Hubei province; using improperly defined serial intervals in this context39

biases estimates of initialR by up to a factor of 2.6. This study demonstrates the importance40

of early contact-tracing efforts and provides a framework for reassessing generation intervals,41

serial intervals, and R estimates for COVID-19.42

Significance Statement43

The generation- and serial-interval distributions are key, but different, quantities in outbreak44

analyses. Recent theoretical studies suggest that the two distributions give different estimates45

of the reproduction number R as inferred from the observed exponential growth rate r.46

Here, we show that estimating R based on r and the serial-interval distribution, when47

defined from the correct reference time and cohort, gives the same estimate as using r and48

the generation-interval distribution. We apply our framework to serial-interval data from49

the COVID-19 outbreak in China, outside Hubei province (January 21–February 8, 2020),50

revealing systematic biases in prior inference methods. Our study provides the theoretical51

basis for practical changes to the principled use of serial interval distributions in estimating52

R during epidemics.53
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1 Introduction54

The reproduction number R is one of the most important characteristics of an emerging55

epidemic, such as the current pandemic of coronavirus disease 2019 (COVID-19) (Majumder56

and Mandl, 2020). The reproduction number is defined as the average number of secondary57

cases caused by a primary case. The value in a fully susceptible population — the “basic”58

reproduction number R0— allows us to predict the extent to which an infection will spread59

in the population, and the amount of intervention necessary to eliminate it in simple cases60

(Anderson and May, 1991). Since the reproduction number represents an average (Diekmann61

et al., 1990; Anderson and May, 1991), it fails to capture heterogeneity among individuals62

or across space. The reproduction number also fails to provide any information about the63

time scale of disease transmission.64

Estimating the reproduction number R is often challenging. Direct estimates based on65

observed infections will typically be biased down when some infections cannot be observed.66

A common method of estimating R near the beginning of an epidemic is based on the67

population-level exponential growth rate r, which can often be estimated robustly from case68

reports (Mills et al., 2004; Ma et al., 2014). The growth rate r and the reproduction number69

R are linked by the generation-interval distribution Wallinga and Lipsitch (2007), where the70

generation interval is defined as the time between when an individual (infector) is infected71

and when that individual infects another person (infectee) (Svensson, 2007).72

Since generation intervals measure time between infection events, which can be difficult73

to observe in practice, generation intervals are often replaced with serial intervals. The74

serial interval is defined as the time between when an infector and an infectee develop75

symptoms (Svensson, 2007). While generation and serial intervals both measure the time76

scale of disease transmission, they measure fundamentally different quantities. In particular,77

previous studies have noted that, in many contexts, serial intervals are expected to have larger78

variances than generation intervals but have the same mean in many contexts (Svensson,79

2007; Klinkenberg and Nishiura, 2011; te Beest et al., 2013; Champredon et al., 2018). Serial80

intervals can in some cases even take negative values in the presence of presymptomatic81

transmission (He et al., 2020), whereas generation intervals must be positive.82

Although these distributions were clearly and distinctly defined over a decade ago (Svens-83

son, 2007), the need for a better conceptual and theoretical framework for understanding84

their differences is becoming clearer as the COVID-19 pandemic unfolds. Researchers con-85

tinue to base inferences about COVID-19 on both generation and serial intervals without86

clearly distinguishing between them (e.g., Abbott et al. (2020); Du et al. (2020); He et al.87

(2020); Wu et al. (2020); Zhao et al. (2020)), and, in some cases, explicitly conflate the88

definitions of the two intervals (e.g., Anderson et al. (2020); Hellewell et al. (2020)). This89

confusion is apparent even in standard software for estimatingR, such as EpiEstim, in which90

the serial-interval distribution is used to infer time-dependent R (Thompson et al., 2019).91

These studies are examples of many—indeed, it is a common practice to use the serial and92

generation intervals interchangeably.93

One source of confusion arises from an apparent discrepancy between the generation-94

interval and serial-interval viewpoints. While the epidemic is growing exponentially, the95
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spread of infection can be characterized as a renewal process based on previous incidence96

of infection, the associated generation-interval distribution, and the average infectiousness97

of an infected individual. It is well established that this renewal formulation allows us to98

link the exponential growth rate of an epidemic r with its reproduction number R using the99

generation-interval distribution (Wallinga and Lipsitch, 2007). However, the serial-interval100

distribution also describes a renewal process — in this case, the creation of a new symp-101

tomatic case based on a symptomatic case in the previous generation. Since both renewal102

processes, based on either generation- or serial-interval distributions, describe the same un-103

derlying exponentially growing system, both should provide the same correct link between104

the reproduction number R and the epidemic growth rate r.105

In contexts where the serial- and generation-interval distributions differ, current theory106

has no explanation for how two different distributions could provide identical estimates of107

R from r. In fact, recent theory suggest that using the serial-interval can underestimate108

the reproduction number (Britton and Scalia Tomba, 2019; Ganyani et al., 2020). However,109

these studies rely on intrinsic distributions of incubation periods and generation intervals110

that neglect the population-level dynamics of disease spread.111

Here we show that, by correctly defining and calculating the “forward” serial-interval112

distribution (i.e., a distribution of serial intervals from a cohort of infectors that developed113

symptoms at the same time) that connects symptom onset dates, we can resolve this discrep-114

ancy. These forward intervals are different from the “intrinsic” serial intervals that previous115

studies have relied on (Svensson, 2007; Klinkenberg and Nishiura, 2011; te Beest et al., 2013;116

Champredon et al., 2018; Britton and Scalia Tomba, 2019). During an ongoing epidemic, all117

observed epidemiological delays (e.g., incubation period) between primary (e.g., infection)118

and secondary (e.g., symptom onset) events are subject to backward biases: when the inci-119

dence of primary events is increasing (or decreasing), we are more likely to observe shorter120

(respectively longer) intervals. In particular, when we consider forward serial-interval distri-121

butions, the incubation periods of the infectors are subject to backward biases because we122

have to look backward in time from their symptom onset to infection. Therefore, the realized123

incubation period distributions of the infector and the infectee can differ dynamically, even124

if the intrinsic analogues of the same distributions are expected to be equivalent.125

We develop a cohort-based framework for characterizing and comparing realized serial126

intervals, as well as any other epidemiological delays, and show that the initial forward serial-127

interval distribution correctly estimates R from r. Conversely, using inaccurately defined128

serial intervals or failing to account for changes in the observed serial-interval distributions129

over the course of an epidemic can considerably bias estimates of R. For example, in our130

analysis of the COVID-19 serial intervals from China, outside Hubei province, we find that131

the original R0 estimates based on aggregated serial-interval data underestimated R0 by132

a factor of 2.0–2.6. We further lay out several principles to consider in using information133

about serial intervals and other epidemiological time delays to correctly infer the initial134

reproduction number during the early stages of an outbreak.135
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2 Methods136

2.1 Intrinsic, forward, and backward delay distributions137

A time delay between two epidemiological events can involve either one infected individual138

(e.g., incubation period: infection and symptom onset of an individual) or two — an infector139

and an infectee (e.g., generation and serial intervals). We define the delay as the time140

difference between the primary event and the secondary event. In some cases, the primary141

event always occurs before the secondary event (e.g., the time from infection to onset of142

symptoms in a single individual, or the generation interval between two individuals). In143

other cases, the delay can sometimes be negative (e.g., the time from onset of infectiousness144

to onset of symptoms in a single individual, or the serial interval between two individuals).145

At the individual level, we can define the time distribution between a primary and a146

secondary event that we expect to observe for a single infected individual by averaging across147

individual characteristics — we refer to this distribution as the intrinsic distribution. For148

example, the intrinsic incubation period distribution describes the expected time distribution149

from infection to symptom onset of an infected individual. Likewise, the intrinsic generation-150

interval distribution describes the expected time distribution of infectious contacts made by151

an infected individual. However, the intrinsic time distributions are not always equivalent152

to the corresponding realized time distributions at the population level (i.e., the distribution153

of time between actual primary and secondary events that occur during an epidemic; see154

Fig. 1). For example, an infectious contact results in infection only if the contacted individual155

is susceptible (and has not already been infected) — this is one mechanism that causes156

realized generation intervals (time between actual infection events) to differ from from the157

intrinsic generation intervals (time between infection and infectious contacts) (Park et al.,158

