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To understand the spread of Covid-19, we analyse an extended Susceptible-Exposed-Infected-
Recovered (SEIR) model that accounts for asymptomatic carriers, and explore the effect of different
intervention strategies such as social distancing (SD) and testing-quarantining (TQ). The two in-
tervention strategies (SD and TQ) try to reduce the disease reproductive number, R0, to a target
value Rtarget

0 < 1, but in distinct ways, which we implement in our model equations. We find that
for the same Rtarget

0 < 1, TQ is more efficient in controlling the pandemic than SD. However, for
TQ to be effective, it has to be based on contact tracing and our study quantifies the required ratio
of tests-per-day to the number of new cases-per-day. Our analysis shows that the largest eigenvalue
of the linearised dynamics provides a simple understanding of the disease progression, both pre- and
post- intervention, and explains observed data for many countries. We propose an accurate way of
specifying initial conditions for the numerics (from insufficient data) using the fact that the early
time exponential growth is well-described by the dominant eigenvector of the linearized equations.
Weak intervention strategies (that reduce R0 but not sufficiently) reduce the peak values of infec-
tions and the asymptotic affected population and we provide analytic expressions for these in terms
of the disease parameters. We apply them in the Indian context to obtain heuristic projections for
the course of the pandemic, noting that the predictions strongly depend on the assumed fraction of
asymptomatic carriers.
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The Covid-19 pandemic, that started in Wuhan
(China) around December 2019, has now affected almost
every country in the world. The total number of con-
firmed case on May 30 was close to 5.9 million with close
to 360, 000 deaths. One of the serious concerns presently
is that there is as yet no clear picture or consensus on
the future evolution of the pandemic. It is also not clear
as to what the ideal intervention strategy that a govern-
ment should implement, while taking into account also
economic and social factors. The role of mathematical
models has been to provide guidance for policy makers
[1–13].

One of the standard epidemiological model is the SEIR
model which has four compartments of susceptible (S),
exposed (E), Infected (I) and Recovered (R) individuals
with S +E + I +R = N being the total population of a
region (the model can be applied at the level of a coun-
try or a state or a city and is expected to work better
for well-mixed populations). The SEIR model is param-
eterized by the three parameters β, σ and γ that specify
the rates of transitions from S → E, E → I and I → R
respectively. In terms of the data that is typically mea-
sured and reported, R corresponds to the total number of
cases till the present date, while γI would be the number
of new cases per day. The number of deaths across differ-
ent countries is some fraction (≈ 1−10%) of R [18] while
the number of hospital beds required at any time would
be ≈ (new cases per day× typical days to recovery). An
important parameter characterizing the disease growth
is the reproductive number R0 — when this has a value
greater than 1, the disease grows exponentially. Typi-
cal values reported in the literature for Covid-19 are in
the range R0 = 2 − 7 [14]. For the SEIR model one has

R0 = β/γ.

The two main intervention schemes for controlling
the pandemic are social distancing (SD) and testing-
quarantining (TQ). Lockdowns (LD) impose social dis-
tancing and effectively reduce contacts between the
susceptible and infected populations, while testing-
quarantining means that there is an extra channel to
remove people from the infectious population. These
two intervention schemes have to be incorporated in the
model in distinctive ways [4, 5] — SD effectively changes
the infectivity parameter β while TQ changes the param-
eter γ. Intervention schemes attempt to reduce this to a
value less than 1. In the context of the SEIR model with
R0 = β/γ, it is clear that we can reduce R0 by either
decreasing β or by increasing γ. In this work we point
out that for the same reduction in R0 value, the effect
on disease progression can be quite different for the two
intervention strategies.

Here we analyze intervention strategies in an extended
version of the SEIR model which incorporates the fact
that asymptomatic or mildly symptomatic individuals
[4–6, 15] are believed to play a significant role in the
transmission of Covid-19. Our extended model consid-
ers eight compartments of Susceptible (S), Exposed (E),
asymptomatic Infected (Ia), presymptomatic Infected
(Ip), and a further four compartments (Ua, Da, Up, Dp),
two corresponding to each of the two infectious compart-
ments. These last four classes comprise of individuals
who have either recovered (at home or in a hospital) or
are still under treatment or have died — they do not con-
tribute to spreading the infection (see Sec. (III A) for de-
tails). We do not include separate compartments for the
number of hospitalized and dead since these extra details
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would not affect our main conclusions. For this extended
SEIR model we discuss the performance of two different
intervention strategies (namely SD and TQ) in the dis-
ease dynamics and control. We study both the cases, of
strong interventions (Rtarget

0 < 1 aimed at disease sup-

pression,) and that of weak interventions (Rtarget
0 & 1,

aimed at disease mitigation).

Main conclusions: Apart from the reproduc-
tive number, R0, an important parameter is the
largest eigenvalue of the linear dynamics, which
we denote as µ. For Rtarget

0 > 1, we have µ > 0
and this gives us the exponential growth rate
(doubling time ≈ 0.7/µ). On the other hand, for

Rtarget
0 < 1, the corresponding µ is less than 0 and

this tells us that infections will decrease expo-
nentially. For the case where only mitigation is
achieved (Rtarget

0 & 1), we present analytic expres-
sions for peak infection numbers, time to reach
peak values, and asymptotic values of total af-
fected populations. These provide useful guid-
ance on disease progression and we apply it in the
Indian context. We also show that, for the same
reduction of Rtarget

0 to a value less than 1, the cor-
responding µ magnitude can be very different for
different intervention schemes. A larger magni-
tude of µ, corresponding to a faster suppression
of the pandemic, is obtained from TQ than that
from SD. We give conditions for TQ to be suc-
cessful: (a) it has to be based on contact-tracing
and (b) it is necessary that testing numbers are
scaled up according to the number of new de-
tected cases. We show that the above picture
gives us a comprehensive understanding of data
from several countries which have either achieved
disease suppression or mitigation.

