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 Abstract 13 

The unprecedented COVID-19 pandemic that swiped across the globe led many countries to apply 14 

heavy nationwide restrictions and control measures. Analyzing aggregate and anonymized 15 

mobility data from the cell-phone devices of>3 million users in Israel, we identified that poorer 16 

regions exhibited lower and slower compliance with the restrictions. We integrated these mobility 17 

patterns into age-, risk- and region-structured transmission model, and showed how we can explain 18 

the spatiotemporal dynamics of 250 regions covering Israel. Model projections suggest that 19 

applying localized and temporal interventions that focus on high-risk groups can substantially 20 

reduce mortality, particularly in poorer regions, while enabling daily routine for a vast majority of 21 

the population. These trends were consistent across vast ranges of epidemiological parameters, 22 

possible seasonal forcing, and even when we assumed that vaccination would be commercially 23 

available in 1-3 years. Our findings can help policymakers worldwide identify hotspots and apply 24 

designated strategies against future COVID-19 outbreaks. 25 

 26 
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MAIN TEXT 29 

 30 

Introduction 31 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in Wuhan, China, 32 

in December 2019. It has since developed into a pandemic wave affecting over 200 countries, 33 

causing over 5.4 million cases and claiming over 340 thousand lives, as of May 24, 2020 (1). The 34 

rapid growth of the SARS-CoV-2 pandemic led to unprecedented control measures on a global 35 

scale. As of May 2020, travel bans, restrictions on mobility of varying degrees, and nationwide 36 

lockdowns have emerged sharply in over 200 countries (2). In Israel, since March 9, 2020, travelers 37 

from any country are being denied entry unless they can prove their ability to remain under home 38 

isolation for 14 days. From March 16 onward, daycare and schools were shut, and work was 39 

limited to less than a third of the capacity. On March 26, inessential travel was limited to 100 40 

meters away from home, and three lockdowns were applied in most regions in Israel to prevent 41 

crowding due to holiday celebrations (3). 42 

 43 

These massive measures in Israel and elsewhere have led to a sharp decline in transmission but 44 

pose a significant humanitarian and economic crisis (4). Recent estimates have suggested that 1.5-45 

3 month lockdowns will lead to an enormous economic loss, with high variability across countries 46 

ranging between 1.7-13.1% decline in the gross domestic product (4). Thus, given that pandemics 47 

rarely affect all people in a uniform manner (5), it is essential to improve our understanding of the 48 

COVID-19 transmission dynamics to optimize control efforts.  49 

 50 

A variety of factors affect the risk of infection and manifestations, including demographics, 51 

education, underlying conditions, and epidemiological characteristics (6). The high variance in the 52 

severity of the disease for different age groups (7) suggests that age-based strategies might be 53 

effective in reducing mortality. Age-stratified modeling studies show (8) that interventions such 54 

as school closure can help delay the outbreak peak. However, this will not necessary result in a 55 

reduction in the total number of deaths, particularly in light of the estimated time for vaccine 56 

availability being >1 year (9). In addition to age, individuals with comorbidities are 2.8-21.4 times 57 

more likely to become hospitalized following COVID-19 infection (10). Another factor may be 58 

socioeconomic status. Poor populations often live in denser regions and have reduced access to 59 

health services, thereby being most vulnerable during a crisis (5). The considerably high rate of 60 

household transmission for respiratory infections (11) may suggest a higher risk for larger families, 61 

regardless of lockdowns. We explored the impact of these  62 

 63 

Human mobility is a key component of the transmission of respiratory infections, including 64 

COVID-19 (8, 12–15). In particular, the four billion mobile phones in use worldwide are 65 

ubiquitous sensors of individuals’ locations and can be used to track mobility patterns, understand 66 

compliance with ongoing restrictions, improve epidemiological investigations, and identify 67 

hotspots (14). The importance of human mobility to predict transmission is further intensified by 68 

the 2.2-11.5 incubation period after exposure, and the observation that as many as 95% of cases 69 
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are unreported (16).Thus, just like controlling the spread of wildfires, early detection of COVID-70 

19 infection, is instrumental in containing outbreaks, and may be achieved by utilizing data on 71 

human mobility.       72 

 73 

We performed an integrated analysis of large-scale data of location records from mobile phones 74 

to explore the spatiotemporal effect of human mobility and poverty on transmission. We integrated 75 

these mobility data into regional age-structured transmission models, and we used our model to 76 

identify efficient and effective strategies for reducing COVID-19 mortality. Our findings can help 77 

policymakers worldwide identify hotspots and apply designated strategies against future 78 

outbreaks. 79 

 80 

Results 81 

Human mobility and poverty 82 

We utilized aggregated and anonymized information about mobility based on cellular data. The 83 

data specifies movement patterns of >3 million users within and between 2,630 zones covering 84 

Israel, on an hourly basis, from February 1, 2020, to May 16, 2020. This period corresponds to the 85 

period from a month before the COVID-19 outbreak began in Israel until 16,600 cases were 86 

reported. Each zone includes ~3500 residents with available information regarding several 87 

socioeconomic characteristics, including household size, age distribution, mean socioeconomic 88 

score, and religion. 89 

 90 

During the aforementioned period, the government applied and lifted several movement 91 

restrictions. We define a mobility index (MI) as the daily proportion of individuals who traveled 92 

>1.5 km away from their home. While a sharp decline has been observed in the overall population 93 

following restrictions, the decline varied considerably among individuals of different 94 

socioeconomic statuses (SESs). Specifically, during routine days, the low-SES population had the 95 

lowest MI. Shortly after the restrictions started, this trend changed, and populations of all SESs 96 

had similar MIs, while during the lockdowns, the high-SES population had the lowest MI (Figure 97 

1A). 98 

 99 

Before the COVID-19 outbreak, the population was highly clustered such that people of a specific 100 

SES typically traveled to zones where the residents matched their SES and were therefore more 101 

likely to meet with each other (Figure 1B, and Figures S1 and S2 Supplementary materials). 102 

Likewise, people of similar demographic groups, such as those with the same religious affiliations, 103 

typically traveled to zones where the residents matched their group. These trends further 104 

intensified following the restrictions (Figure 1C). Notably, the clustering was not attributable to 105 

only the geographical distance, as many high-SES zones are geographically close to the low-SES 106 

zone. 107 

  108 
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 109 

Human mobility and poverty explain transmission 110 

To explore the spatiotemporal effect of human mobility and poverty on transmission, we calculated 111 

the number of new cases and the amount of travel between zones observed during three periods: 112 

February 13-March 26, March 27-April 20, and April 20-May 20. These periods correspond to 1) 113 

the early phase before restrictions started, 2) between the time of restrictions and until the 114 

restrictions were lifted, and 3) after restrictions were lifted. Our analysis indicated that during the 115 

first period, the infection was evenly distributed among different SESs (Figure 2A). During the 116 

second period, 71% of the cases were residents of zones with a low SES, particularly religious 117 

orthodox Jews. During the third period, 81% of the cases were residents of low SES, mainly 118 

residents of zones of Israeli Arabs and orthodox Jewish people. We also identified a high 119 

correlation ranging from 79.2-82.8% (p value<0.001) with a lag of 12-14 days between the MI and 120 

the disease growth factor, i.e., the number of new cases daily per active case (Figure S3 121 

Supplementary materials). This lag includes the incubation period, the time from symptom onset 122 

until a test is conducted, and the time until the test results arrive. 123 

 124 

We integrated the daily mobility data into an age-, region-, and risk-stratified model for SARS-125 