2020). In this example, the difference between intrinsic and realized time distributions can159

be attributed to the fact that the fraction of susceptible individuals is itself dynamic.160

At the population level, we model realized time delays between a primary and a secondary161

event from a cohort perspective. A cohort consists of all individuals whose (primary or162

secondary) event occurred at a given time. For example, when we are measuring incubation163

periods, a primary cohort consists of all individuals who became infected at time p, while164

a secondary cohort consists of all individuals whose symptom onset occurred at time s.165

Similarly, when we are measuring serial intervals, a primary cohort consists of all infectors166

who became symptomatic at time p. Then, for a primary cohort at time p, we can define167

the distribution of realized delays between primary and secondary events. We refer to this168

distribution as the forward delay distribution and denote it as fp(τ).169

Likewise, we define the backward delay distribution bs(τ) for a secondary cohort at time170

s: The backward delay distribution describes the time delays between a primary and sec-171

ondary events given that the secondary event occurred at time s. For example, the backward172

incubation period distribution at time s describes incubation periods for a cohort of individ-173

uals who became symptomatic at time s. Likewise, the backward serial-interval distribution174

at time s describes serial intervals for a cohort of infectees who became symptomatic at time175

s.176
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Both forward and backward perspectives must yield identical measurement (e.g., the177

length of the incubation period of a given individual is the same whether measured forward178

from the time of infection or backward from the time of symptom onset). Consequently, no179

matter how delays are distributed, if P and S represent the sizes of primary and secondary180

cohorts then we can express the total density of intervals τ between calendar time p and s181

(i.e., τ = s− p) as follows:182

W (p)P(p)fp(τ) = S(s)bs(τ) , (1)

where W (p), the “weight” of the primary cohort, represents the average number of forward183

intervals that an individual in cohort P(p) produces over the course of their infection. When184

we measure within-individual delays, we expect W (p) ≤ 1 because only a subset of indi-185

viduals who experience the primary event (e.g., infection) will eventually experience the186

secondary event (e.g., symptom onset). For between-individual delays, we expect W (p) to187

change throughout an epidemic, because individuals infected earlier in an epidemic will infect188

more individuals on average than those infected later.189

Substituting p = s− τ , it follows that190

bs(τ) =
W (s− τ)P(s− τ)fs−τ (τ)

S(s)
. (2)

If we are considering incubation periods, the left hand side of this equation is the probability191

density that an individual who became symptomatic at time s had an incubation period192

of length τ . From the right hand side, we see that this probability density depends on193

the weight parameter W (s− τ) (in this case, the proportion of symptomatic infection), the194

time-varying primary cohort size at the earlier time P(s − τ) (in this case, the number of195

individuals infected at time s− τ), and the forward delay distribution fs−τ (τ) (in this case,196

the probability density that an incubation period that starts at time s− τ ends at time s).197

Several different mechanisms drive the changes in forward and backward delay distri-198

butions over time. Typically, within-individual forward delay distributions are not directly199

affected by epidemic dynamics. Some realized forward distributions, like incubation pe-200

riod distributions, are equivalent to their intrinsic distributions and remain invariant at the201

time scale of an outbreak. Other realized distributions, like the distribution of time from202

symptom onset to testing, may change over the course of an epidemic due to changes in203

public-health policies or individual behavior. Between-individual forward delay distribu-204

tions, such as generation- or serial-interval distributions, depend on epidemic dynamics. For205

example, forward generation intervals often become shorter as an epidemic progresses due to206

the dynamical process of susceptible depletion, as well as due to other factors like behavioral207

change or interventions (Kenah et al., 2008; Nishiura, 2010; Champredon and Dushoff, 2015):208

if it is harder to infect later in the course of infection, then proportionally more intervals will209

be short.210

Eq. (2) suggests that backward delay distributions change over time even if their corre-
sponding forward delay distribution does not change. Backward delay distributions depend
on changes in the primary cohort size over time due to conditionality of observations: Con-
ditioning on individuals whose secondary events have occurred at the same time means that
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we tend to observe shorter (or longer) inter-event delays when cohort size has been increasing
(decreasing) through time. When incidence is growing exponentially, we can calculate the
amount of bias exactly. Assuming that the forward delay distribution (fp(τ) ≈ f0(τ)) and
the weight parameter (W (p) ≈ W (0)) remain constant during the exponential growth phase,
we can substitute P(t) = P(0) exp(rt) in Eq. (2) to obtain:

b0(τ) = [W (0)P(0)/S(0)] exp(−rτ)f0(τ) (3)

where r is the exponential growth rate. Since b0 is a probability distribution, [W (0)P(0)/S(0)]−1 =211 ∫∞
−∞ exp(−rτ ′)f0(τ ′) dτ ′ corresponds to the normalization constant. Therefore, the backward212

delay distribution during the exponential growth phase depends only on the exponential213

growth rate r and the initial forward delay distribution f0.214

The mean backward interval will be always shorter than the mean forward interval as215

long as r > 0. Even for different epidemics of the same disease, we expect to observe shorter216

backward intervals within a fast-growing epidemic (high r), all else being equal. In general,217

the backward delay distribution will differ from the forward delay distribution (unless the218

disease is at equilibrium), even if we are measuring time delays that are intrinsic to the219

life history of a disease (e.g., the incubation period). These ideas apply to all epidemiolog-220

ical delay distributions and generalize the work by Champredon and Dushoff (2015) who221

compared forward and backward generation-interval distributions to describe realized gener-222

ation intervals from the perspective of an infector and an infectee, respectively, as well as the223

work by Britton and Scalia Tomba (2019) who showed that Eq. (3) holds for the backward224

generation-interval distribution.225

2.2 Realized serial-interval distributions226

The serial interval is defined as the time between when an infector becomes symptomatic227

and when their infectee becomes symptomatic (Svensson, 2007). Previous studies have often228

expressed serial intervals τs in the form (Fig. 1A):229

τs = (τg + τi2)− τi1 (4)

where τi1 and τi2 represent incubation periods of an infector and an infectee, respectively, and230

τg represents the generation interval between the infector and the infectee. These studies231

concluded that the serial and generation intervals have the same mean when τi1 and τi2232

are drawn from the same distributions (Svensson, 2007; Klinkenberg and Nishiura, 2011;233

Champredon et al., 2018; Britton and Scalia Tomba, 2019). However, distributions of realized234

incubation periods, τi1 and τi2 will be identical only if we assume that they are intrinsic to235

individuals (and not dependent on epidemic dynamics at the population-level) — something236

that is generally true of forward but not backward incubation-period distributions. We refer237

to the definition Eq. (4) as the intrinsic serial interval (Fig. 1A).238

To correctly link the realized serial-interval distribution to the renewal process between239

cases based on symptom onset dates, we must use the forward serial interval (i.e., use the240

perspective of a cohort of infectors that share the same symptom onset time). Given that241
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p+ τi1p
Infector (reference cohort) Infectee

p+ τg p+ τg + τi2

Intrinsic serial interval, τs = (τg + τi2)− τi1

Intrinsic incubation period, τi1

Intrinsic generation interval, τg

Intrinsic incubation period, τi2

A. Intrinsic serial interval

pp− τi1
Infector Reference cohort Infectee

p− τi1 + τg p− τi1 + τg + τi2

Forward serial interval, τs = (τg + τi2)− τi1

Backward incubation period, τi1

Forward generation interval, τg

Forward incubation period, τi2

B. Forward serial interval

ss− τi2s− τi2 − τg s− τi2 − τg + τi1
Infector Infectee Reference cohort

Backward serial interval, τs = (τg + τi2)− τi1

Backward incubation period, τi2

Backward generation interval, τg

Forward incubation period, τi1

C. Backward serial interval

Figure 1: Illustration of intrinsic, forward and backward serial intervals. (A)
The intrinsic serial interval for a cohort of individuals infected at time p. In this case, τi1
is drawn from the intrinsic incubation period distribution; τg is drawn from the intrinsic
generation-interval distribution; and τi2 is drawn from the intrinsic incubation period distri-
bution. (B) The forward serial interval for a cohort of infectors who became symptomatic
at time p. In this case, τi1 is drawn from the backward incubation period distribution; τg is
drawn from the forward generation-interval distribution; and τi2 is drawn from the forward
incubation period distribution. (C) The backward serial interval for a cohort of infectees
who became symptomatic at time s. In this case, τi1 is drawn from the forward incubation
period distribution; τg is drawn from the backward generation-interval distribution; and τi2
is drawn from the backward incubation period distribution. Intrinsic intervals (black) reflect
average of individual characteristics and are not dependent on population-level dynamics.
Forward intervals (green) can change due to epidemiological dynamics (e.g., contraction of
generation intervals through susceptible depletion). Backward intervals (blue) can change
due to changes in cohort sizes even when forward intervals remain time-invariant.
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an infector became symptomatic at time p, to calculate the forward serial interval we first242

go backward in time to when the infector was infected, and then forward in time to when243

the infectee was infected, and then forward again to when the infectee became symptomatic.244