A note on the Indian situation: The number
of daily new cases in India continues to rise and it is
clear that only mitigation has been achieved, unlike in
Europe and the US which have succeeded in suppression
(R0 < 1). The disease doubling time is around 14 days
(as on May 20). For two different choices of the fraction
of asymptomatics (and typical values of disease param-
eters) our estimates suggest a value of Reff

0 ≈ 1.3 and
that the disease would peak between July to September.
The predicted number of hospitalizations and deaths
per day (assuming 1% deaths for symptomatic cases)
have a large uncertainty but could be quite large [see
Tables (I-III)], and there is an urgent need of preparing
for this. However, the lockdown in India is now being
eased. Given the huge economic and social costs of
implementing hard SD, it is clear that a combination of
weaker SD but intense TQ might be the only practical
way of controlling the pandemic in India. A sustained
and targeted testing and quarantining strategy (assuming
community spreading is still limited), combined with
some level of social-distancing has to be implemented
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FIG. 1. A schematic description of the extended SEIR dynam-
ics studied in this work. The parameters βa, βp, σ, γa, γp, α are
intrinsic to the disease, u quantifies the degree of social dis-
tancing while νa, νp, r are related to intervention arising from
testing-quarantining.

at the earliest and to the fullest extent. Community
transmission is unlikely to have taken place in all states
and cities in India. Increasing the testing-to-detected
ratio to a value around & 100 from the value of ≈ 25
(as on May 15) could result in lowering of R0 and the µ
value or at least in not letting them increase further.

The rest of the paper is structured as follows. In Sec. I
we state our main results. In Sec. I C we make compar-
isons of the predictions of the SEIR model with real data
on confirmed number of cases and make some heuristic
predictions in the Indian context. We summarize our
results in Sec. II. All the technical details including the
precise definition of the extended SEIR model with and
without interventions and our analytic results are given
in Sec. III.

I. RESULTS

The extended SEIR model studied here is schemat-
ically described in Fig. 1. It has eight vari-
ables (S,E, Ia, Ip, Ua, Da, Up, Dp) and ten parameters
(βa, βp, σ, γa, γp, α, νa, νp, r, u), of which α represents the
fraction of asymptomatic carriers while u, r, νa, νp are re-
lated to intervention strategies. The model details are
given in Sec. III A. For the present, we note that at
any given time the total infectious population size is
I = Ia + Ip, the cumulative affected population (recov-
ered, in hospital or dead) is R = Ua +Da +Up +Dp, the
reported total confirmed cases is C = Da + Dp + Up,
and the reported new daily cases is D = dC/dt =
rνaIa + (γp + rνp)Ip.

The parameter u quantifies the degree of social dis-
tancing while r is related to the rate at which testing-
quarantining is done. These are in general time-
dependent, u changing from the free (without interven-
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tions) value u = 1 to a target value ul < 1, while r
is a rate that changes from 0 to a value rl > 0. The
time-scale for the change depends on how efficiently the
control measures are implemented.

A. Comparison of different intervention strategies

A useful quantity to characterize the system with
interventions is the targeted reproduction number [see
Eqs. (43,44)]

Rtarget
0 =

αulβa
γa + rlνa

+
(1− α)ulβp
γp + rlνp

. (1)

We classify intervention strategies by the targeted Rtarget
0

value. A strong intervention is one where Rtarget
0 < 1

and will achieve suppression of the disease while a weak
intervention is one with Rtarget

0 & 1 and will only miti-
gate the effects of the disease.

Other than R0, an important quantity to characterize
the disease growth is the largest eigenvalue µ of the lin-
earized dynamics (see Sec. III B). In the early phase of
the pandemic, all populations other than S grow expo-
nentially with time as ∼ eµt. As we will see, for the case
of strong intervention, µ becomes negative and gives the
exponential decay rate of the disease.

In our numerical study we choose, for the purpose of
illustration, the following parameter set: α = 0.67 and
the rates βa = 0.333, βp = 0.5, σ = 1/3, γa = 1/8, γp =
1/12 all in units of day−1. For the specified choice of
parameter values (free case with u = 1.0, r = 0.0) we
get µ = 0.158 which is close to the value observed for
the early time data for confirmed cases in India. The
corresponding free value of R0 is 3.7665. Note that µ is
not uniquely fixed by R0 (and vice versa) and different
choices of parameters can give the same observed µ but
different values of R0

Choosing these typical parameter values for Covid-19,
we now compare the efficacy of strong and weak inter-
ventions implemented in four different ways: (1) 6WLD-
NTQ: Six weeks lockdown (strong value of SD parameter)
and no testing-quarantining, (2) ELD-NTQ: Extended
lockdown and no testing-quarantining,(3)NSD-ETQ: No
social distancing and extended testing-quarantining, (4)
ESD-ETQ: Extended social distancing and extended
testing-quarantining. The case with no social distancing
and no testing-quarantining is indicated as NSD-NTQ.

We work with a population N = 107 and initial con-
ditions E(0) = 100, Ia(0) = Ip(0) = Ua(0) = Da(0) =
Up(0) = Dp(0) = 0 and S(0) = N−E−Ia−Ip−Ua−Da−
Up − Dp. In all cases, we will assume that intervention
strategies are switched on when the confirmed number
of cases reaches 50 and after that the full intervention
values are attained over a time scale of 5 days.

1. Strong intervention (Rtarget
0 < 1)

In this case, the exponential growth stops around the
time when Reff

0 (t) crosses the value 1. After this time,
the infection numbers will start decaying exponentially.
Since the infection numbers are still small compared to
the total population, one can work with the linearized
theory and the magnitude of the largest eigenvalue µ
(now negative) determines the exponential decay rate.
For illustrating this case, we take:

Parameter set I [Rtarget
0 = 0.667] — We choose three

SD and TQ strengths as (i) SD: ul = 0.177, rl = 0,
(ii) TQ: ul = 1, rl = 1.2 and (iii) SD-TQ:
ul = 0.461, rl = 0.4. This choice corresponds to
changing the free value of R0 = 3.766 to a target value
Rtarget

0 = 0.667, for all the three different strategies.
The largest eigenvalue µ changes from the free value
µ = 0.158 to the values (i) µ = −0.027, (ii) µ = −0.077
(iii) µ = −0.0546 respectively. The results of the
numerical solution of the extended SEIR equations are
presented Figs. (2a) and (2b).

Main observations:

1. A six week (or eight week) lockdown is insufficient
to end the pandemic and will lead to a second
wave. If the interventions are carried on indefi-
nitely, the pandemic is suppressed and only affects
a very small fraction of the population (less than
0.1%). We can understand all features of the dy-
namics from the linear theory. In Figs. 2(a,b), in-
tervention is switched on after ≈ 2 weeks and the
peak in infections appears roughly after a period of
5 days. Thereafter however, the decay in the num-
ber of infections occurs slowly, the decay rate being
given by the largest eigenvalue µ (now negative and
smaller in magnitude than µ in the growth phase).