Cov-2 transmission. Model parameters were calibrated to the number of new cases daily in 30 126 

regions covering Israel. With only five free parameters, the model recapitulated SARS-Cov-2 127 

trends (Figure 3). For example, the calibrated model showed that the national SARS-Cov-2 128 

infections peaked during March 17-25 (Figure 3B) and yielded age and regional distributions of 129 

SARS-Cov-2 consistent with the data (Figure 3C and D). Our calibration further indicated that a 130 

model ignoring mobility poorly captured the spatiotemporal dynamics and provided 131 

overestimation of disease transmission. We also found that a model that accounted for seasonal 132 

forcing yielded a higher, but not significant (p value<0.35), likelihood than a model that did not 133 

account for seasonal forcing (Table S5, Supplementary materials). 134 

 135 

Focused lockdowns reduce mortality 136 

As transmission varied considerably among regions, we projected the number of total deaths for 137 

1-3 years under local and temporal lockdown strategies. Specifically, we simulated three strategies 138 

triggered by a threshold of daily COVID-19 incidence in each of the 250 regions where we 139 

considered a lockdown for 1) the entire population in the region, 2) daycare- and school-age 140 

children (between 0-19 years of age (children), and 3) high-risk groups and individuals >65 years 141 

of age (high-risk). To examine the efficiency of local strategies compared to nationwide strategies, 142 

we also simulated a global strategy triggered by similar national daily incidence. When a lockdown 143 

is applied, we consider the same compliance rate as that observed during previous lockdowns, 144 

which is reflected in our data for each region by different values of the MI and travel between 145 

zones. 146 

 147 
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We evaluated the efficiency of the lockdown strategies, defined as the number of deaths averted 148 

per lockdown day (Figure 4). We found that the local strategy of targeting the high-risk group was 149 

substantially more efficient than any other strategy. For example, assuming the proportion of 150 

unreported cases is 85% and a lockdown threshold of 5/10,000 (cases/individuals), a strategy 151 

targeting the high-risk group is 4.3-5.5 times more efficient than a global strategy (Figure 4C and 152 

D).  153 

 154 

We evaluated the effectiveness of each strategy in reducing mortality (Figure 5). We found that a 155 

strategy locally targeting the high-risk group yielded a lower number of deaths than a strategy 156 

targeting children. For example, assuming the proportion of unreported cases is 85% and a 157 

lockdown threshold of 5/10,000 (cases/individuals), a strategy targeting the high-risk group 158 

resulted in 4,500-4,900 deaths while on targeting children resulted in 7,900-10,500 deaths after 159 

one year (Figure 5). In addition, for lockdown thresholds exceeded 5/10,000, which aligns with 160 

the current practice in Israel, a strategy locally targeting the high-risk group either is projected to 161 

be the most effective or is comparable to the most effective strategies. Although comparable on 162 

the effectiveness, such a policy includes 2.2-5.5 times fewer individuals under lockdowns (Figure 163 

5C and D).  These trends were consistent across vast ranges of epidemiological parameters, 164 

different plausible ranges of threshold values, and different considerations of seasonal forcing. 165 

 166 

Discussion 167 

Our key findings suggest that COVID-19 infection does not spread uniformly in the population, 168 

and thus, intervention strategies should be localized and temporal and should focus primarily on 169 

protecting individuals at high risk. Such a strategy can reduce mortality while enabling daily 170 

routine for a vast majority of the population. Furthermore, temporary lockdown strategies that 171 

focus on the population at high risk were found to be most efficient and likely to result in 172 

comparable mortalities to lockdown strategies of all individuals in a region.  173 

 174 

Our work demonstrates that to understand the spatiotemporal dynamics of transmission, models 175 

must account for mobility as well as behavioral aspects that are associated with sociodemographic 176 

and socioeconomic factors. In particular, we found that SARS-Cov-2 is more likely to spread in 177 

more impoverished regions and is affected by human mobility. The intensive interactions likely 178 

led to higher transmission in developed countries than in developing countries. However, our 179 

model suggested that people of low SES are at higher risk due to poorer compliance and larger 180 

household size. 181 

 182 

Our analyses indicate that localized lockdowns with incidence thresholds as low as five reported 183 

cases in 10,000 individuals are essential to decrease mortality. This finding underscores the 184 

importance of maintaining a high level of testing (17), particularly in regions with elevated risk of 185 

transmission. However, with such a strategy, at least 2500 total years of lockdowns (equivalent to 186 

a one-day lockdown of 912,500 individuals) are required to prevent a single death. Considering 187 
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that one day of lockdown is equivalent to a quality of life value that is ~0.85 times that in a routine 188 

day (18), even local lockdowns should be prudently considered from a health economic 189 

perspective. Thus, future modeling studies should also include localized and temporal massive 190 

screening efforts, which result in more focused quarantines and isolations than massive lockdowns. 191 

 192 

As in any modeling study, we made several simplifying assumptions. Our local lockdowns 193 

correspond to regions with a population of ~36,000 people. A smaller lockdown may be more 194 

efficient but could not be tested by our model. Additionally, with the growing evidence of a 195 

disproportionate risk from COVID-19 to the elderly (10, 19), focused control measures are likely 196 

to be conducted in retirement homes and facilities with populated communities at high risk, which 197 

we did not explicitly account for in our model (20). Although the transmission dynamics are 198 

unlikely to change with such focused interventions, the overall mortality is expected to be lower 199 

than what we have found. 200 

 201 

While there is a debate in the literature regarding the extent of infectiousness and transmissibility 202 

in children (21), our results highlighted a not less important question: to whom do children 203 

transmit? Our findings reveal that children are less likely to transmit to populations at risk, and 204 

thus, a differential lockdown strategy that targets children is not the most efficient or effective in 205 

reducing mortality. 206 

 207 

In conclusion, we showed that using aggregated and anonymized human mobility data from 208 

cellular phones under the General Data Protection Regulation (GDPR) guidelines is a powerful 209 

tool to improve the understanding of transmission dynamics and to evaluate the effectiveness of 210 

control measures. Our transmission model predicted that rather than nationwide lockdowns, 211 

applying temporal and localized lockdowns that focus on groups at high risk can substantially 212 

reduce mortality. Such focused measures will enable a vast majority of the population to maintain 213 

a daily routine. Our findings can help policymakers worldwide identify hotspots and apply 214 

designated strategies against the ongoing outbreak and future second waves. 215 

 216 

Materials and Methods 217 

 218 

Human mobility 219 

Our data include mobility records based on cellular data of >3 million users from one of the largest 220 

telecommunication companies in Israel. With the exception of children <10 years of age, the users 221 

are well representative of Israel demographically, ethnically, and socioeconomically. In 222 

accordance with the GDPR, the data include aggregated and anonymized information. The data 223 

specifies movement patterns within and between 2,630 zones covering Israel, on an hourly basis, 224 

from February 1, 2020, until May 16, 2020. To ensure privacy, if less than 50 individuals were 225 

identified in the zone in a given hour, the number of reported individuals was set to zero. 226 

 227 
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We determined the location of individuals based on the triangulation of cell towers, which was 228 

found to be accurate to 300 meters in most cases but varied by up to 1 km in less populated areas. 229 