In Fig. 1B, we see that τi1 is drawn from the backward incubation period distribution of245

the cohort of infectors who became symptomatic at time p; τg is drawn from the forward246

generation-interval distribution of the cohort of infectors who became infected at time p−τi1;247

and τi2 is drawn from the forward incubation period distribution of the cohort of infectees who248

became infected at time p − τi1 + τg. Likewise, we can define the backward serial-interval249

distribution for a cohort of infectees who became symptomatic at time s(Fig. 1C). This250

conceptual framework demonstrates that the distributions of τi1, τg, and τi2 (and therefore251

the distributions of realized serial intervals) depend on the reference cohort, which is defined252

by temporal direction (forward or backward) and a particular reference time.253

To calculate realized serial-interval distributions, we begin by modeling T (p, s): the total254

density of serial intervals that start (when infectors develop symptoms) at time p and end255

(when infectees develop symptoms) at time s. For simplicity, we assume that all infected256

individuals eventually develop symptoms. Then, the density of serial intervals between time257

p and s, given that the infectors became infected at time α1 ≤ p and the infectees became258

infected at time α2 ≤ s, depends on the amount of infection that occurs between time α1 and259

α2 as well as the density of forward incubation periods between α1 and p (realized incubation260

periods of infectors) and between α2 and s(realized incubation periods of infectees):261

T (p, s|α1, α2) = Rc(α1)︸ ︷︷ ︸
case

reproduction
number

× i(α1)︸ ︷︷ ︸
incidence

of
infection

×hα1(p− α1, α2 − α1)︸ ︷︷ ︸
joint density of

forward incubation
periods p−α1 and forward
generation intervals α2−α1

(of infectors)

× `α2(s− α2)︸ ︷︷ ︸
marginal density of
forward incubation

periods s−α2

(of infectees)

, (5)

where the case reproduction number Rc(α1) is defined as the average number of secondary262

cases that a primary case infected at time α1 will generate over the course of their infection263

(Fraser, 2007). We describe the forward incubation periods and the forward generation264

intervals using a joint probability distribution because onset of symptoms and transmission265

potential jointly depend on the life history of a disease; for example, if an infected individual266

can only transmit the disease after symptom onset, the forward generation interval will267

necessarily be longer than the forward incubation period.268

The total density of serial intervals between time p and s can now be obtained by inte-269

grating over all possible infection times for the infector and the infectee:270

T (p, s) =

∫ p

−∞

∫ s

α1

T (p, s|α1, α2) dα2 dα1. (6)

Then, the forward serial-interval distribution fp(τ) is given by the density of intervals of271

length τ starting at time p, relative to the total number of serial intervals starting at time272

p:273

fp(τ) =
T (p, p+ τ)∫∞

−∞ T (p, p+ τ ′) dτ ′
. (7)
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Likewise, the backward serial-interval distribution bs(τ) is given by the density of intervals274

of length τ ending at s, relative to the total number of serial intervals ending at s:275

bs(τ) =
T (s− τ, s)∫∞

−∞ T (s− τ ′, s) dτ ′
. (8)

The denominator of the forward serial-interval distribution (Eq. (7)) then corresponds276

to the total number of infections generated by primary cases who themselves developed277

symptoms at time p. Dividing this quantity by the number of individuals who developed278

symptoms at time p, j(p) =
∫∞
−∞ T (p− τ ′, p) dτ ′, we obtain the serial reproduction number:279

Rs(p) =

∫∞
−∞ T (p, p+ τ ′) dτ ′

j(p)
, (9)

which we define as the average number of infections generated by an individual who developed280

symptoms at time p. Combining the forward serial-interval distribution with the serial281

reproduction number completes the renewal process between symptomatic cases:282

j(t) =

∫ ∞
−∞
Rs(t− τ)j(t− τ)ft−τ (τ) dτ. (10)

This framework allows us to understand changes in the realized serial intervals for any epi-283

demic model and properly link serial-interval distributions with the renewal process. In284

addition, assuming that the reproduction number as well as the forward serial-interval dis-285

tribution remain constant during the exponential growth phase, we can substitute j(t) ≈286

j(0) exp(rt), Rs(t) ≈ Rs(0), and ft−τ (τ) ≈ f0(τ) to obtain:287

1

Rs(0)
=

∫ ∞
−∞

exp(−rτ)f0(τ)dτ. (11)

Therefore, the initial forward serial-interval distribution, f0(τ), provides the correct link288

between the exponential growth rate r and the initial serial reproduction number Rs(0).289

We re-visit this idea later in Section 2.4 and show that the initial forward serial-interval290

distribution provides the same r–R link as the intrinsic generation-interval distribution.291

2.3 Epidemic model292

We illustrate changes in forward and backward serial intervals over the course of an epi-
demic by applying our framework to a specific example of an epidemic model. We model
disease spread with a renewal-equation model (Heesterbeek and Dietz, 1996; Diekmann and
Heesterbeek, 2000; Roberts, 2004; Aldis and Roberts, 2005; Roberts and Heesterbeek, 2007;
Champredon et al., 2018). Ignoring births and deaths, changes in the proportion of suscep-
tible individuals S(t) and incidence of infection i(t) can be described as:

dS

dt
= −i(t)

i(t) = R(t)

∫ ∞
0

i(t− τ)g(τ) dτ, (12)
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where R(t) is the instantaneous reproduction number (i.e., the average number of secondary293

cases that a primary case infected at time t will generate if conditions at time t remain294

unchanged (Fraser, 2007)), and g(τ) is the intrinsic generation-interval distribution (i.e., the295

forward generation-interval distribution of a primary case in a population where changes in296

R(t) is negligible (Champredon and Dushoff, 2015)). This model assumes that g(τ) remains297

constant through time – in other words, that epidemic dynamics are driven by changes in298

transmission rate. This assumption may not be well suited to individual-based intervention299

such as case isolation (Fraser, 2007); nonetheless, this form has been widely used in the300

literature and has been successfully applied in modeling the current COVID-19 pandemic301

(Gostic et al., 2020).302

Here, changes in reproduction number can be modeled as a product of the basic repro-303

duction number R0, proportion susceptible S(t), and a time-dependent factor M(t) (for304

example, accounting for nonpharmaceutical interventions and behavioral changes): R(t) =305

R0S(t)M(t); Flaxman et al. (2020) used a similar framework to evaluate the impact of306

nonpharmaceutical interventions on the spread of COVID-19 in 11 countries. Then, the307

forward generation-interval for a cohort of individuals that were infected at time p follows308

(Champredon and Dushoff, 2015):309

gp(τ) =
g(τ)S(p+ τ)M(p+ τ)∫∞

0
g(τ ′)S(p+ τ ′)M(p+ τ ′) dτ ′

, (13)

which allows us to separate the joint probability distribution hp of the forward incubation310

period and the forward generation-interval distribution as a product of the proportion of311

susceptible individuals S and the joint probability distribution h of the forward incubation312

period and the intrinsic generation intervals:313

hp(x, τ) =
h(x, τ)S(p+ τ)M(p+ τ)∫∞

0

∫∞
0
h(x′, τ ′)S(p+ τ ′)M(p+ τ ′) dτ ′ dx′

. (14)

We further assume that the forward incubation period distribution does not vary across
cohorts over the course of an epidemic, as it represents the life history of a disease; we
denote it as `. Then, we have:

`(x) =

∫ ∞
0

h(x, τ) dτ,

g(τ) =

∫ ∞
0

h(x, τ) dx. (15)

Finally, the case reproduction for this model is defined as follows:314

Rc(t) = R0

∫ ∞
0

g(τ)S(t+ τ)M(p+ τ) dτ. (16)

The forward and backward serial-interval distributions are then calculated by substituting315

these quantities into Eq. (7) and Eq. (8). We use this framework to illustrate how the realized316
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epidemiological time distributions vary over the course of an epidemic and depend on the317

perspective (i.e., forward vs. backward).318

For simplicity, we let M = 1 and assume that epidemic dynamics depend only on sus-319

ceptible depletion in our simulations. Since we are interested in the initial epidemic growth320

phase (i.e., linking r to R), we expect R(t) to remain roughly constant during this period. In321

addition, qualitative effects of M that reduces R(t) monotonically over time will be similar322

to the impact of susceptible depletion under this modeling framework. Therefore, general323

conclusions we draw from our analysis is expected to be robust—however, detailed shape of324

the epidemic curve and changes in generation- and serial-intervals can still depend on the325

shape of M .326

2.4 Linking r and R327

During the initial phase of an epidemic, the proportion susceptible remains approximately328

constant (S(t) ≈ S(0)) and incidence of infection grows exponentially: i(t) ≈ i0 exp(rt).329

During this period, the intrinsic generation-interval distribution provides the correct link330

between the exponential growth rate r and the initial reproduction number R = R0S(0)331

based on the Euler-Lotka equation (Wallinga and Lipsitch, 2007). Here, we focus on the332

estimates of the basic reproduction number R0 (the value of R in a fully susceptible popu-333

lation, S(t) ≈ 1):334

1

R0

=

∫ ∞
0

exp(−rτ)g(τ) dτ. (17)

Analogous to the intrinsic generation-interval distribution, forward serial-interval distribu-335

tions describe the renewal process between symptomatic cases. Therefore, we expect the336

forward serial-interval distribution during the exponential growth phase — which we refer to337

as the initial forward serial-interval distribution f0 — to estimate the same value of R0 for338

a given r as the intrinsic generation-interval distribution (note, however, that the forward339

serial interval is not necessarily positive):340

1

R0

=

∫ ∞
−∞

exp(−rτ)f0(τ)dτ. (18)

Here, the initial forward serial-interval distribution is given by:341

f0(τ) =
1

φ

∫ 0

−∞

∫ τ

α1

exp(rα1)h(−α1, α2 − α1)`(τ − α2) dα2 dα1, (19)

where the normalization constant φ is determined by the requirement that
∫∞
−∞ f0(τ) dτ = 1.342

We provide a mathematical proof of this relationship in Supplementary Materials. Since we343

do not make any assumptions about the shape of the joint distribution h between incubation344

periods and the generation intervals, Eq. (18) holds in general whether or not there is a345

presymptomatic transmission period.346

We further compare this with the estimate of R0 based on the intrinsic serial-interval347

distribution q(τ):348

1

Rintrinsic

=

∫ ∞
−∞

exp(−rτ)q(τ)dτ. (20)
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The intrinsic serial-interval distribution q(τ) does not depend on epidemic dynamics, and is349

given by:350

q(τ) =
1

φq

∫ 0

−∞

∫ τ

α1

h(−α1, α2 − α1)`(τ − α2) dα2 dα1, (21)

where the normalization constant φq is determined by the requirement that
∫∞
−∞ q(τ) dτ = 1.351

Rather than numerically integrating over closed forms of g, f0, and q to estimate R0, we use352

simulation-based approaches for simplicity (Supplementary Materials).353

The initial forward serial-interval distribution depends on the exponential growth rate354

r. For a fast-growing epidemic (high r), we expect the backward incubation periods to be355

short (Eq. (3)), meaning that presymptomatic transmission is less likely to occur. Therefore,356

the initial forward serial-interval distribution will generally have a larger mean than the in-357

trinsic generation- and serial-interval distributions. However, the exact shape of the initial358

forward serial-interval distribution depends on the shape of the joint distribution. For ex-359

ample, the Susceptible-Exposed-Infected-Recovered model, under the additional assumption360

that the incubation and exposed periods are equivalent (i.e. that onset of symptoms and361

infectiousness occur simultaneously), provides a special case. In this case, the forward serial-362

and generation-intervals follow the same distributions during the exponential growth phase363

because (i) infected individuals can only transmit after symptom onset and (ii) the time be-364

tween symptom onset and infection is independent of the incubation period of an infector (see365

Supplementary Materials). Everywhere else in this paper, however, we do not assume that366

the incubation and exposed periods are equivalent. Instead, we allow for presymptomatic367

transmission in the model in order to reflect the transmission dynamics of COVID-19.368

2.5 Model parameterization369

We have shown that the dynamics of the serial-interval distribution depend on the joint370

distribution between incubation periods and generation intervals. Here, we use a bivariate371

lognormal distribution to model the joint probability distribution h of intrinsic incubation372

periods and intrinsic generation intervals (in the renewal equation model, Eq. (12)) while373

allowing for the possibility that they might be correlated. Given that the viral load of SARS-374

CoV-2 peaks around the time of symptom onset (He et al., 2020), we generally expect the375

generation intervals to be positively correlated with the incubation period: that is, individu-376

als who develop symptoms later are more likely to transmit later. Marginal distributions of377

incubation periods and generation intervals are parameterized based on parameter estimates378

for COVID-19 (Table 1). For simplicity, we consider four values for the correlation coeffi-379

cients (on the log scale) of the bivariate lognormal distribution: ρ = 0, 0.25, 0.5, 0.75. This380

parameterization allows for generation intervals to be shorter than the incubation period,381

allowing for presymptomatic transmission.382
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Parameter Values Source
Mean intrinsic incubation period 5.5 days Lauer et al. (2020)
SD intrinsic incubation period 2.4 days Lauer et al. (2020)
Mean intrinsic generation interval 5.0 days Ferretti et al. (2020)
SD intrinsic generation interval 1.9 days Ferretti et al. (2020)

Table 1: Parameter values used for simulations. The intrinsic incubation period dis-
tribution is parameterized using a log-normal distribution with log mean µI = 1.62 and log
standard deviation σI = 0.42. The intrinsic generation-interval distribution is parameter-
ized using a log-normal distribution with log mean µG = 1.54 and log standard deviation
σG = 0.37. Log mean and log standard deviations represent the mean and standard de-
viations of the underlying normal distributions, which are later exponentiated. The joint
probability distribution is modeled using a bivariate log-normal distribution with correlations
(on the log scale) ρ = {0, 0.25, 0.5, 0.75}. The intrinsic incubation period and generation-
interval distributions are chosen to match characteristic of COVID-19 to illustrate realistic
magnitudes of time-varying/perspective effects in the current pandemic.

3 Results383

We use parameter estimates for COVID-19 to characterize the degree to which the realized384

serial-interval distribution can change over the course of an epidemic and to evaluate how385

different definitions of the serial-interval distribution can affect the Euler-Lotka estimates of386

R0. We further address how the observed serial intervals, measured through contact tracing,387

are affected by right censoring during an ongoing epidemic and provide a heuristic method388

for addressing biases that can arise from using serial-interval data to estimateR0. Finally, we389

analyze serial-interval data from the COVID-19 epidemic in China, outside Hubei province,390

based on 468 transmission events reported between January 21–February 8, 2020, under our391

framework.392

3.1 Realized serial-interval distributions during the exponential393

growth phase394

Fig. 2 shows Euler-Lotka estimates of R0 based on different definitions of the serial interval.395

When the initial forward serial-interval distribution f0(τ) is used, estimates (from Eq. (18))396

exactly match the (correct) generation-interval-based estimates (Eq. (17)) for all values of397

the correlation ρ between the intrinsic incubation period and the intrinsic generation inter-398

val (Fig. 2A). When the intrinsic distributions are used, however, estimates based on the399

serial interval (Eq. (20)) underestimate R0: as r increases, Rintrinsic saturates and eventually400

decreases due to the increasing inferred importance of negative serial intervals (Fig. 2B).401

While the initial forward serial intervals during the exponential growth phase can also be402

negative, their effects are appropriately balanced because faster epidemic growth leads to403

longer serial intervals (and a corresponding lower proportion of negative intervals).404
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Figure 2: Estimates of the reproduction number from the exponential growth
rate based on serial- and generation-interval distributions. (A). The initial forward
serial-interval distributions give the correct link between the exponential growth rate r and
the reproduction number R0, for any correlation ρ between intrinsic incubation period and
intrinsic generation interval of the underlying bivariate log-normal distribution. (B) The
intrinsic serial-interval distributions give an incorrect link between r and R0. (C) The mean
initial forward serial interval during the exponential growth phase increases with r. (D) The
squared coefficient of variation of the initial forward serial intervals during the exponential
growth phase decreases with r.