2. We find that for the same target Rtarget
0 < 1, differ-

ent intervention schemes (ELD-NTQ, NSD-ETQ,
or ESD-ETQ) can give very different values of the
decay rate µ and, in general we find that TQ is
more effective than SD. We see that ELD-NTQ
ends the pandemic in about 10 months while NSD-
ETQ would take around 3.5 months. This can be
understood from the fact that the corresponding µ
values (post-intervention) are given by µ = −0.027
and µ = −0.077 respectively, i.e, they differ by a
factor of about 3. With a mixed strategy where
one allows almost three times more social contacts
(ul = 0.431) than for LD case and that requires
three times less testing (rl = 0.4) than for TQ
case, we see that the disease is controlled in about
5 months. Hence this appears to be the most prac-
tical and effective strategy.

3. The expected time for the pandemic to die would
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FIG. 2. Parameter set I [Rtarget
0 = 0.667]: (a) Total number of infected cases I = Ia + Ip for different intervention strategies.

The solid and dashed black lines indicate the peak infected cases (I(m)) as given by (3) and the corresponding value of I
(m)
p .

(b) Total number of confirmed cases C = Up +Da +Dp. The dashed lines indicate the total affected population R = C + Ua

at the end of one year, for the different strategies. In the absence of interventions this is close to 96% and is given by (5). The
total population was taken as N = 107. Parameter set II [Rtarget

0 = 1.205]: (c) Total number of infected cases I = Ia + Ip for
different intervention strategies. (d) Total number of confirmed cases C = Up +Da +Dp. The dashed lines indicate the total
affected population R = C + Ua at the end of one year, for the different strategies. Total population was taken as N = 107.

be roughly given by

tend ∼
ln(Peak infection number)

|µpost−intervention|
, (2)

and so it is important that intervention schemes are
implemented early and as strongly as possible.

2. Weak intervention (Rtarget
0 & 1)

In this case, a finite fraction of the population is
eventually affected, but the intervention succeeds in
reducing this from its original free value and in de-
laying considerably the date at which the infections
peak. We take the following parameter set for this study:

Parameter set II [Rtarget
0 = 1.205] — we choose three

SD and TQ strengths as (i) SD: ul = 0.32, rl = 0, (ii) TQ:
ul = 1, rl = 0.536 and (iii) SD-TQ: ul = 0.634, rl = 0.24.
This choice corresponds to changing the free value of

R0 = 3.766 to a fixed target value Rtarget
0 = 1.205 for

all the three different strategies. The largest eigenvalue
µ remains positive and changes from the free value
µ = 0.158 to the values (i) µ = 0.0152, (ii) µ = 0.032 (iii)
µ = 0.0248 respectively. The results of the numerical
solution of the extended SEIR equations are presented
Figs. (2c) and (2d).

Main observations:

1. We find that in this case the peak infections, peak
infection time and the final affected population can
be obtaied from analytic expressions in terms of
µ, R0 and a few other basic disease parameters.
One can use these formulas either using the pre-
intervention or post-intervention values of R0 and
µ. Assuming that we start with a small seed in-
fected or exposed population and with almost the
entire population susceptible, i.e S(0) ≈ N , the
peak value of infections, I(m), (which is propor-
tional to the number of hospitalizations required)
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and the number of days, t(m), to reach this peak
value are given by the simple general relations

I(m) ≈ σ

γe + σ

(
1− 1 + lnR0

R0

)
N. (3)

t(m) ≈ ln[I(m)/I(0)]

µ
≈ ln(N/c)

µ
, (4)

where γe is an effective recovery rate (see Eq. 39 in
Sec. III C ] and c is a constant that depends on ini-
tial infected population and other disease parame-
ters. The fraction of population, x̄ = R(t→∞)/N ,
that is eventually affected is given by the solution
of the equation

1− x̄− e−R0 x̄ = 0, (5)

this result being valid for very general SEIR-type
models with multiple compartments. We also pro-
vide relations for estimating the number of asymp-
tomatic infected and recovered individuals. These
analytic results are very useful to obtain quick
heuristic estimates for the typical numbers for peak
infections and for the time when the peak occurs.
In Sec. I C we use these to make predictions for
India, which is an example where only mitigation
(Rtarget

0 & 1) has been achieved.

2. We find that the peak infection numbers are small-
est for the case with ELD-NTQ and they occur at
a later stage. These results can also be understood
mathematically from the expressions in (3) and (4)
using the post-intervention values of γ and µ (from
the linear theory).

3. We note that while weak interventions can slow
down and reduce the impact of the pandemic, they
do not lead to development of herd immunity of the
population (assuming that all the recovered peo-
ple develop immunity). It is well known that herd
immunity is attained when a fraction 1 − 1/R0 of
the population has developed immunity. Thus herd
immunity in the above example would require that
1 − R−1

0 ≈ 0.74, i.e 74% of the population be af-

fected, while (5) with Rtarget
0 = 1.205 predicts that

only about 31% of the population is affected.

B. Results from the linearized theory

As already observed, the linear theory is very useful in
understanding the growth and also the decay time scales
of the pandemic following strong interventions. Another
observation that we make is that, independent of initial
conditions, the vector describing all the system variables
quickly points along the direction of the eigenvector cor-
responding to the largest eigenvalue. Hence if we know
any one variable (or a linear combination of all the vari-
ables) at sufficiently large times in the growing phase,

then the full vector is completely specified. This leads
to an accurate way of specifying initial conditions for the
numerics (from insufficient data) and will help in reduc-
ing the number of fitting parameters in modeling studies,
thereby increasing their accuracy in predicting. This fact
also implies that different initial conditions (such as dif-
ferent seed infections) will only cause a temporal shift of
the observed evolution. Plotting the data for number of
confirmed cases (normalized by the population), starting
with the same initial value, should therefore lead to a col-
lapse of the data for different countries. We test this idea
and find that indeed an approximate collapse of data is
obtained for a number of countries (see next section).

C. Comparisons with observed data for Covid-19

In this section we discuss a comparison of our results
with real data on evolution of the Covid pandemic in dif-
ferent countries. We do not attempt a detailed compari-
son of the model predictions with the data since there are
too many poorly known parameters and possibly quite
inaccurate knowledge of the initial conditions of the vari-
ables themselves. Rather we make some overall quali-
tative observations relating data to the predictions from
SEIR-type models and find that in many cases, several
broad qualitative features are remarkably well captured
by the model. For the case of India we discuss predic-
tions, based on our analytic formulas, on the disease evo-
lution for a range of choice of parameter values.