To prevent signal noise and identify stay points, we tracked only locations where users stayed for 230 

at least 15 minutes within a distance threshold of 1.7 km. We defined users as residents of a zone 231 

based on the location at which they had the highest number of signals on most nights during 232 

February 2020. 233 

 234 

To calculate the MI for each zone, we counted the daily number of individuals in each group that 235 

showed a signal away from their home location. Conservatively, we counted only individuals who 236 

were located more than 1.5 km away from home. 237 

 238 

Next, we integrated data from the Central Bureau of Statistics (CBS) that specifies several 239 

socioeconomic characteristics, including population size, household size, age distribution, 240 

socioeconomic score, and dominant religion, for each zone. Each zone includes ~3,500 residents. 241 

For each zone, we scaled the number of resident users of the telecommunication company to match 242 

the actual number of residents in the zone, as reported by the Israeli CBS. The CBS specifies for 243 

each zone a socioeconomic cluster from 1 to 10. Based on these clusters, we defined three SES 244 

groups that were nearly equal in size: low (clusters 1-3), middle (clusters 4-7), and high (clusters 245 

8-10). We aggregated the MI according to SES to test the mobility trends on a national level 246 

(Figure 1A). To evaluate the travel patterns based on an individual's SES (Figure 1B and 1C), we 247 

counted the mean daily number of travels between the 2,630 zones, including for those individuals 248 

who stayed in their origin zone. Grouping by SES and scaling the daily number of travels to one 249 

for each zone, we created an origin-destination travel probability matrix. 250 

 251 

To analyze the relationship among poverty, mobility, and transmission (Figure 2), we divided the 252 

data into three periods: 13 Feb-26 Mar, 27 Mar-19 Apr, and 20 Apr-15 May, corresponding to 1) 253 

the early phase before restrictions started, 2) the time from restrictions until they were first lifted, 254 

and 3) after the restrictions were lifted. For each period, we ranked municipalities with a population 255 

of >10,000 residents based on the number of new cases per person observed in each period. For 256 

improved clarity of Figure 2, we present the 50 most prevalent municipalities. We calculated for 257 

each city the number of newly reported cases, the socioeconomic groups, and the distribution of 258 

travels to the other 49 municipalities. 259 

 260 

Transmission model 261 

We developed a dynamic model for age-, risk- and region-stratified SARS-Cov-2 infection 262 

progression and transmission in Israel. Our model is a modified susceptible exposed infected 263 

recovered (SEIR) compartmental framework (22), whereby the population is stratified into health-264 

related compartments, and transitions between the compartments change over time (Figure 3). To 265 

model age-dependent transmission, we stratified the population into age groups: 0-4 years, 5-9 266 

years, 10-19 years, 20-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years and ≥70 years. 267 
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We distinguished high-risk and low-risk individuals in each age group based on the ACIP case 268 

definition (23, 24). We also distinguished the 250 regions covering Israel in the model. 269 

 270 

The mean incubation period of SARS-Cov-2 is 6.4 days (95% CI, 5.6 to 7.7 days) (25, 26), but 271 

early evidence shows that viral shedding occurs during a presymptomatic stage (27, 28). Thus, we 272 

considered an exposure period E and an early infectious period 𝐼𝑒𝑥𝑝𝑜𝑠𝑒𝑑. Underreporting arises 273 

from asymptomatic cases or mild cases in individuals who do not seek care. Thus, following the 274 

early infectious phase, individuals in the model transition either to an infectious and reported 275 

compartment 𝐼𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 or to an infectious and unreported compartment 𝐼𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 (29, 30). 276 

 277 

Multiple infections with SARS-Cov-2 are not yet fully understood. A recent study indicated that 278 

there is protective immunity following infection (31). This result is consistent with a previous 279 

study indicating that for SARS-Cov-1, memory T cells persist for up to 11 years (32). In addition, 280 

similar to other respiratory infections, it is likely that if reinfection occurs, it is less severe and less 281 

transmissive (33). Thus, we assumed that upon recovery, individuals are fully protected, which is 282 

consistent with other SARS-COV-2 transmission models (34) (Supplementary materials). 283 

Altogether, our model includes 5 ∗ 9 ∗ 2 ∗ 250 =  22,500 compartments (ℎ𝑒𝑎𝑙𝑡ℎ −284 

𝑐𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑠 ∗ 𝑎𝑔𝑒 − 𝑔𝑟𝑜𝑢𝑝𝑠 ∗ 𝑟𝑖𝑠𝑘 − 𝑔𝑟𝑜𝑢𝑝𝑠 ∗ 𝑟𝑒𝑔𝑖𝑜𝑛𝑠). For transparency, the data and 285 

code are available on GitHub (ref). 286 

 287 

Force of infection and seasonality 288 

The rate at which individuals transmit depends on (i) contact mixing patterns between the infected 289 

individual and his or her contact, (ii) age-specific susceptibility to infection, (iii) region-based 290 

behavioral susceptibility, and (iv) potential seasonal forcing. 291 

Age-specific contact rates were parameterized using data from an extensive survey of daily 292 

contacts (35) and data from CBS regarding the household size in each region. In addition, we 293 

utilized the aggregate mobility data regarding movement patterns within and between 250 regions 294 

as observed in the data during routine and following restrictions (Supplementary materials). We 295 

specifically distinguished the contact patterns of infected individuals for different locations, 296 

namely, at home, at work and during leisure, such that the number of contacts was based on (35) 297 

and the household size, whereas the mixing patterns were based on the locations of the individuals 298 

as analyzed by the mobile data. These contact data reveal frequent mixing between similar age 299 

groups, moderate mixing between children and people their parents’ age, and infrequent mixing 300 

among other groups. The data based on mobility reveal more frequent mixing between individuals 301 

of similar SES, at similar geographical distances, and with cultural similarities (Supplementary 302 

materials). 303 

We distinguished between in-home and out-of-home transmission. We evaluated the in-home 304 

transmission is independent of age, and based on a previous retrospective studies, that suggested 305 
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a value of 0.16 (11). The age-specific susceptibility rate for out-of-home individuals 𝛽𝑗 was 306 

parameterized by calibrating our model with daily COVID-19 records. 307 

To account for behavioral susceptibility, we explicitly considered in our model a parameter 308 

reflecting the order to maintain physical distancing, 𝜅𝑝. The high regional variations in 309 

susceptibility were parameterized based on fertility rates and socioeconomic characteristics. 310 

Specifically, we computed for each region the relative change in mobility compared to routine. 311 

Our analysis indicated that for regions of low SES, the change was lower, which was reflected in 312 

our model by higher susceptibility (Supplementary materials). The use of regional fertility and 313 

relative change in mobility allowed us to refrain from calibrating the model to an excessive number 314 

of unknown parameters and avoid overfitting. 315 

Seasonal patterns have been observed in common circulating HCoVs, mostly causing infections 316 

in humans between December and May in the Northern Hemisphere (36). The two human 317 

coronaviruses 229 E and OC43 show distinct winter seasonality. In addition, many coronaviruses 318 

in animals exhibit a distinct seasonal pattern of incidence in their natural hosts (37). There is 319 

growing evidence that SARS-CoV-2 is also seasonal, with the optimal setting for transmission in 320 

Israel occurring during winter (38). Thus, we considered in our base-case seasonal forcing by 321 

including general seasonal variation in the susceptibility rate of the model as 322 

𝑇(𝑡) = (1 + 𝑐𝑜𝑠(
2𝜋(𝑡+𝜑)