Comparing the shapes of the initial forward serial-interval distribution (Eq. (19)) and the405

intrinsic generation-interval distribution allows us to better understand how different forward406

distributions lead to identical estimates of R0. In general, distributions with higher means407

and less variability lead to higher R0 for a given r (Wallinga and Lipsitch, 2007; Weitz and408

Dushoff, 2015; Park et al., 2019). When incidence is growing exponentially, forward serial409

intervals have higher means (Fig. 2C) and squared coefficients of variation (Fig. 2D) than the410

intrinsic generation-interval distribution. The effects of higher means (which increase R0)411
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exactly cancel those of higher variability (which decrease R0). On the other hand, intrinsic412

serial intervals (Eq. (21)) have the same mean (equal to the mean initial forward serial at413

r = 0 in Fig. 2C) as the intrinsic generation intervals but are more variable (also see squared414

coefficient of variation of the initial forward serial-interval distribution at r = 0 in Fig. 2D);415

therefore, we underestimate R0 when we use the intrinsic serial-interval distribution.416

3.2 Realized serial-interval distributions during an ongoing epi-417

demic418

The initial forward serial-interval distribution captures the exponential growth phase of an419

epidemic. We now explore how forward and backward serial intervals can vary over the course420

of an epidemic using deterministic and stochastic simulations based on the renewal equations421

(see Supplementary Materials) using parameters in Table 1; we further assume R0 = 2.5422

to reflect the transmission dynamics of COVID-19 in China (Park et al., 2020). While423

the forward serial-interval distribution is our primary focus, understanding the differences424

between the forward and the backward distributions is important because the observed425

intervals during an ongoing epidemic are often the backward ones: we typically identify426

infected individuals and ask when and by whom they were infected. Similarly, when we are427

estimating the incubation period of an individual, we typically observe their symptom onset428

date and try to estimate when they were infected (e.g., Backer et al. (2020)).429

Fig. 3 shows the epidemiological dynamics (A) together with the mean forward (B–D) and430

the mean backward (E–G) delay distributions of a deterministic model based on the renewal431

equation (Eq. (12)) and of the corresponding stochastic realizations based on individual-432

based simulations. The mean forward incubation period remains constant throughout an433

epidemic by assumption (Fig. 3B). The mean forward generation interval decreases slightly434

when incidence is high, which is when the susceptible population declines rapidly (Fig. 3C;435

Kenah et al. (2008); Champredon and Dushoff (2015)). In contrast, the mean forward serial436

interval decreases over time (Fig. 3D).437

The forward serial-interval distributions depend on distributions of three intervals (Fig. 1B):438

(i) the backward incubation period, (ii) the forward generation interval, and (iii) the for-439

ward incubation period. In these simulations, both forward incubation period (Fig. 3B) and440

generation-interval (Fig. 3C) distributions remain roughly constant; therefore, changes in441

the forward serial-interval distributions (Fig. 3D) are predominantly driven by changes in442

the backward incubation period distribution, whose mean increases over time as the growth443

rate of disease incidence slows and then reverses. In general, relative contributions of the444

three distributions depend on their shapes, correlations between intrinsic incubation periods445

and generation intervals, and overall epidemiological dynamics.446

We see similar qualitative patterns in all three backward delays (Fig. 3E–G; Eq. (2)),447

because they are predominantly driven by the rate of change in incidence, which in turn448

affects relative cohort sizes. When incidence is increasing, individuals are more likely to have449

been infected recently, and therefore we are more likely to observe shorter intervals (Eq. (3)).450

Similarly, when incidence decreases, we are more likely to observe longer intervals. Neglecting451

these changes will bias the inference of intrinsic distributions from observed distributions.452
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Figure 3: Epidemiological dynamics and changes in mean forward and backward
delay distributions. (A) Daily incidence over time. (B–D) Changes in the mean forward
incubation period, generation interval, and serial interval. (E–G) Changes in the mean
backward incubation period, generation interval, and serial interval. Black (A) and colored
(B–G) lines represent the results of a deterministic simulation. Gray lines (A) represent
the results of 10 stochastic simulations. Colored points (B-G) represent the average of 10
stochastic simulations. Dashed lines represent the mean initial forward delay. Forward
and backward delays are colored according to Fig. 1. In order to remove possible transient
dynamics (e.g., left-censoring of time delays and initial stochasticity due to low number of
infections), we set t = 0 to the first time point when daily incidence is greater than 100.
Intrinsic incubation periods and intrinsic generation intervals are assumed to be independent
of each other for simplicity. See Supplementary Materials for simulations with correlated
incubation periods and generation intervals. See Table 1 for parameter values.
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3.3 Observed serial-interval distributions453

ID Symptom onset date 
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Symptom onset date 
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Serial interval 
(days)

1 Day 1 Day 4 3
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6 Day 3 Day 8 5

7 Day 1 Day 10 9
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Figure 4: Estimating the reproduction number from the observed serial intervals.
(A) Schematic representation of line list data collected during an epidemic. (B) Estimates
of R0 based on all observed serial intervals completed by a given time. (C) Schematic
representation of line list data rearranged by symptom onset date of infectors. (D) Estimates
of R0 based on all observed serial intervals started by a given time. Black dashed lines
represent the mean initial forward serial interval and R0. Black solid lines represent the
mean intrinsic serial interval and Rintrinsic. Colored solid lines represent the mean estimates
of R0 across 10 stochastic simulations. Colored ribbons represent the range of estimates of
R0 across 10 stochastic simulations.

Now, we turn to practical issues of estimating the reproduction number from the observed454

serial-interval data during on ongoing epidemic. In order to have an unbiased estimate of the455

basic reproduction number, we need to estimate the initial forward serial-interval distribution456

— i.e., serial intervals based on cohorts of infectors who share the same symptom onset time,457

at the early stage of the epidemic. However, researchers typically use all available information458

to estimate epidemiological parameters (e.g., aggregating all serial intervals observed until459
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certain time of an epidemic). For example, Thompson et al. (2019) recently suggested that460

up-to-date serial-interval data are necessary to accurately estimate the reproduction number.461

We explore the consequences of neglecting changes in the realized serial-interval distribution462

on estimates of the basic reproduction number.463

When an epidemic is ongoing, the observed serial intervals are subject to right-censoring464

because we cannot observe a serial interval if either an infector or an infectee has not yet465

developed symptoms. For example, if we were to measure serial intervals on Day 8 as in466

Fig. 4A, we will only be able to observe the first 6 events (ID 1–6). Fig. 4B demonstrates how467

the effect of right-censoring in the observed serial intervals translates to the underestimation468

of the basic reproduction number R0 in our stochastic simulations (assuming R0 = 2.5469

as in Fig. 3). Notably, even if we could observe and aggregate all serial intervals across all470

transmission pairs after the epidemic has ended, we would still underestimate the initial mean471

forward serial interval (and therefore R0), likely by a large amount. The observed serial-472

interval distribution converges to the intrinsic serial-interval distribution as the incubation473

periods and generation intervals will no longer be subject to backward biases. In fact,474

we would even underestimate the intrinsic value slightly due to contraction of the forward475

generation-interval distribution during the susceptible depletion phase (Fig. 3C). Therefore,476

aggregated distributions of serial intervals that have been collected throughout different477

periods of an epidemic must be interpreted with care.478

Here, we provide a heuristic way of assessing potential biases in the estimate of the479

mean initial forward serial interval and therefore R0 retrospectively. We can rearrange the480

line list and group observed serial intervals based on the symptom onset date of infectors481