1. Observation of strong and weak intervention in Covid-19
data

In Figs. (3) we give some examples of data for number
of new cases for nine countries where we see that some
of the qualitative features seen in the model results in
Fig. 2(a,b). In particular we see the fast exponential
growth phase and then a much slower decay phase for the
first six countries which have succeeded in controlling the
disease with various levels of success. On the other hand
we see that India, Brazil and Pakistan continue to show a
positive µ and it is clear that intervention schemes need
to be strengthened.

One issue is that different countries start with different
initial conditions (for example the seed exposed popula-
tion could be very different between countries). As dis-
cussed in Sec. III B, as long as the number of confirmed
cases is much smaller than the population size, a descrip-
tion in terms of the linearized dynamics is accurate. This
would predict an initial exponential growth and then as
intervention schemes begin to operate, the reproductive
number and the corresponding growth exponent would
decrease till eventually one is able to achieve Rtarget0 < 1
and correspondingly µ < 0. In Fig. 5 we show data for
the reported number of new cases in 12 different coun-
tries and approximately see these features. Most coun-
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FIG. 3. Number of new cases per day for nine different countries. We note that the first six data sets exhibits the same
broad features that we see for the model predictions in Fig. 2(a,b). In particular we see the fast exponential growth and slow
exponential decrease in new cases (following strong interventions). The two countries UK and US show a very slow decay
rate, indicating that disease suppression has barely been achieved. The data for India, Brazil and Pakistan show the behavior
corresponding to model predictions in Fig. 2(c,d) and have only been able to achieve mitigation so far (Rtarget

0 > 1, µ > 0).
Data from [19] and the end date is June 10.

tries have succeeded in disease suppression R
(target)
0 < 1,

but show a slow exponential decay of the disease. A few
Asian countries (India, Pakistan, Indonesia) have not yet
entered the decaying phase which means that interven-
tion has been weak and only disease mitigation has been
achieved. This means that with the same level of inter-
vention strategy, a finite fraction of the population will
eventually be affected in these countries. We discuss later
in some more detail the Indian situation.

2. Comparing data across different countries

The linearized SEIR dynamics also predicts that (see
Sec. III B), if one uses similar parameters and interven-
tion parameters, then all countries should follow the same
trajectory provided they start with the same value for the
normalized fraction of confirmed new cases (D0/N). We
illustrate this idea, for the extended SEIR dynamics, in
Fig. 4 where we show a plot of I(t) = Ia(t) + Ip(t) for

5 different initial conditions. The inset shows a collapse
of all the trajectories after an appropriate time trans-
lation of the different trajectories. Can we see a simi-
lar collapse of the real data for different countries (after
normalizing by the respective populations and with ap-
propriate time translation of the data) ? In the right
panel of Fig. 5 we plot the data with this normalization
and initial condition and see a rough collapse for several
countries. We notice in particular that three of the Asian
countries (India, Pakistan, Indonesia) follow a distinctly
different trajectory — this could indicate either that the
disease parameters are different or that the intervention
strategies have been different, or the reporting of cases is
inaccurate.

D. How much testing is required?

How is r related to testing rates ? It is easy to see
that with random testing of the population, intervention
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FIG. 4. Role of initial conditions: Plot showing I(t),
for a fixed population of size N = 107, with 5 very differ-
ent initial conditions : (1)E(0) = 100, Ia(0) = 0, Ip(0) = 0,
(2)E(0) = 10, Ia(0) = 0, Ip(0) = 0, (3)E(0) = 1000, Ia(0) =
0, Ip(0) = 0, (4) E(0) = 233, Ia(0) = 100, Ip(0) = 75, (5)
E(0) = 233, Ia(0) = 1000, Ip(0) = 75. (Inset) A collapse of
all the curves obtained by translating all the trajectories so
that they start with the same value of I.

FIG. 5. (left) Number of new cases per day for different coun-
tries. (right) Number of new cases normalized by the total
population, with the time axis shifted so that every country
starts with the same normalized value. Data from [19]

can be helpful only if a finite fraction of the population
is tested, which is practically very difficult to implement.
Thus testing has to be based on contact tracing of the
new detected cases. Suppose that the number of tests
per day is T while the number of daily new cases is ∆D
and A the typical number of contacts made by a person
over the period when the person is infectious and before
detection. Following arguments described in Sec. (III E)
and Eqs. (45-46), we find that TQ intervention can be
successful only if one achieves

T (t) ≈ r(t)A∆D(t)

γp
, (6)

where r(t), our control rate function changes from the
value 0 to a value rl, which should be at least of the
same order as γp, the recovery rate of symptomatic car-
riers. This means that we need T (t) ≈ A∆D(t), that
is the number of tests/per day has to be proportional to
number of new detections/per day and in fact the ratio
T/∆D has to be larger than the average number of con-
tacts, A, that each infectious person makes. The number
A is expected to depend on the population density and
also how well SD is being implemented. Hence, while the
value of T (t)/∆D(t) ≈ 25 (around May 15) for India ap-
pears to be large, it may not be sufficient given that the
population densities are much larger than in many other
countries and implementation of SD may be less effec-
tive. If we assume 20 contacts a day and the number
of days before isolation of the individual to be 5 we get
the rough estimate of A ≈ 100 and then the ratio T/∆D
thus has to be at least ≈ 100. This is the minimum
value of testing-to-detected ratio that has to be targeted
at localities with high infection rates. The details of our
arguments, described later (see Sec. (III E)), are largely
independent of the specifics of the particular SEIR model
that we study.

E. Predictions for India from extended SEIR
model

In the following we make some heuristic predictions,
based on the analytic results in Eqs. (3-5) and the present
observed data, for daily new cases in India (N ≈ 1.3 ×
109), in the state of Delhi (N ≈ 1.9×107) and in the city
of Mumbai (N ≈ 1.3×107). The analysis here is based on
the assumption of a best case scenario where the value of
Rtarget

0 (achieved after a nationwide lockdown of 6 weeks)
will be maintained.

Here we assume that intervention has effectively been
through SD, with r << γ being neglected. We consider
the following choice of parameter values which appears
to be reasonable for getting a conservative estimate: σ =
1/2, β̃p = β, β̃a = 2β/3, γ̃p = γp = γ, γ̃a = γa = 3γ/2, i.e,
we assume that asymptomatics are 2/3rd less infectious
and recover 3/2 times faster. This gives us [using (39)]
γe = γ/(1− α/3) and the effective reproductive number

as Rtarget
0 = (1 − 5α/9)β/γ. From this last relation we
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TABLE I. Predictions for India with different choices of parameter values.