365
)), 323 

in which 𝜑 is the seasonal offset. This formulation was previously shown to capture the seasonal 324 

variations in several respiratory infections, including RSV and influenza (33, 39). We incorporated 325 

the possible values of 𝜑 to reflect peaks from December through February (Supplementary 326 

materials). 327 

 328 

Model calibration 329 

To empirically estimate unknown epidemiological parameters (Table S5, Supplementary 330 

materials), we calibrated our model to daily age-stratified cases of COVID-19 confirmed by PCR 331 

tests in 30 districts covering Israel. The calibration was conducted on a 30-district level rather than 332 

in the 250 regions to ensure that there were sufficient time series data points in each location for 333 

each age group. The data were reported by the Israeli Ministry of Health between February and 334 

May and include daily information for the patients, including age, residential zone, underlying 335 

conditions, and clinical outcomes, including hospitalizations and death. 336 

Due to the uncertainty regarding the proportion of unreported cases, we calibrated our model to 337 

different scenarios. Specifically, underreporting is affected by testing policy and testing 338 
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capabilities for each country, as well as individuals' tendency to seek care once clinical symptoms 339 

appear. In addition, underreporting is affected by the severity of the infection, which is associated 340 

with age (10). Thus, we chose different estimates for the proportion of underreporting, ranging 341 

from 5.5-14 unreported cases for a single reported case. These estimates are based on observations 342 

from screenings conducted in Denmark, Czechia, Netherlands; Santa Clara, California (10, 16, 40) 343 

(Table S1, Supplementary materials). Due to the uncertainty related to positive predictive values 344 

of serological screenings, we also tested a scenario of 2 unreported cases for a single reported case 345 

to confirm the robustness of our findings.  346 

To account for the age variation, we considered the detailed serological data from Santa Clara. We 347 

also calibrated our model with scenarios assuming different phases of seasonal peaking between 348 

December 21 and February 21, as well as scenarios with no seasonality. The final transmission 349 

model included five parameters without constraints imposed from previous data: reduced 350 

susceptibility due to physical distancing 𝜅𝑝 and susceptibility rate based on age groups j: 0-19, 20-351 

39, 40-59, and >60 (Supplementary materials). 352 

Model simulations 353 

We evaluated the effectiveness of temporal lockdown strategies in reducing mortality by 354 

simulating the model for one year and three years or until disease elimination. The minimal time 355 

chosen is consistent with estimates determined by the US National Institute of Allergy and 356 

Infectious Diseases, which suggested that a vaccine could be available by May 2021. 357 

Each strategy considered includes a threshold for activation of a lockdown, and the groups 358 

considered for lockdown were as follows: 1) the entire population in the region, 2) daycare- and 359 

school-age children between 0-19 years of age (children), 3) high-risk groups and individuals >65 360 

years of age (high-risk). 361 

Thus, to model the lockdown strategies, we defined an indicator for each region as the weekly 362 

number of new-reported cases per 10,000 people. Each week, we examined whether the indicator 363 

exceeds a certain threshold for each region. If so, a lockdown was activated for the following week. 364 

This process was continued for 1-3 years. 365 

To project the number of individuals who will die under each strategy considered, we utilized 366 

available detailed information from the Israeli Ministry of Health (Table S2, Supplementary 367 

materials). Specifically, we calculated for each age and risk group the proportion of individuals 368 

who died out of the reported cases. We multiplied these proportions with the daily model 369 

projections of newly reported cases and summed this product to calculate the total projected 370 

number of deaths. We also accounted for the uncertainty regarding the estimated probabilities. We 371 

define the efficiency of a lockdown strategy as the total number of deaths averted per total 372 
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lockdown days. The number of deaths averted is calculated as the projected number of deaths with 373 

no lockdowns minus the number of deaths projected when the considered strategy is applied. 374 

 375 

  376 
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Figures and Tables 607 

 608 
Figure 1: Mobility patterns with and without restrictions (A) Percentage of individuals who traveled >1.5km, 609 
stratified by socioeconomic groups, during routine and when mobility restrictions were applied and lifted: (1) closing 610 
schools and stores and limiting workplaces to 30% activity; (2) limiting nonessential travels to 100 meters away from 611 
home; (3) and (4) national daily lockdowns due to Passover; (5) opening stores; (6) lockdown due to Independence 612 
Day; (7) lifting the 100 meter limit for nonessential travels. (B) and (C) Travel patterns based on individuals’ SES 613 
during February 2-29 (B) and March 26-April 18 (C). 614 
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 616 

 617 

Figure 2. Association between mobility and poverty in COVID-19 transmission. (A-C) Spatiotemporal 618 
transmission by socioeconomic status. We present the 50 municipalities with the highest incidence. Each circle 619 
represents one municipality. The radius (presented on a logarithmic scale for clarity) reflects the total number of new 620 
cases reported during the corresponding period. The colors reflect socioeconomic status. The lines between the 621 
municipalities represent the traffic of each municipality, wherein the line thickness represents the relative traffic 622 
intensity and the color matches the color of the SES of origin. (D-E) The number of reported cases among different 623 
SEGs for three periods corresponding to 1) the early phase before restrictions started, 2) from the time of restrictions 624 
and until the restrictions were lifted, and 3) after restrictions were lifted. 625 
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 627 

 628 
Figure 3. Structure and fit of the transmission model. (A) Compartmental diagram of the transmission model. 629 

Susceptible individuals S transition to the exposed compartment with a force of infection λ, where they are infected 630 

but not yet infectious, until moving to an early infectious compartment at rate σ, in which they do not show symptoms 631 

but may transmit. Infected individuals in the early stage move to a reported 𝐼𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑  or unreported 𝐼𝑈𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑  632 

infectious period, in which they may have a mild or an asymptomatic infection until death or complete recovery. For 633 

clarity of depiction, age, risk, and location stratifications are not displayed. (B) Time series of reported daily COVID 634 
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cases and model fit countrywide. (C) Data and model fit to the age distribution among COVID19 infections. (D) Data 635 

and model fit to the 30 districts covering Israel. 636 

 637 

 638 
Figure 4. Efficiency of lockdown strategies. Median and interquartile values of the projected number of deaths 639 
averted per 1 M lockdown days due to the implementation of lockdown strategies (A,C) after one year and (B, D) 640 
after three years. (A,B) The thresholds for lockdowns in a local region are 1/10,000 [cases/individuals] and (C,D) 641 
5/10,000 [cases/individuals]. 642 
 643 
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 644 
 645 
Figure 5. Effectiveness of lockdown strategies. Median and interquartile values of the projected number of deaths 646 
after implementation of strategies (A, C) after one year and (B, D) after three years. (A, B) The thresholds for 647 
lockdowns in a local region are 1/10,000 [cases/individuals] and (C, D) 5/10000 [cases/individuals]. 648 
 649 
  650 
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 673 

1. Model   674 

1.1. The model  675 

  676 

We developed a dynamic model for age-, risk- and regions-stratified SARS-Cov-2 infection 677 

progression and transmission in Israel. Our model is a modified Susceptible-Exposed-Infected-678 

Recovered (SEIR) compartmental framework (22), whereby the population is stratified into health-679 

related compartments, and transitions between the compartments occurs over time (Main text, 680 

Figure 3). To model age-dependent transmission, we stratified the population into nine age groups: 681 

0–4 years, 5-9 years, 10-19 years, 20-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years 682 

and ≥70 years. (13, 41, 42). We distinguished between high-risk and low-risk individuals for each 683 

age group based on the ACIP case definition (23, 24). We also distinguish in the model between 684 