(Fig. 4C)—as we showed earlier, serial intervals that share the same symptom onset date of482

a primary case give us the forward serial-interval distribution. Then, we can compare how483

the shape of the serial-interval distribution (particularly its mean) as well as the estimate484

of R0 change as we incorporate more recent cohorts into the analysis: that is, we analyze485

observed serial intervals from infectors who became symptomatic before time t and evaluate486

how the estimates change as we increase t. This approach is analogous to averaging over a487

set of forward intervals, just as using all information up to a certain time is analogous to488

averaging over a set of backward intervals (Fig. 4D); the major difference is that we we focus489

on serial intervals that begin in a certain period, rather than those that end in a certain490

period. During the exponential growth phase, the estimates of the mean serial interval and491

R0 are consistent with the true value (see ‘initial forward’ in Fig. 4B,D); adding more data492

allows us to make more precise inference during this period. However, the cohort-averaged493

estimates decrease rapidly soon after the exponential growth period, reflecting changes in the494

forward serial-interval distributions. This approach allows us to detect dynamical changes495

in the forward serial-interval distributions and their effect on the estimates of R0.496

3.4 Applications to the COVID-19 pandemic497

Finally, we re-analyze serial intervals of COVID-19 collected by Du et al. (2020) from main-498

land China, outside Hubei province, based on 468 transmission events reported between499

January 21–February 8, 2020. Du et al. (2020) estimated the mean serial interval of 3.96500
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Figure 5: Observed serial intervals of COVID-19 and cohort-averaged estimates
of R. (A) Symptom onset dates of all individuals within 468 transmission pairs included
in the contact tracing data. (B–C) forward and backward serial intervals over time. Serial
interval data have been grouped based on the symptom onset dates of primary (B) and
secondary (C) cases. Points represent the means. Vertical error bars represent the 95% equi-
tailed quantiles. Solid lines represent the estimated locally estimated scatterplot smoothing
(LOESS) fits. The dashed line represents the maximum and minimum observable delays
across the range of reported symptom onset dates. (D) Cohort-averaged estimates of R0

assuming doubling period of 6 and 8 days (Li et al., 2020; Wu et al., 2020). Ribbons represent
the associated 95% bootstrap confidence intervals. The data were taken from Supplementary
Materials of Du et al. (2020).

days (95% CI 3.53–4.39 days) and R0 of 1.32 (95% CI 1.16–1.48). Fig. 5A shows the distri-501
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bution of symptom onset dates of all individuals within 468 transmission pairs (consisting a502

total of 752 unique individuals), resembling a COVID-19 epidemic curve in China (cf. Fig. 1503

in Pan et al. (2020)). In order to quantify changes in serial intervals, we group them by the504

symptom onset dates of the primary (Fig. 5B) and secondary (Fig. 5C) cases—corresponding505

to forward and backward serial-interval distributions, respectively—and compute their mean506

and 95% quantiles. Fig. 5B shows that the mean forward serial interval decreases over time.507

While the decrease is likely to be affected by the right-censoring (indicated by the close-508

ness between the quantiles of the observed serial intervals and maximum observable serial509

intervals), the increase in the proportion of negative serial intervals indicates changes in the510

forward serial-interval distribution; this proportion is unlikely to be affected by left-censoring511

(based on the gap between the quantiles of the observed serial intervals and minimum ob-512

servable serial intervals). The decrease in the mean forward serial interval was probably513

driven by interventions against spread. Interventions during this time period both decreased514

(and then reversed) the growth rate of COVID-19 cases — thus increasing the backward515

incubation period — and also reduced generation intervals, by preventing infections once516

cases were identified. Both of these would have acted to reduce the forward serial interval.517

Fig. 5C shows that the mean backward serial interval increased over time, also likely driven518

directly by the decrease in COVID-19 infections.519

While the qualitative changes in the mean forward and backward serial interval are con-520

sistent with our earlier simulations (Fig. 3), the initial mean forward serial interval (Fig. 5B)521

appears to be larger than what we calculated based on previously estimated incubation522

period and generation-interval distributions (Fig. 2C). This difference may imply that the523

incubation period and generation interval (Table 1) were underestimated, as neither study524

explicitly accounted for the fact that the observed intervals were drawn from the backward525

distributions and were likely to have been censored.526

Fig. 5D shows the cohort-averaged estimates of R0, which remain roughly constant until527

day January 17th and suddenly decreases; this sudden decrease is due to changes in the528

forward serial intervals consistent with the dynamics seen in our simulations (Fig. 4). The529

cohort-averaged estimates ofR0 based on the early forward serial intervals are also consistent530

with previous estimates of R0 of the COVID-19 epidemic in China (Majumder and Mandl,531

2020; Park et al., 2020): R0 = 2.6 (95% CI: 2.2–3.1) and R0 = 3.4 (95% CI: 2.7 – 4.3) based532

on a doubling period of 8 or 6 days, respectively, using serial-interval data from infectors533

who developed symptoms by January 17th. These early cohort-averaged estimates of R0534

are unlikely to be affected by the right-censoring as we expect the degree of right-censoring535

to be low (Fig. 5A). Therefore, the original R0 estimate of 1.32 (95% CI 1.16-–1.48), which536

neglects the changes in the forward serial-interval distribution, underestimatesR0 by a factor537

of 2.0–2.6. This example demonstrates the danger of using the observed serial intervals to538

calculate the reproduction number without organizing serial intervals into cohorts.539

21

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 27, 2020. ; https://doi.org/10.1101/2020.06.04.20122713doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20122713
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 Discussion540

Generation and serial intervals determine the time scale of disease transmission, and are541

therefore critical to dynamical modeling of infectious outbreaks. We have shown that the542

initial forward serial-interval distribution — measured from the cohort of infectors who543

developed symptoms during the exponential growth phase of an epidemic — provides the544

correct link between the exponential growth rate r and the initial reproduction number R.545

In general, the forward serial-interval distributions will not match the intrinsic serial-interval546

distribution (which has the same mean as the intrinsic generation-interval distribution) be-547

cause the incubation period of the infectors (conditional on their symptom onset date of548

the infector) will be subject to backward biases. In particular, the mean forward serial in-549

terval can decrease over time for COVID-19 as individuals who develop symptoms later in550

an epidemic are more likely to have longer incubation periods, and therefore have greater551

opportunity to transmit presymptomatically. Failing to account for these effects can result552

in underestimation of initial R.553

Recently, Ali et al. (2020) also showed that forward serial intervals of COVID-19 decreased554

through time in China. They grouped serial intervals by the symptom onset date of infectors555

across 14-day periods and found that the mean forward serial interval decreased from 7.8556

days to 2.6 days. While they attributed the decrease in serial intervals to reduction of the557

isolation delay, their regression analysis showed that isolation delays explain only 51.5% of558

the variation in serial intervals (they could explain up to 72% of the variance by including559

other intervention measures). Our framework provides an explanation for the remaining560

variation: changes in the backward incubation period during the decreasing phase of an561

epidemic act to further shorten serial intervals due to increased amount of presymptomatic562

transmission (even in the absence of nonpharmaceutical interventions). Isolation delays and563

other intervention measures affect the amount of onward transmission, and therefore the564

distribution of realized (forward) generation intervals. They therefore are not expected to565

explain all the variation in forward serial intervals, since these additionally depend on both566

the backward incubation period of the infector and the forward incubation period of the567

infectee (Fig. 1B).568

Our results support the use of serial-interval distributions for calculating the R during569

the exponential growth phase, but they also reveal gaps in current practices in incorpo-570

rating serial-interval distributions into outbreak analyses. For example, Thompson et al.571