σ γ α R0 (free) Rtarget
0 Peak daily cases (PDC) Time of peak Total affected Total deaths

0.5 0.2 0.67 2.28 1.33 2,456,630 2nd week September 45 % 1,936,000

0.5 0.2 0.9 2.16 1.3 686,770 3rd week August 42 % 550,700

0.4 0.143 0.67 2.82 1.45 2,956,600 3rd week September 55 % 2,363,700

0.4 0.143 0.9 2.65 1.41 832,890. 4th week August 52 % 676,140

TABLE II. Predictions for Delhi with different choices of the asymptomatic fraction α.

σ γ α R0 (free) Rtarget
0 Peak daily cases (PDC) Time of peak Total affected Total deaths

0.5 0.2 0.67 2.28 1.33 35,904 1st week August 45 % 28,296

0.5 0.2 0.9 2.16 1.3 10,037 2nd week July 42.3 % 8,048

0.4 0.143 0.67 2.82 1.45 43,212 2nd week August 55 % 34,546

0.4 0.143 0.9 2.65 1.41 12,173 2nd week July 52.3 % 9,882

TABLE III. Predictions for Mumbai with different choices of the asymptomatic fraction α.

σ γ α R0 (free) Rtarget
0 Peak daily cases (PDC) Time of peak Total affected Total deaths

0.5 0.2 0.67 2.28 1.33 24,566 3rd week July 45 % 19,360

0.5 0.2 0.9 2.16 1.3 6,867 4th week June 42.3 % 5,507

0.4 0.143 0.67 2.82 1.45 29,566 3rd week July 55 % 23,637

0.4 0.143 0.9 2.65 1.41 8,328 4th week June 52 % 6,761

can write β = γRtarget
0 /(1 − 5α/9). Plugging this into

the equation for the eigenvalues, (19), and replacing λ by
the observed mean exponential growth rate µ ≈ 0.05 (the
value observed for India since around April 10, see Fig. 3
), we see that we basically get an equation for Rtarget

0 in
terms of α, σ, γ and µ. For specific choices of α, σ and
γ, the observed values of µ before and after intervention
will then give us the corresponding values of R0.

For our analysis we need to know the total infec-
tions I(0) on some day (we take this as April 11) and
we estimate it in the following way. Suppose that the
daily observed cases on this day was Dp(0) (assuming
that only the symptomatics are detected). Then we

have Ip(0) = Dp(0)/γp. From (40) we have I
(m)
p =

(1− α)γeI
(m)/γp and so the time to the peak can be es-

timated as t(m) = µ−1 ln[I
(m)
p /Ip(0)]. We use Eq. (3) to

compute the peak number of infections I(m) and the peak

daily cases (PDC) is then obtained as PDC= D
(m)
p =

γpI
(m)
p = (1 − α) × γe × I(m). The total affected popu-

lation fraction x̄, can be computed from Eq. (5), using

only the knowledge of Rtarget
0 . If we assume the number

of deaths is 1% of all symptomatic cases this gives us an
estimate for the total number of deaths as Nx̄(1−α)/100.

The observed daily new cases in India, Delhi and Mum-
bai on April 10 were around Dp(0) ≈ 900, Dp(0) ≈ 115
and Dp(0) ≈ 195 respectively [20]. For a range of choice
of the parameters with σ = 0.5, 0.4, γ = 0.2, 0.143 and

of α = 0.67, 0.9, we compute the corresponding values
obtained for R0 and Rtarget

0 . These and the estimates for

PDC= D
(m)
p , t(m) and x̄ are given in Tables I, II and III

for India, Delhi and Mumbai. Note that while the peak
numbers and total affected population and deaths simply
scale with population size, the time to peak depends on
the daily detected numbers on April 10, and this leads
to the observed differences in the time to the peak for
the three cases. We also note here that changing the
initial conditions by about 10% causes a change of few
days in the peak time while the other quantities remain
unchanged. The full numerical solution [see Fig. (9) in
Sec. (III)] also shows that the complete suppression of
the disease takes more than 6 months after the peak.

We point out that the mixed-population assumption
of the SEIR model is expected to be more accurate for
a smaller population and so the estimates for Delhi and
Mumbai would be more reliable than the one for India.
For a big and highly in-homogeneous country like India,
smaller regions (states or cities) would have different val-
ues of µ and R0 and also different initial conditions, hence
the global values would not capture the local dynamics
correctly. It is likely that the numbers in Table I are an
over-estimate of the true future trajectory. For the state
of Delhi and the city of Mumbai these would be more
accurate, however we see that the uncertainty in the true
value of α leads to a huge uncertainty in the predictions.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.04.20122580doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20122580
http://creativecommons.org/licenses/by-nc-nd/4.0/


9

II. DISCUSSION

In summary a modified version of the SEIR model, in-
corporating asymptomatic individuals, was used for an-
alyzing the effectiveness of different intervention proto-
cols in controlling the growth of the Covid-19 pandemic.
Non-clinical interventions can be either through social
distancing or through testing-quarantining. Our results
indicate that a combination of both, implemented over
an extended period may be the most effective and prac-
tical strategy. We point out that short-term lock-downs
cannot stop a recurrence of the pandemic if interventions
are completely relaxed and developing herd immunity is
not a practical solution either since this would affect a
very large fraction of the population.

We have provided numerical examples to illustrate the
basic ideas and in addition, have stated a number of an-

alytical results which can be useful in making empirical
estimates of various important quantities that provide
information on the disease progression. Looking at real
data for new Covid-19 cases in several countries, we find
that the extended SEIR model captures some important
qualitative features and hence could provide guidance in
policy-making. We use our analytic formulas to make
predictions for disease peak numbers and expected time
to peak for India, the state of Delhi and the city of Mum-
bai, but point out that these predictions could be incor-
rect for India (due to big inhomogeneity in disease pro-
gression across the country) and perhaps more reliable for
the cases of Delhi and Mumbai. Our formulas are easy to
use and give quick heuristic estimates on disease progres-
sion, which would be reliable when applied to local pop-
ulations (in towns, cities and perhaps smaller countries).
While the lack of precise knowledge of the disease param-
eters (e.g the fraction of asymptomatic carriers) leads to
rather large uncertainties in the predictions, they could
perhaps be used to obtain reasonable bounds.
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III. METHODS

A. Definition of the extended SEIR model

We consider a population of size N that is divided into
eight compartments:
1. S = Susceptible individuals.
2. E = Exposed but not yet contagious individuals.
3. Ia = Asymptomatic, either develop no symptoms or
mild symptoms.
4. Ip = Presymptomatic, those who would eventually
develop strong symptoms.
5. Ua = Undetected asymptomatic individuals who have
recovered.
6. Da = Asymptomatic individuals who are detected
because of directed testing-quarantining, may have mild
symptoms, and would have been placed under home iso-
lation (few in India).
7. Up = Presymptomatic individuals who are detected
at a late stage after they develop serious symptoms and
report to hospitals.
8. Dp = Presymptomatic individuals who are detected
because of directed testing-quarantining.