250 regions covering Israel.  685 

 686 

Multiple infections with SARS-Cov-2 is yet fully understood. A recent study indicated that there 687 

is a protective immunity following infection in humans (31) and animals (43). This result is in-688 

line with a previous study indicating that for SARS-Cov-1, Memory T cells persist for up to 11 689 

years (32). In addition, similarly to other respiratory infections, it is likely that if re-infection 690 

occurs, it is less severe and less transmissive (33). Thus, we assumed that upon recovery 691 

individuals are fully protected for the entire season wich consistent with other SARS-COV-2(44, 692 

45). 693 

The mean incubation period of SARS-Cov-2 is 6.4 days (95% CI, 5.6 to 7.7 days) (25, 26), but 694 

first evidence shows viral shedding occurs during a pre-symptomatic stage (27, 28). Thus, we 695 

considered an exposed period 𝐸, and an early infectious period 𝐼𝑒𝑥𝑝𝑜𝑠𝑒𝑑. Underreporting arises 696 

from asymptomatic cases or mild cases of individuals that do not seek care (16, 40, 46, 47). Thus, 697 

following the early infectious phase, individuals in the model transition either to an infectious and 698 

reported compartment 𝐼𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑, or to infectious and unreported compartment 𝐼𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑. 699 

To enable in our model for a subset of the population to go for intervention (e.g., 30% of the 700 

individuals from specific regions, age groups or risk-group to go under lockdown during a selected 701 

time period), we also specifically distinguish between those who undergo and those who did not 702 

undergo an intervention. 703 

Accordingly, we stratified the population into six health-related compartments: 704 

susceptible 𝑆𝑗,𝑘,𝑟,𝑞(𝑡), exposed but not yet infectious 𝐸𝑗,𝑘,𝑟,𝑞(𝑡), infectious at early 705 

stage 𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡), reported infectious 𝐼𝑗,𝑘,𝑟,𝑞

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡), unreported infectious  𝐼𝑗,𝑘,𝑟,𝑞
𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡) and 706 

recovered  𝑅𝑗,𝑘,𝑟,𝑞(𝑡), such that at any given time t (in days) the population is fixed and scaled to 707 

one. Namely,  708 
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∑ ∑ ∑ ∑[𝑆𝑗,𝑘,𝑟,𝑞(𝑡) +  𝐸𝑗,𝑘,𝑟,𝑞(𝑡) +    𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡) +   𝐼𝑗,𝑘,𝑟,𝑞

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡)

𝑞𝑟𝑘𝑗

+ 𝐼𝑗,𝑘,𝑟,𝑞
𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡) + 𝑅𝑗,𝑘,𝑟,𝑞(𝑡)] =  ∑ ∑ ∑ ∑ 𝑁𝑗,𝑘,𝑟,𝑞

𝑞𝑟𝑘𝑗

 = 1, 

(1) 

where the index 𝑗 ∈  {0 − 4𝑦, 5 − 10𝑦, … , > 70𝑦} represents the age-group of each individual, 709 

index 𝑘 ∈ {1,2, … ,250} specifies the home region of each individual,  index 𝑟 ∈  {𝐿, 𝐻} specifies 710 

the risk-group of each individual (i.e. High-risk, or low-risk) and index 𝑞 ∈711 

{𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛, 𝑛𝑜𝑛 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛} represent the intervention-group of each individual.  712 

 713 

1.2. Model transitioning  714 

 715 

Susceptible individuals 𝑆𝑗,𝑘,𝑟,𝑞(0), transition to the exposed compartment 𝐸𝑗,𝑘,𝑟,𝑞(𝑡), with force of 716 

infection  𝜆𝑗,𝑘,𝑞(𝑡), depending on their age-group j home region-group k and their intervention-717 

group q. At this compartment individuals are infected but not yet infectious until they move at rate 718 

𝜎  to an infectious compartment 𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡) , where they are at the early stage of the infectious 719 

period. Infected individuals at early stage of their infectious period, then move at rate 𝛿 to the late 720 

infectious period, where they can  become to a unreported case (having non to mild symptoms) 721 

with probability 𝑓𝑗,𝑟  which results in transition to 𝐼𝑗,𝑘,𝑟,𝑞
𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡). With probability of (1 − 𝑓𝑗,𝑟) 722 

they can become to a reported case (having moderate to severe symptoms), which results in 723 

transition to 𝐼𝑗,𝑘,𝑟,𝑞
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡). After infectious period, individuals’ transition into the recovered 724 

compartment at rate 𝛾, 𝑅𝑗,𝑘,𝑟,𝑞(𝑡),. (See Section, 2.3 Epidemiological parameters). We also 725 

consider a function of the initial spreaders with time   𝜀𝑗,𝑘,𝑟(𝑡), that reflects the individuals exposed 726 

to the virus the entered Israel from overseas between February 21 2020 - and March 9, 2020. Thus, 727 

the transmission model is composed of the following system of difference equations:   728 
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𝑆𝑗,𝑘,𝑟,𝑞(𝑡) = 𝑆𝑗,𝑘,𝑟,𝑞(𝑡 − 1) − 𝜆𝑗,𝑘,𝑞(𝑡) ∙ 𝑆𝑗,𝑘(𝑡 − 1), 

𝐸𝑗,𝑘,𝑟,𝑞(𝑡) = 𝐸𝑗,𝑘,𝑟,𝑞(𝑡 − 1) + 𝜆𝑗,𝑘,𝑞(𝑡) ∙ 𝑆𝑗,𝑘(𝑡 − 1) − 𝜎 ∙ 𝐸𝑗,𝑘,𝑟,𝑞(𝑡 − 1) + 𝜀𝑗,𝑘,𝑟𝑞(𝑡), 

𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡) = 𝐼𝑗,𝑘,𝑟,𝑞

𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1) + 𝜎 ∙ 𝐸𝑗,𝑘,𝑟,𝑞(𝑡 − 1) − 𝛿 ∙  𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1), 

𝐼𝑗,𝑘,𝑟,𝑞
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡) =  𝐼𝑗,𝑘,𝑟,𝑞

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1) + (1 − 𝑓𝑗,𝑟)𝛿 ∙ 𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1) − 𝛾 ∙ 𝐼𝑗,𝑘,𝑟,𝑞

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1), 

𝐼𝑗,𝑘,𝑟,𝑞
𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡) =  𝐼𝑗,𝑘,𝑟,𝑞

𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1) + 𝑓𝑗,𝑟𝛿 ∙ 𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1) − 𝛾 ∙ 𝐼𝑗,𝑘,𝑟,𝑞

𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1), 

𝑅𝑗,𝑘,𝑟,𝑞(𝑡) =  𝑅𝑗,𝑘,𝑟,𝑞(𝑡 − 1) + 𝛾 ∙ (𝐼𝑗,𝑘,𝑟,𝑞
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1) + 𝐼𝑗,𝑘,𝑟,𝑞

𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1)), 

with initial conditions: 

𝑆𝑗,𝑘,𝑟,𝑞(0) =  𝑁𝑗,𝑘,𝑟,𝑞 . 

𝐸𝑗,𝑘,𝑟,𝑞(0) = 𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(0) = 𝐼𝑗,𝑘,𝑟,𝑞

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(0) = 𝐼𝑗,𝑘,𝑟,𝑞
𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(0) = 𝑅𝑗,𝑘,𝑟,𝑞(0) = 0. 