(2019) recently emphasized the importance of using up-to-date serial-interval data for ac-572

curate estimation of time-varying reproduction numbers. However, our results show that if573

observational biases in the forward serial interval through time are not accounted for, using574

up-to-date serial-interval data can actually exacerbate the underestimation of R in the ini-575

tial growth phase of an outbreak. Future studies should explore how neglecting changes in576

the forward serial-interval distribution can affect the estimates of R beyond the exponen-577

tial growth phase, and potentially re-assess existing estimates of R. We also suggest that578

modelers should aim to characterize spatiotemporal variation in forward serial-interval dis-579

tributions. These modeling approaches should be coupled with epidemiological investigation580

through contact tracing. Going forward, an additional advantage of early, intensive contact581
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tracing of emerging diseases is that it provides the best information to characterize the initial582

forward serial-interval distribution.583

Our study underlines the fact that the serial-interval distribution depends not only on584

the generation-interval and incubation-period distributions, but also on the correlation be-585

tween their duration in a given individual. Here, we use a bivariate lognormal distribution586

to capture these correlations phenomenologically and to show that realized serial intervals587

can decrease over time in the context of COVID-19. Although their true correlation will588

depend on viral load dynamics, we expect our conclusions about decreasing serial intervals589

of COVID-19 to be robust, as individuals with longer incubation periods will generally have590

a longer time window to transmit before symptom onset. In general, the impact of increasing591

backward incubation periods on the forward serial intervals are likely to be disease-specific—592

for example, we show in Supplementary Materials that the initial forward serial-interval dis-593

tribution can be equivalent to the intrinsic generation-interval distribution, regardless of the594

growth rate r, due to independence between the incubation period and time from symptom595

onset to transmission and the lack of presymptomatic transmission. Future studies trying596

to interpret realized serial intervals should consider carefully the joint distribution between597

the generation intervals and incubation periods.598

In closing, we lay out a few practical principles for analyzing and interpreting serial-599

interval data. First, serial intervals should be cohorted based on the symptom onset date of600

the infector (and not of the infectee) whenever possible. Previous studies have often regarded601

serial intervals as an intrinsic quantity, having the same mean as the intrinsic generation602

interval (Svensson, 2007; Klinkenberg and Nishiura, 2011; Champredon et al., 2018; Britton603

and Scalia Tomba, 2019), but the distribution (and the mean) of observed serial intervals604

differs from this expectation, and changes through time due to epidemic dynamics. Second,605

aggregating serial intervals across different cohorts and epidemic periods should be avoided606

because the realized serial-interval distribution can be subject to different censoring and607

epidemiological biases: Even when all realized serial intervals can be observed throughout608

an unmitigated epidemic, we do not obtain the intrinsic serial interval distribution due to609

susceptible depletion (Fig. 4). Third, applying serial-interval information across epidemics of610

a given disease should be done with care, because serial intervals are epidemic-specific, rather611

than disease-specific. Finally, serial-interval data should be accompanied by a trajectory of612

the epidemic curve, whenever possible, to provide epidemiological context. In practice,613

these recommendations will sometimes be hard to follow, due to limited data about serial614

intervals, but these issues should be kept in mind when interpreting serial-interval data to615

inform transmission dynamics.616

More broadly, our study underlines the importance of carefully defining measured epi-617

demiological time distributions. Previous studies have shown the importance of forward vs.618

backward measurement of generation intervals (Nishiura, 2010; Champredon and Dushoff,619

2015; Britton and Scalia Tomba, 2019); we generalize these ideas and show that they apply to620

other epidemiological distributions. Some studies during the early phases of the COVID-19621

epidemics have tried to correct for the backward biases (Verity et al., 2020), but changes in622

the backward delay distributions due to changing cohort sizes are expected to be a pervasive623

feature of outbreak dynamics. Cohorting epidemiological delays by the primary event time624
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can help avoid backward biases (although censoring biases can still exist) as well as detect625

potential changes in the distribution.626

Here, we assume that all individuals develop symptoms and that the entire transmission627

process, including all relevant epidemiological delays, is known exactly. In practice, iden-628

tifying who infected whom is difficult in general, and asymptomatic and presymptomatic629

transmission of COVID-19 exacerbates this difficulty (Bai et al., 2020; He et al., 2020; Wei,630

2020). Biases in the observed serial intervals will necessarily bias the estimates of R. Fur-631

thermore, when one of the individuals in a transmission pair is asymptomatic, there is no632

symptom-based serial interval. Neglecting the time scale of asymptomatic transmission may633

also bias the estimates of R (Park et al., 2020).634

Despite these limitations, our analysis of serial intervals of COVID-19 from China pro-635

vides further support for our theoretical framework, demonstrating temporal variation in636

serial intervals and its effect on the estimates of R. Most existing estimates of the serial-637

intervals of COVID-19 implicitly or explicitly assume that the serial-interval distributions638

remain constant throughout the course of an epidemic (Du et al., 2020; He et al., 2020;639

Nishiura et al., 2020; Tindale et al., 2020; Zhao et al., 2020; Zhang et al., 2020). Our study640

provides a rationale for reassessing estimates of serial-interval distributions—and their use641

in estimating R—during the COVID-19 pandemic.642
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5 Supplementary Materials648

5.1 Deterministic simulation649

We simulate the renewal equation model using a discrete-time approximation:

i(t) = R0S(t−∆t)
mmax∑
m=1

i(t−m∆t)ĝ(m∆t)

S(t) = S(t−∆t)− i(t) (22)

where ĝ is a discrete-time intrinsic generation-interval distribution that satisfies the following:650

651

ĝ(m∆t) =
g(m∆t)∑`
i=1 g(m∆t)

, m = 1, . . . ,mmax. (23)

The continuous-time intrinsic generation-interval distribution is parameterized using a log-652

normal distribution (Table 1). We define the intrinsic incubation period distribution in a653

similar manner:654

ˆ̀(m∆t) =
`(m∆t)∑`
i=1 `(m∆t)

, m = 1, . . . ,mmax, (24)

where its continuous-time analog is also based on a log-normal distribution. For simplic-655

ity, we assume that the forward incubation periods and intrinsic generation intervals are656

independent:657

ĥ(m∆t, n∆t) = ˆ̀(m∆t)ĝ(n∆t), m, n = 1, . . . ,mmax. (25)

We use ∆t = 0.025 days and mmax = 2001 for discretization steps.658

We initialize the simulation with population size N=40,000 as follows:

i(m∆t) = C exp(rm∆t), m = 1, . . . ,mmax

S(m∆t) = N −
m∑
n=1

i(n∆t), m = 1, . . . ,mmax (26)

where C is chosen such that
∑mmax

n=1 i(m∆t) = 10. These initial conditions allow the model659

to follow exponential growth from time ∆t(mmax + 1) without any transient behaviors.660

5.2 Stochastic simulation661

We run stochastic simulations of the renewal equation model using an individual-based662

model on a fully connected network (i.e., homogeneous population) based on the Gillespie663

algorithm that we developed earlier (Park et al., 2020). First, we initialize an epidemic with664

I(0) infected individuals (nodes) in a fully connected network of size N . For each initially665

infected individual, we draw number of infectious contacts from a Poisson distribution with666

the mean of R0 and the corresponding generation intervals for each contact from a log-667

normal distribution (Table 1). Contactees are uniformly sampled from the total population.668
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All contactees are sorted into event queues based on their infection time. We update the669

current time to the infection time of the first person in the queue. Then, the first person in670

the queue makes contacts based on the Poisson offspring distribution described earlier and671

their contactees are added to the sorted queue. Whenever contactees are added to the sorted672

queue, we remove all duplicated contacts (but keep the first one) as well as contacts made673

to individuals that have already been infected. Simulations continue until there are no more674

individuals in the queue. We simulate 10 epidemics with I(0) = 10 and N=40,000.675

5.3 Linking r and R0 using serial-interval distributions676

The intrinsic generation-interval distribution g(τ) provides a link between r and R0 via the677

Euler-Lotka equation (Wallinga and Lipsitch, 2007):678

1

R0

=

∫ ∞
0

exp(−rτ)g(τ) dτ . (27)

In this section, we prove that the initial forward serial-interval distribution f0(τ) also esti-679

mates the same R0 from r, except that integral extends to τ = −∞ rather than beginning680

at τ = 0, because serial intervals can be negative:681

1

R0

=

∫ ∞
−∞

exp(−rτ)f0(τ) dτ . (28)

Here, the initial forward serial-interval distribution f0(τ) is defined as:682

f0(τ) =
1

φ

∫ 0

−∞

∫ τ

α1

exp(rα1)h(−α1, α2 − α1)`(τ − α2) dα2 dα1 , (29)

where h is the joint probability distribution describing the intrinsic generation-interval dis-683

tribution g and the intrinsic incubation period distribution ` (see Eq. (15) in the main text),684

and the normalization constant φ is determined by the requirement that
∫∞
−∞ f0(τ) dτ = 1.685