We have the constraint that N = S+E+Ia+Ip+Ua+
Da + Up +Dp. A standard dynamics for the population
classes is given by the following set of equations:

dS

dt
= −u(βaIa + βpIp)

N
S (7)

dE

dt
=
u(βaIa + βpIp)

N
S − σE (8)

dIa
dt

= ασE − γaIa − rνaIa (9)

dIp
dt

= (1− α)σE − γpIp − rνpIp (10)

dUa
dt

= γaIa (11)

dDa

dt
= rνaIa (12)

dUp
dt

= γpIp (13)

dDp

dt
= rνpIp. (14)

The parameters in the above equation correspond to

• α: fraction of asymptomatic carriers.

• βa: infectivity of asymptomatic carriers.

• βp: infectivity of presymptomatic carriers.

• σ: transition rate from exposed to infectious.

• γa: transition rate of asymptomatic carriers to re-
covery or hospitalization.

• γp: transition rate of presymptomatics to recovery
or hospitalization.

• νa, νp: detection probabilities of asymptomatic car-
riers and symptomatic carriers. Here we choose
νa = 1/3, νp = 1/2,

• u: intervention factor due to social distancing (time
dependence specified below).

• r: intervention factor due to testing-quarantining
(time dependence specified below). This is a rate
and depends on testing-quarantining rates.

With our definitions, the total number of confirmed cases,
C, and the number of daily recorded new cases D would
be

C = Da +Dp + Up, D =
dC

dt
= rνaIa + (γp + rνp)Ip .

(15)

Note that we include Up because these are people who
are not detected through directed tests but eventually
get detected (after 1/γp days) when they get very sick
and go to hospitals. On the other hand the class Dp get
detected because of directed testing, even before they get
very sick.

B. Linear analysis of the dynamical equations

Since at early times S ≈ N and all the other popu-
lations E, Ia, Ip, Da, Dp, Ua, Up � N , one can perform a
linearization of the above equations. This tells us about
the early time growth of the pandemic, in particular the
exponential growth rate. Let us define new variables to
characterize the linear regime: x1 = S−N, x2 = E, x3 =
Ia, x4 = Ip, x5 = Ua, x6 = Da, x7 = Up, x8 = Dp. At
early times when xi << N , the dynamics is captured by
linear equations

dX

dt
= MX, with X = (x1, x2, . . . , x8), (16)

M =



0 0 −β̃a −β̃p 0 0 0 0

0 −σ β̃a β̃p 0 0 0 0

0 ασ −γ̃a 0 0 0 0 0

0 (1− α)σ 0 −γ̃p 0 0 0 0

0 0 γa 0 0 0 0 0

0 0 rνa 0 0 0 0 0

0 0 0 γp 0 0 0 0

0 0 0 rνp 0 0 0 0


, (17)

where β̃a = uβa, β̃p = uβp, γ̃a = γa + rνa, γ̃p = γp + rνp.
For the present we ignore the time dependence of the SD
factor u and the TQ factor r. The matrix has 5 zero
eigenvalues while the 3 non-vanishing ones are given by
the roots of the following cubic equation for λ:

λ3 + (γ̃a + γ̃p + σ)λ2

+ [γ̃aγ̃p + γ̃aσ + γ̃pσ − αβ̃aσ − (1− α)β̃pσ]λ

+ σ
[
γ̃aγ̃p − (1− α)β̃pγ̃a − αβ̃aγ̃p

]
= 0. (18)
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This can be re-written in the form

λ3 + (γ̃a + γ̃p + σ)λ2 + [γ̃aγ̃p + σ(γ̃a + γ̃p)(1−Q)]λ

+σγ̃aγ̃p(1−R0) = 0,
(19)

where β̃a = uβa, β̃p = uβp, γ̃a = γa + rνa, γ̃p = γp + rνp,

Q = αβ̃a/(γ̃a + γ̃p) + (1− α)β̃p/(γ̃a + γ̃p), and

R0 = α
β̃a
γ̃a

+ (1− α)
β̃p
γ̃p

= α
uβa

γa + rνa
+ (1− α)

uβp
γp + rνp

(20)

is the expected form for the reproductive number for the
disease. Noting the fact that Q < R0, it follows that the
condition for at least one positive eigenvalue is

R0 > 1. (21)

We denote the largest eigenvalue by µ. At early times
the number of cases detected would grow as ∼ eµt. For
R0 ≈ 1, we expect that the largest eigenvalue is close to
zero and from (19) we can read off the value as

µ ≈ σ(R0 − 1)

1 + σ(γ̃−1
a + γ̃−1

p )(1−Q)
. (22)

Initial conditions: We discuss here the fact that all
initial conditions (which satisfy the condition S(0) ≈ N)
quickly move along the direction of the dominant eigen-
vector and how this provides us a way to choose the cor-
rect initial conditions from the knowledge of one variable
(e.g confirmed cases) at an early time. We denote the
right and left eigenvectors corresponding to the eigen-
value µ by φm(i) and χm(i) respectively. The time evo-
lution of the vector X = (x1, x2, x3, x4, x5, x6, x7, x8) is
given by

xi(t) =
∑
j

∑
q

φq(i)χq(j)e
λqtxj(0)

≈
∑
j

φm(i)χm(j)eµtxj(0),

≈ cmφm(i)eµt, where cm =
∑
j

χm(j)xj(0) (23)

and the second last line is true at sufficiently large times
when only one eigenvalue µ dominates. This proves that
the direction of the vector X is independent of initial
conditions. In particular, using the explicit form of the
dominant eigenvector we find the following relation in the
growing phase of the pandemic:

Ia(t)