(2) 

 729 

1.3. Force of infection 730 

The rate at which individuals transmit SARS-Cov-2 at time t is 𝜆𝑗,𝑟,𝑞(𝑡). This rate depends on the 731 

combination of (i) contact mixing patterns between an infected individual and his or her contacts, 732 

(ii) age-specific susceptibility to infection, (iii) region-based behavioral susceptibility, and (iv) a 733 

potential seasonal forcing. 734 

 735 

We incorporate age- and region-specific contact patterns between individuals, represented by 736 

contact rate between an infected individual in age-group 𝑖, region-group 𝑙 and each of their contacts 737 

with susceptible in age-group 𝑗,region-group 𝑘, for different locations: at home, at work and during 738 

leisure, for each day 𝑡denoted by 𝐶(𝑙,𝑖),(𝑘,𝑗)
𝜏 (𝑡), such that i𝜏 ∈ {𝐻𝑜𝑚𝑒, 𝑊𝑜𝑟𝑘, 𝐿𝑒𝑖𝑠𝑢𝑟𝑒}, is the 739 

location index of the contact location index. The contact matrix 𝐶(𝑙,𝑖),(𝑘,𝑗)
𝜏 (𝑡) is detailed in section 740 

2.1 Contact mixing patterns.  741 

 742 

We distinguish between in-home versus out-of-home transmission. Consistent with a previous 743 

study (8), we assume the in-home transmission to be fixed and independent of age, 𝛽𝐻𝑜𝑚𝑒. (See 744 

Section 2.3 Epidemiological parameters). To account for the reduced probability of infection in 745 

house following a recovery of other house members, we multiple the susceptibility inside 746 

household, 𝛽𝐻𝑜𝑚𝑒, by decay function 𝜓𝑘(𝑡) =
𝑆𝑘(𝑡−1)

𝑆𝑘(0)
.  This function serve as an unbiased estimator 747 
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to the proportion of susceptible individuals in the house Age-specific susceptibility rate for 748 

individuals out-of-home 𝛽𝑗, was parameterized by calibrating our model with daily COVID-19 749 

records (See Section 3. calibrated parameters). 750 

 751 

 To account for behavioral susceptibility, we explicitly considered in our model a parameter 752 

reflecting the order to maintain physical distancing, 𝜅𝑝, as vast number of countries, including 753 

Israel, adopted measures such as physical-distancing to control the susceptibility of SARS-Cov-2 754 

(48). This parameter was calibrated to the epidemiological data of COVID-19 in Israel. Moreover, 755 

the high regional variations in susceptibility were parameterized based on fertility rates and 756 

socioeconomic characteristics relative to the national average, using the data from Central Bureau 757 

of Statistics (CBS), 𝛼𝑘. Specifically, we computed for each region the relative reduction in travels 758 

>1.5 km compared to routine 𝑀𝑗,𝑘,𝑞(See Section 2.2 Relative reduction in travels). Our analysis 759 

indicated that for regions of low SES the change was lower, which was reflected by our model 760 

with higher susceptibility.  761 

 762 

Seasonal patterns have been observed in common circulating HCoVs, mostly causing infections 763 

in humans between December and May in the Northern Hemisphere (37). The two human 764 

coronaviruses 229 E and OC43 show distinct winter seasonality. In addition, many coronaviruses 765 

in animals do exhibit a distinct seasonal pattern of incidence in their natural hosts (36). There is 766 

growing evidence that SARS-CoV-2 is also seasonal, with the optimal setting for transmission in 767 

Israel during winter (38, 49). Thus, we considered in our base-case seasonal forcing by including 768 

general seasonal variation in the susceptibility rate of the model as 769 

 𝑇(𝑡) = 1 + cos (
2𝜋(𝑡 + 𝜙)

365
). (3) 

 770 

in which 𝜑 is seasonal offset. This formulation was previously shown to capture the seasonal 771 

variations of several respiratory infections including RSV and influenza (33, 39). We incorporated 772 

possible values of 𝜑 to reflect peak from December thru February (See Section 2.3 773 

Epidemiological parameters).   774 

Taken together, the force of infection 𝜆𝑗,𝑘,𝑞(𝑡) is given by  775 

 
𝜆𝑗,𝑘,𝑞(𝑡) =  𝑀𝑗,𝑘,𝑞 ∙ 𝜅𝑘 ∙ 𝑇(𝑡) ∙ (𝛽ℎ𝑜𝑚𝑒 ∙ 𝜓𝑘(𝑡) ∙

∑ ∑ ∑ 𝐶(𝑙,𝑖),(𝑘,𝑗)
𝐻𝑜𝑚𝑒 (𝑡) ∑ (𝐼𝑗,𝑘,𝑟,𝑝

𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1) + 𝐼𝑗,𝑘,𝑟,𝑝
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1) + 𝐼𝑗,𝑘,𝑟,𝑝

𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 −𝑟𝑝𝑙𝑖

(4) 
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1)) + 𝛽𝑗 ∙ 𝛼𝑘 ∙ [∑ ∑ ∑ ∑ 𝐶(𝑙,𝑖),(𝑘,𝑗)
𝜏 (𝑡) ∑ (𝐼𝑗,𝑘,𝑟,𝑝

𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1) +𝑟𝜏∈{𝑊𝑜𝑟𝑘,𝐿𝑒𝑖𝑠𝑢𝑟𝑒}𝑝𝑙𝑖

𝐼𝑗,𝑘,𝑟,𝑝
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1) + 𝐼𝑗,𝑘,𝑟,𝑝

𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1))])  

 776 

2. Fixed parameters    777 

 778 

2.1. Contact mixing patterns 779 

At the core of the transmission model lies the contact mixing patterns between a susceptible 780 

individual and infectious individual 𝐶(𝑙,𝑖),(𝑟,𝑗)
𝜏 (𝑡). Similar to a previous study (8), the contact 781 

matrices depends on the age-group and region of residency for the susceptible individual (𝑙, 𝑖),  the 782 

age group and region of residency for an infectious individual (𝑟, 𝑗) at location 𝜏 ∈783 

{𝐻𝑜𝑚𝑒, 𝑊𝑜𝑟𝑘, 𝐿𝑒𝑖𝑠𝑢𝑟𝑒} on day 𝑡 . Here we detail the process of how we conducted the contact-784 

mixing.  785 

 786 

Household contacts  787 

We estimated the contact mixing at home for each region based on the average household size and 788 

its age distribution from the Israeli Central Bureau of Statistics (CBS) (50, 51). We assume all 789 

individuals in the same household will meet with each other daily regardless of the control 790 

measures applied by the country (e.g.  lockdowns). The CBS data suggest that low socioeconomic 791 

status is characterized by larger and younger household size.  792 

 793 

Work and leisure contact patterns 794 

Age-specific contacts  795 

We parametrized the age-specific contact rates using data from a survey of daily contacts collected 796 

in eight European countries (35). This contact data includes contact rates for different locations: 797 

works (or school for children <10), leisure. In addition, the data exhibits frequent mixing between 798 

similar age-groups, moderate mixing between children and adults in their thirties (likely their 799 

parents), and infrequent mixing between other groups. To generate the age-specific contact mixing 800 

used in our model, we used the means of each age-group over the eight countries. To ensure the 801 

matrices is symmetric and convert between age-groups used in the survey to those used in out 802 

model, we adjusted the contact matrices according to the means for reciprocal age group pairing 803 