In order to verify Eq. (28), we first rewrite the integral in Eq. (29) by substituting −α1

for α1, and then changing the order of integration:

f0(τ) =
1

φ

∫ ∞
0

∫ τ

−α1

exp(−rα1)h(α1, α2 + α1)`(τ − α2) dα2 dα1 ,

=
1

φ

∫ τ

−∞

∫ ∞
max (0,−α2)

exp(−rα1)h(α1, α2 + α1)`(τ − α2) dα1 dα2 . (30)

To further simplify the expression, we define z(α2) as follows:686

z(α2) =

∫ ∞
max (0,−α2)

exp(−rα1)h(α1, α2 + α1) dα1 . (31)

Substituting z(α2) into Eq. (30) we obtain:687

f0(τ) =
1

φ

∫ τ

−∞
z(α2)`(τ − α2) dα2 , . (32)
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Writing ẑ for a normalized version of z,688

ẑ(α2) =
z(α2)∫∞

−∞ z(x) dx
, (33)

we can now express the initial forward serial-interval distribution f0 as a convolution of ẑ689

and `:690

f0(τ) =
1

φ̂

∫ τ

−∞
ẑ(α2)`(τ − α2) dα2 , (34)

where φ̂ = φ/
∫∞
−∞ z(x) dx.691

Since the right hand side of Eq. (28) is also a Laplace transform of f0 = ẑ ∗ `, we can692

express it as the product of Laplace transforms of ẑ and `:693 ∫ ∞
−∞

exp(−rτ)f0(τ)dτ =

∫ ∞
−∞

exp(−rτ)ẑ(τ) dτ

∫ ∞
0

exp(−rτ)`(τ) dτ . (35)

In order to derive an expression for a Laplace transform of ẑ, we have to first derive an
analytical expression for

∫∞
−∞ z(x) dx. By changing the order of integration, we have:∫ ∞

−∞
z(α2)dα2 =

∫ ∞
−∞

∫ ∞
max (0,−α2)

exp(−rα1)h(α1, α2 + α1) dα1 dα2 ,

=

∫ ∞
0

∫ ∞
−α1

exp(−rα1)h(α1, α2 + α1) dα2 dα1 . (36)

Since ` is a marginal probability distribution of h, it follows that:694 ∫ ∞
−∞

z(α2)dα2 =

∫ ∞
0

exp(−rα1)`(α1) dα1 . (37)

Then, we have:695

ẑ(α2) =

∫∞
max (0,−α2)

exp(−rα1)h(α1, α2 + α1) dα1∫∞
0

exp(−rα1)`(α1) dα1

. (38)

Substituting the expression into Eq. (35), we have:696 ∫ ∞
−∞

exp(−rτ)f0(τ) dτ =

∫ ∞
−∞

exp(−rα2)

∫ ∞
max (0,−α2)

exp(−rα1)h(α1, α2 +α1) dα1 dα2 . (39)

Recall that g is also a marginal probability distribution of h:697

g(τ) =

∫ ∞
0

h(x, τ) dx . (40)
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We can then substitute τ = α1 + α2 into Eq. (39) and apply change of variables to obtain:∫ ∞
−∞

exp(−rτ)f0(τ) dτ (41)

=

∫ ∞
−∞

exp(−rα2)

∫ ∞
max(0,−α2)

exp(−rα1)h(α1, α2 + α1) dα1 dα2 (42)

=

∫ ∞
0

∫ ∞
0

exp(−rτ)h(α1, τ) dα1 dτ (43)

=

∫ ∞
0

exp(−rτ)g(τ) dτ =
1

R0

(44)

Therefore, the initial forward serial-interval distribution and the intrinsic generation-interval698

distribution give the same estimates of R0 from r.699

5.4 Comparing the estimates of R0 using the initial forward and700

the intrinsic serial-interval distributions701

We use a simulation-based approach to compare the estimates of R0 based on the serial-702

and generation-interval distributions. To do so, we model the intrinsic generation-interval703

distribution and the incubation period using a multivariate log-normal distribution with log704

means µG, µI , log standard variances σ2
G, σ

2
I , and log-scale correlation ρ; the multivariate log-705

normal distribution is parameterized based on parameter estimates for COVID-19 (Table 1).706

We construct forward serial intervals during the exponential growth period as follows:707

Fi = −X1,i + (Gi|X1,i) +X2,i, (45)

where the backward incubation period X1,i of an infector is simulated by drawing random log-708

normal samples Yi with log mean µI and log variance σ2
I and resampling Yi, each weighted by709

the inverse of the exponential growth function exp(−rYi); the intrinsic generation interval710

conditional on the incubation period of the infector (Gi|X1,i) is drawn from a log-normal711

distribution with log mean µG + σGρ(log(X1,i) − µI)/σI and log variance σ2
G(1 − ρ2); the712

forward incubation period X2,i of an infectee is drawn from a log-normal distribution with713

log mean µI and log variance σ2
I . We then calculate the basic reproduction number R0 using714

the empirical estimator:715

R0 =
1

1
N

∑N
i=1 exp(−rFi)

. (46)

We compare this with an estimate of R0 based on the intrinsic serial-interval distribution716

which has the same mean as the intrinsic generation-interval distribution (Svensson, 2007;717

Klinkenberg and Nishiura, 2011; Champredon et al., 2018; Britton and Scalia Tomba, 2019):718

719

Rintrinsic =
1

1
N

∑N
i=1 exp(−rQi)

, (47)

where720

Qi = −Yi + (Gi|Yi) +X2,i. (48)
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5.5 Applications: SEIR model721

Consider a Susceptible-Exposed-Infectious-Recovered model:

dS

dt
= −βSI

dE

dt
= βSI − γEE

dI

dt
= γEE − γII

dR

dt
= γII (49)

where β is the transmission rate, 1/γE is the mean latent period, and 1/γI is the mean722

infectious period. We further assume that the latent period is equivalent to incubation723

period; in other words, infected individuals can only transmit after symptom onset. Then,724

the generation interval will be always longer than the incubation period.725

The joint probability distribution of the intrinsic incubation periods and intrinsic gener-726

ation intervals for this model can be written as:727

h(x, τ) =

{
0 x > τ

γIγE exp(−γI(τ − x)− γEx) x ≤ τ
(50)

Then, the intrinsic generation-interval distribution is given by:

g(τ) =

∫ τ

0

h(x, τ) dx

=
γIγE
γE − γI

(exp(−γIτ)− exp(−γEτ)) (51)

On the other hand, the initial forward serial-interval distribution is given by:

f0(τ) ∝
∫ 0

−∞

∫ τ

0

exp(rα1)h(−α1, α2 − α1)`(τ − α2) dα2 dα1

∝
∫ 0

−∞

∫ τ

0

exp(rα1) exp(−γIα2 + γEα1) exp(−γE(τ − α2)) dα2 dα1

∝ exp(−γEτ)

∫ 0

−∞

∫ τ

0

exp((γE − γI)α2) exp((r + γE)α1) dα2 dα1

∝ (exp(−γIτ)− exp(−γEτ))

∫ 0

−∞
exp((r + γE)α1) dα1

∝ exp(−γIτ)− exp(−γEτ) (52)

Therefore, both the intrinsic generation intervals and the initial forward serial intervals are728

identically distributed and have the same mean.729

5.6 Simulations with correlated intrinsic incubation periods and730

intrinsic generation intervals.731
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Figure S1: Epidemiological dynamics and changes in mean forward and backward
delay distributions. (A) Daily incidence over time. (B–D) Changes in the mean forward
incubation period, generation interval, and serial interval. (E–G) Changes in the mean
backward incubation period, generation interval, and serial interval. Intrinsic incubation
periods and intrinsic generation intervals are modeled using a correlated bivariate lognormal
distribution; therefore, generation intervals are drawn from the corresponding conditional
distributions (given a incubation period), instead of the marginal distribution. Higher cor-
relation reduces the amount of changes in the mean forward serial interval because shorter
(longer) backward incubation periods of infectors during the increasing (decreasing) phase
of an epidemic are associated with shorter (longer) forward generation intervals. See Figure
3 in the main text for a detailed description.
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