Ip(t)
=
φm(3)

φm(4)
=

α(µ+ γ̃p)

(1− α)(µ+ γ̃a)
. (24)

Let us consider the initial condition X =
(−ε, 0, 0, ε, 0, 0, 0, 0) so that (noting that χm(1) = 0)

xi(t) ≈ εφm(i)χm(4)eµt = aiεe
µt, (25)

where ai = φm(i)χm(4). At a sufficiently large time tl
(but still in the very early phase of the pandemic) we
equate the observed confirmed number C0 on some day
to x6(tl) + x7(tl) + x8(tl) which therefore gives us the
relation

εeµtl =
C0

a6 + a7 + a8
. (26)

This then tells us that we should start with the following
initial conditions, counting now time from t = 0 (i.e.
starting from the day of the observation C0):

xi(0) =
φm(i)

φm(6) + φm(7) + φm(8)
C0. (27)

The crucial point is that the leading eigenvector fixes the
direction of the growth and then knowledge of linear com-
bination fixes all the other coordinates. This also means
that trajectories for different initial conditions are iden-
tical up to a time translation (See Fig. 4 and related
discussion).

C. Final affected population

Let us define the asymptotic populations (i.e the popu-
lations at very long times) in the different compartments
as Ūa, D̄a, Ūp, Ūp, and let R̄a = Ūa + D̄a, R̄p = Ūp + D̄p,
R̄ = R̄a + R̄p. The total population that would even-
tually be affected by the disease (and either recovered
or died) is given by R̄ and would have developed immu-
nity. A fraction Ūa (see below) would be undetected and
uncounted.

It is possible to compute the final affected population
R̄ from the dynamical equations in 7 - 14. For the mo-
ment let us assume that u and r do not have any time
dependence. We also assume that Ua(0) = 0, Up(0) =
0, Da(0) = 0, Dp(0) = 0 and S(0) ≈ N . Then solving
(7), we get

S̄ = Ne−
∫ ∞
0
dt[β̃aIa(t)+β̃pIp(t)]/N . (28)

where β̃a and β̃p are given after (19). Adding Eqs. (11)

and (12) and then multiplying both sides by β̃a/γ̃a we

get β̃a

γ̃a
dRa

dt = β̃aIa where Ra = Ua + Da. Similarly, we

also get
β̃p

γ̃p

dRp

dt = β̃pIp where Rp = Up + Dp. Plugging

these two equations into (28) then gives

S̄ = Ne−[(β̃a/γ̃a)R̄a/N+(β̃p/γ̃p)R̄p/N ]. (29)

Next we note that (d/dt)(Ia+Ra) = ασE and (d/dt)(Ip+
Rp) = (1 − α)σE. Hence, for the initial condition
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FIG. 6. (left) Plot of the asymptotic total affected population fraction, R̄/N , as a function of the reproductive number R0.

We also plot the quantity (I(m)/N)(σ + γe)/σ, obtained numerically from many different parameter sets, and compare it with

the theoretical predicted curve 1 − (1 + lnR0)/R0 (green line). (right) Verification of the ln(N) dependence of t(m) in (38) for
different choices of R0. The slopes of the straight lines compares well with µ−1 as stated in (38).

FIG. 7. Data of number of tests per day per thousand in
several countries on a log-scale. Notice in particular the large
testing numbers in the early period in Korea which has been
very successful at controlling the disease. Data from [18].

Ia = Ip = Ra = Rp = 0, we find that the ratio
[Ia(t) + Ra(t)]/[Ip(t) + Rp(t)] = α/(1 − α) at all times.
Since at large times Ia,p → 0, this means that the asymp-
totic values of Ra and Rp are given by

R̄a = αR̄, and R̄p = (1− α)R̄. (30)

Using this in (29), noting that S̄ + R̄ = N and defining
x̄ = R̄/N , we then get the following simple equation that
determines the asymptotic total affected population:

1− x̄ = e−R0x̄, (31)

whereR0 = α β̃a

γ̃a
+(1−α)

β̃p

γ̃p
is the reproductive number as

stated earlier. We note that (31) has a non-zero solution
only when R0 > 1. For the simple SIR model this result
is well known [16], here we show that this is valid for

an extended model as well generally. This computation
of the asymptotic population can be straightforwardly
extended to a more general model where one can have
arbitrary number of compartments for the infected and
recovered populations.

The asymptotic population of the individual popula-
tions are then given by

Ra = αR, Rp = (1− α)R

Ua =
γa

γa + rνa
Ra, Da =

rνa
γa + rνa

Ra,

Ua =
γa

γp + rνp
Rp, Dp =

rνp
γa + rνp

Rp. (32)

D. Peak infections and the time at the peak

To compute the maximum of the infected population
I(m) and the time t(m) at which this peak appears, let
us first look at the basic SEIR model consisting of four
compartments with populations S, E, I and R, and the
dynamics of these variables described by

dS

dt
= −βI

N
S, (33)

dE

dt
=
βI

N
S − σE, (34)

dI

dt
= σE − γI, (35)

dR

dt
= γI. (36)

where now β is the infectivity, E → I transitions hap-
pens at a rate σ and recovery I → R happens at a rate
γ. In this case the reproductive number is simply given
by R0 = β/γ. As shown in the previous section it is easy

to see that S(t) and R(t) are related by dS
dR = − β

NγS =

−R0

N S which gives S(t) = S(0)e−R0R(t)/N . The peak of
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FIG. 8. Data from different countries on the number of tests per detected case T (t)/D(t) for 10 countries (left) on the dates
April 8 (coloured bar), May 9 (black bar) and (right) the change over time of this ratio. Data from [18]
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Daily cases (only symptomatics)
Total affected (symptomatics + asymptomatics)

FIG. 9. Plot of the new daily cases (γpIp) and total affected
population fraction (R), as a function number of months for
one of the parameter sets in Table. III for the city of Mumbai.
Parameter values were σ = 0.5, γ̃p = 0.2, α = 0.9, R0 = 2.16
before intervention and Rtarget

0 = 1.3. The dashed lines give
the analytic predictions for the peak daily cases (black line)
and the final affected population ( green line), and show the
good agreement with the numerics. The arrows indicate the
date when initial condition was specified γpIp(0) = 195 and
the peak infection date, which occurs about 15 days after the
date predicted from (38).