(33).  804 

 805 

Origin-destination from mobility data  806 

 807 

Our data includes mobility records based on cellular data of >3 million users from one of the 808 

largest telecommunication companies in Israel. The data specifies movement patterns within and 809 

between 2,630 zones covering Israel, on an hourly basis, from February 1, 2020, and until May 810 

16, 2020. To ensure privacy, if in a given hour less than 50 individuals are identified in the zone, 811 

the number of reported individuals is set to zero. We determined the location of individuals based 812 

on the triangulation of cell towers, which was found accurate to 300 meters in most cases but 813 
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varied to 1 km in less populated areas. We defined users as residents of a zone based on location 814 

in which they had the highest number of signals on most nights during February 2020.  815 

 816 

We used this data to develop aggregated origin-destination (OD) matrices between and within 817 

zones. To refrain from signal noises and identify stay points, we track only locations where users 818 

stayed for at least 15 minutes within a distance threshold of 1.7 km. The OD matrices serve as a 819 

proxy to the flow from each region to another.  820 

 821 

Next, we integrated data from the Central Bureau of Statistics (CBS) that specifies for each zone 822 

several socioeconomic characteristics, including population size, household size, age distribution, 823 

socioeconomic score, and dominant religion. Each zone includes ~3,500 residents. For each zone, 824 

we scaled the number of resident users of the telecommunication company to match with the actual 825 

number of residents in the zone, as recorded by the Israeli CBS. Grouping the zones by SES, and 826 

scaling for each zone the daily number of travels to one, we created an origin-destination traveling 827 

probability matrix. We found that the population is clustered, such that people of specific SES are 828 

more likely to travel to zones of the same SES during routine and even more likely during 829 

movement restrictions. These findings remain consistent when partitioning the population into 830 

resolution of 10 socioeconomic clusters, comprising the different SESs. Additionally, a similar 831 

phenomenon is observed when partitioning the population by Religious Affiliations to Arab, 832 

orthodox and non-orthodox Jewish, and also for the combination of both religious affiliation and 833 

socioeconomic clusters (Figures S1 and S2).  834 

 835 
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 836 
Figure S1. Traveling patterns during routine. Traveling patterns during February 2-29 based on (A) religious 837 
affiliation, (B) socioeconomic status, and (C) religious affiliation and socioeconomic status 838 
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 839 
Figure S2. Traveling patterns during COVID-19 outbreak. Traveling patterns during March 26-April 18 based 840 
on (A) religious affiliation, (B) socioeconomic status, and (C) religious affiliation and socioeconomic status 841 

 842 

We used this data to develop two aggregated origin-destination (OD) matrices between and within 843 

regions from during work time 08:01-17:00 and leisure time 17:01-23:00. To incorporate the time 844 

depended travels following restrictions periods and routine we developed the two OD for the 845 

following periods: February 21 – March 13, March 14 – March 16, March 17 – March 25, March 846 

26 – April 2, April 3 – April 6, April 7 – April 16, April 17 – May 4, May 5 – May 11. 847 

 848 

To integrate the age-specific contact matrices and the OD matrices we multiplied the number of 849 

contacts for each age-group by the travel distribution for each region in the OD matrices. We 850 

assumed that at work, children at the age of 0-9 years old, remains at their home region. We also 851 

assumed that at leisure time children at the age of 0-9 years old movement patterns are like their 852 

parents. 853 

 854 

 855 

 856 

 857 
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2.2. Relative reduction in travels 858 

For each region, we computed the relative reduction in travels >1.5 km 𝑀𝑗,𝑘,𝑞. This measure was 859 

done scaling the daily proportion of travels more than 1.5 km out-of-home. 860 

𝑀𝐼(𝑡) − min
t

(𝑀𝐼(𝑡))

max
t

(𝑀𝐼(𝑡)) − min
t

(𝑀𝐼(𝑡))
 861 

To compute this minimal and maximal values and refrain from outliers, we averaged the three 862 

minimal and three maximal values. This measure was found to be highly correlative with disease 863 

growth factor ranging between 79.2-82.8% (p value<0.001) for a shift of 12-14 days (Figure S3). 864 

Thus, we incorporated for each region this measure in the model. 865 

 866 

 867 
Figure S3: Mobility ahead of transmission. Percentage relative reduction in travels from home between March 8 868 
and April 22 (red) and new cases per active cases between March 22 and May 8 (blue). Both plots show the weekly 869 
average. The correlation between the two is 97.0% (inserted graph).  870 

 871 

 872 

 873 

 874 

  875 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 6, 2020. ; https://doi.org/10.1101/2020.06.04.20112417doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20112417


33 
 

 876 

 877 

2.3. Epidemiological parameters  878 

 879 

Unreported cases 880 

Under reporting arises from asymptomatic cases or mild cases of individuals that do not seek for 881 

care. The severity of SARS-Cov-2 infection is associated with age- and risk- group (10).  In 882 

addition, underreporting is affected by testing policy and testing-capabilities for each country, as 883 

well as the tendency of individuals to seek for care once clinical symptoms appear. PCR or 884 

serological screenings have yet to be conducted in Israel. Thus, we evaluated unreported cases 885 

based on PCR and serological screenings from the Czech Republic, Denmark, and Santa Clara, 886 

California, and Iceland. Similarly, to Israel, as to May 14th, 2020 these countries are characterized 887 

with high rates of testing and low number of severe cases.  In addition, hospitals were not 888 

overwhelmed.  Serological screenings from the Czech Republic suggested that each reported case 889 

corresponds to ~5.5 unreported cases (40, 47), whereas estimates from Santa Clara suggested at 890 

least 14 unreported cases for each single reported case (16). Taken together we chose to present 891 

estimates of unreported ratios 1:5.5 (Scenario A), 1:9 (Scenario B), and 1:14 (Scenario C). It is not 892 

clear how much reutilizing antibodies are sufficient to ensure protection, and thus it is possible 893 

serological screenings serve as over estimation to determine exposure. Thus, to determine the 894 

robustness of our findings, we also considered an extreme scenario of 1:2 (Scenario D).  895 

We estimated the proportion of under reporting for each age-group by scaling the estimates from 896 

Santa-Clara Study to the age reported cases in this region (52). This analysis suggested that 897 

younger age-groups are more likely to be unreported. Conservatively, we assumed that all cases 898 

among individuals at high-risk are reported. Using these estimates and based on the reported cases 899 

in Israel between February 20th - May 14th ,2020, we obtained that overall proportion of unreported 900 

cases is 85% for scenario A, 89% for scenario B, 93% for scenario C and 69% for scenario D.  901 

Table S1: proportion of unreported cases. proportion of unreported cases among individuals at high risk and low 902 

risk stratified by age and overall reported cases based on the reported cases observed in Israel between February 20 903 

and May 14, 2020.  904 

Scenario  Risk \ Age 0-19 20-64 ≥65 

A  Low  0.97 0.85 0.68 

High  0.97 0.85 0.68 

Total   0.85 

B  Low  0.95 0.89 0.80 

High  0.95 0.89 0.80 

Total   0.89 

C  Low  0.99 0.93 0.84 

High  0.99 0.93 0.84 

Total   0.93 

D Low  0.92 0.67 0.43 

High  0.92 0.67 0.43 
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Total   0.69 