the infected population is given by setting dI/dt = 0 at
t = t(m). By solving the equations (33)-(36) for several
set of parameters we observe that E also achieves its peak
around the same time. Hence setting also dE/dt = 0
at t = t(m), we find S(t(m)) = S(m)/N = 1/R0. On
the other hand from S(t) = S(0)e−R0R(t)/N we get
R(m) = −R−1

0 ln(S/N) = R−1
0 lnR0. Then using the

overall constraint N = S + E + I + R we finally obtain

that the peak value of the infection number is given by

I(m) =
σ

γ + σ

(
1− 1 + lnR0

R0

)
N. (37)

An estimate of the time to reach this peak value can be
obtained [17] by noting that we can use the linearized dy-
namics (see previous section) till the time I(t) reaches its

peak I(m). Hence we write I(m) = I(t(m)) = I(0) eµt
(m)

which finally gives

t(m) ∼ ln[I(m)/I(0)]

µ
∼ ln(N/c)

µ
, (38)

where c is a constant that depends on initial infection
numbers and parameter values. A verification of this
result, obtained by solving the basic SEIR equations nu-
merically, is provided in Fig. 6.

Interestingly, we find that the expression for I(m) also
describes quite accurately the peak value for the extended
SEIR dynamics with γ now replaced by

γe = [αγ−1
a + (1− α)γ−1

p ]−1. (39)

In Fig. 6 we show the dependence of x̄ on R0 (as ob-
tained from a numerical solution of (31)) and provide
a numerical verification of the result in Eqs. (37,39)
for the extended SEIR model. The peak values of the
asymptomatic and presymptomatic populations are re-
spectively given by

I(m)
a = αγeI

(m)/γa,

I(m)
p = (1− α)γeI

(m)/γp. (40)

In Fig. 9 we show results of a numerical solution of the
dynamical equations in presence of intervention (SD) for
one of the parameter sets in Table. III and find excellent
agreement with our analytic formula in Eqs. (31,37-39).
We see that the predicted peak time is off by about 10%.
The numerics also shows that the complete suppression
of the disease takes more than 6 months after the peak.
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E. Interventions: Social distancing and
Testing-Quarantining

We discuss here the choices of the intervention func-
tions u and r introduced in the dynamical equations
7-14. Note that u is a dimensionless number quan-
tifying the level of social contacts, while r is a rate
which, as we will see, is closely related to the testing rate.

Social distancing (SD): We multiply the constant fac-
tors βa,p by the time dependent function, u(t), the “lock-
down” function that incorporates the effect of a social
distancing, i.e reducing contacts between people. A rea-
sonable form is one where u(t) has the constant value
(= 1) before the beginning of any interventions, and then
from time ton it changes to a value 0 < ul < 1, over a
characteristic time scale ∼ tw. Thus we take a form

u(t) = 1 t < ton,

= ul + (1− ul)e−(t−ton)/tw , t > ton. (41)

The number ul indicates the lowering of social contacts.

Testing-quarantining (TQ): We expect that testing
and quarantining will take out individuals from the in-
fectious population and this is captured by the terms
rνaIa and rνpIp in the dynamical equations. A reason-
able choice for the TQ function is perhaps to take

r(t) = 0 t < t′on,

= rl − rle−(t−t′on)/t′w , t > t′on. (42)

where we one needs a final rate rl > 0. In general the time
at which the TQ begins to be implemented t′on and the
time required for it to be effective t′w could be different
from those used for SD.

A useful quantity to characterize the system with in-
terventions is the time-dependent effective reproductive
number given by

Reff
0 (t) = α

u(t)βa
γa + r(t)νa

+ (1− α)
u(t)βp

γp + r(t)νp
. (43)

At long times this goes to the targeted reproduction num-
ber

Rtarget
0 = Reff

0 (t→∞) = α
ulβa

γa + rlνa
+ (1− α)

ulβp
γp + rlνp

.

(44)

The time scale for the intervention target to be achieved
is given by tw and t′w.

Relation of the TQ function r(t) to the number of
tests done per day: Let us suppose that the number
of tests per person per day is given by Tr. We show
in Fig. (7) the data for the number of tests per 1000
people per day across a set of countries and see that this

is around 0.05 for India which means that Tr = 0.00005.
If tests are done completely randomly, then the number
of detected people (assuming that the tests are perfect)
would be Tr × I and so it is clear that we can identify
r(t) = Tr(t). It is then clear that this would have no
effect on the pandemic control. To have any effect we
would need r & γp ≈ 0.1 which means around 100 tests
per 1000 people per day which is clearly not practical.

However, a better strategy is to do focused tests on
the contacts of all those who have been detected on a
given day. We now give an estimate of the rate r if we
followed this strategy. For simplicity of presentation of
our argument we here assume νa = νp = 1 and γa = γp.
From our extended SEIR model the number of detected
cases per day is given by ∆D(t) = rνaIa+(rνp+γp)Ip =
rI + γpIp. In the growing phase we have, from Eq. (24),
that Ia = αI and Ip = (1− α)I. Hence we get ∆D(t) =
γ̂I with γ̂ = r+(1−α)γp. The total number of contacts of
the I = ∆D/γ̂ individuals would be A∆D(t)/γ̂, where
A is the mean number of contacts of a single infected
person. If we perform T tests per day on this pool, then
the rate of detections will be given by

r =
T γ̂

A∆D(t)
(45)

Denoting c = T/(A∆D) and noting that γ̂ = r + (1 −
α)γp, we self-consistently solve the above equation to find

r =
c(1− α)γp

1− c
. (46)

Now it is clear that unless r and γa = γp are of the same
order, TQ will not have much effect on the dynamics and
the change in R0 will be small. Setting r & γp then gives
us the condition

T &
A∆D(t)

2− α
. (47)

Note that in our model we identify r(t) as our control rate
function that changes from the value 0 to a value rl ≈ γp
over the time scales of a week or so. This means that we
would need to change the testing rate in a controlled way
such that the condition T (t) ∼ A∆D(t) is maintained.
The implications of this is discussed after (6). In Fig. 7
we show data for daily new tests for a set of countries.
A noteworthy case is the data for South Korea where we
see the large testing rate at early days of the pandemic.
Perhaps this explains the quick control of the pandemic in
that country. The table in Fig. 8 shows data for the ratio
T (t)/∆D(t) for a set of countries and also how this ratio
has evolved over time. As explained earlier (see Sec. I C),
the number A is expected to depend on the population
density and also how well SD is being implemented and
hence, for a country like India T (t)/∆D(t) ≈ 25 may not
be sufficient.
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