 905 

Case fatality  906 

The probability of death for each age-and risk-group given a reported case was evaluated based on 907 

the Israeli Ministry of Health case report data (Table S2).   908 

Table S2: Probability of death for each age-and risk-group given a reported case. 909 

Age-

group 

Risk-

group 

Base-case 

value 

Distribution 

0-19 High 0  

20-59 High 0.89% 𝐵𝑒𝑡𝑎(4,410) 

60-69 High 1.48% 𝐵𝑒𝑡𝑎(5,312) 

≥ 𝟕𝟎 High 12.03% 𝐵𝑒𝑡𝑎(52,378) 

0-19 Low 0  

20-59 Low 0.06% 𝐵𝑒𝑡𝑎(5,7759) 

60-69 Low 1.06% 𝐵𝑒𝑡𝑎(11,995) 

≥ 𝟕𝟎 Low 11.33% 𝐵𝑒𝑡𝑎(95,741) 

 910 

Initial morbidity(aboard) 911 

The initial morbidity in Israel was imported by 491 citizens who returned from overseas. The first 912 

infected traveler identified on February 20, and by March 9th ,2020 a self-quarantine was 913 

mandatory for all returning. Most of the flights to Israel arrive from the developed countries. Thus, 914 

we distributed the these cases in each day of the 18 days proportionally to the daily new cases in 915 

Italy, which had the hardest hit among developed countries (53). To account for under reporting, 916 

we multiplied the number of cases in each day according to the unreported scenarios we considered 917 

(Table S1). We entered these initial spreaders, 𝜀𝑗,𝑘,𝑟,𝑖(𝑡), to the exposed compartment. 918 

 919 

Susceptibility at-home 920 

 We distinguish between in-home versus out-of-home transmission. Consistent with a previous 921 

study (8). We specifically distinguish between the susceptibility of those settings. We estimated 922 

the in-home susceptibility rate, 𝛽ℎ𝑜𝑚𝑒 , based on a previous study that showed a secondary attack 923 

rate of 16.3% throughout the entire infectious period (11).  924 

 925 
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Table S3: Fixed parameters used in the transmission model.  926 

Parameter Description Value Reference 

𝑵𝒋,𝒌,𝒓,𝒒 Population size of risk-group r age-group j in 

region k 

Varies 

between 

regions 

(23) 

 

𝟏

𝝈
 

Mean duration of exposed period 4.1 𝑑𝑎𝑦𝑠 (25) 

(26) 

(28) 

(27) 

𝟏

𝜹
  

Mean duration of early infectious period 2.3 𝑑𝑎𝑦𝑠 (25) 

(26) 

(28) 

(27) 

𝒇𝒋,𝒓 Unreported probabilities Table S1 (10) 

(16) 

(46) 

𝝋 Seasonal phase December 21 

(𝜑 = 60), 

January 21 

(𝜑 = 29), 

February 21 

(𝜑 = 0). 

(36) 

(45) 

(38) 

(49) 

(54) 

𝟏

𝜸
 

Mean duration of late infectious period (in 

reported and unreported cases) 

7 𝑑𝑎𝑦𝑠 (28) 

 𝑪(𝒍,𝒊),(𝒓,𝒋)
𝝉 (𝒕) Contact rate between an infected individual in 

age-group 𝑖, region-group 𝑙 and each of their 

contacts with susceptible in age-group 𝑗,region-

group 𝑘, for different location 𝜏, for each day 𝑡. 

 (35) 

(41) 

(50) 

(51) 

 

𝜶𝒌 Fertility rate for each region k relative to the 

nation’s mean. 

 (55) 

(51) 
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𝝆𝒋,𝒓 Probability of death for each age-and risk-group given a 

reported case 

Table S2 (56) 

𝜷𝒉𝒐𝒎𝒆 In-home susceptibility rate 0.018 (11) 

 927 

3. Calibrated parameters  928 

  929 

To estimate empirically unknown epidemiological parameters, we calibrated our model to daily 930 

age-stratified cases of COVID-19 confirmed by PCR tests in 30 districts covering Israel between 931 

March 1 until May 10. We shifted the data 11 days backward, to compensate for the lag between 932 

the date of infection and the date of first positive SARS-CoV2 test result, which was found to be 933 

10.5 days on average according to MOH’s epidemiological investigations. We applied a central 934 

moving average with window of three days before and after the data point, on the data to reduce 935 

noise caused by weekly patterns. 936 

The calibration was conducted on a 30 sub-district level rather than 250 regions to ensure there are 937 

sufficient time-series data points in each location for each age group. The stratification is based on 938 

the 16 formal districts, which we further stratified such that the sub districts will be homogenous 939 

in terms of their SES and religious affiliation (Table S4). To calibrate the model to the incidence data, 940 

we maximized the likelihood assuming a normal distribution of the error between model predictions and 941 

incidence data. This was achieved by using the truncated Newton (TNC) algorithm. We calibrated the 942 

model for 16 different scenarios of unreported cases and seasonal forcing. The final transmission model 943 

included five parameters without constraints imposed from previous data: reduced susceptibility 944 

due to physical distancing 𝜅𝑝, and susceptibility rate based on age-groups j: 0-19, 20-39, 40-59, 945 

and >60  (Table S5).  946 

We used an F-test of equality of variances to compare between models 1) with vs. without 947 

consideration of seasonal forcing, 2) with and without consideration of human mobility, 3) with 948 

and without consideration of regional fertility. We denote that in all three comparisons, the number 949 

of calibrated parameters is constant and equal to five. Our tests suggested that models that do not 950 

include the mobility data (p.value<0.01), and the regional fertilities (p.value<0.01) were 951 

significantly worse. We also found that models that accounted for seasonal forcing yielded higher, 952 

but not significant (p value<0.35), likelihood than models that did not account for the seasonal 953 

forcing.   954 

 955 

Table S4: 30 sub-districts calibrated. 956 

Sub-district number Name Population Size 
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1 Jerusalem and sub. 778,503 
2 Bet Shemesh 120,164 
3 Jerusalem and sub. (Orthodox Jewish) 265,313 
4 Zefat 138,618 
5 Zefat (Israeli Arabs) 23,772 
6 Kinneret (Jewish) 98,178 
7 Jezreel Valley (Israeli Arabs) 159,112 
8 Jezreel Valley (Jewish) 351,446 
9 Akko (Israeli Arabs) 357,341 
10 Akko (Jewish) 314,607 
11 Ramat Hagolan 51,980 
12 Haifa (Israeli Arabs) 35,637 
13 Haifa (Jewish) 589,951 
14 Hadera (Israeli Arabs) 115,000 
15 Hadera (Jewish) 315,593 
16 Sharon (Israeli Arabs) 85,729 
17 Sharon (Jewish) 412,638 
18 Petah Tiqwa (Israeli Arabs) 27,455 
19 Petah Tiqwa (Orthodox Jewish) 49,549 
20 Petah Tiqwa (Secular Jewish) 680,836 
21 Ramla 323,352 
22 Rehovot 661,079 
23 Tel Aviv – Yafo 820,271 
24 Bnei Brak 211,259 
25 Tel Aviv suburbs 464,974 
26 Ashqelon 559,556 
27 Beer Sheva (Israeli Arabs) 196,311 
28 Beer Sheva (Jewish) 504,831 
29 Judea and Samaria 267,832 
30 Judea and Samaria (Orthodox Jewish) 155,095 

 957 

  958 
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Table S5: Calibrated parameters. 959 

 960 

  961 

Model 

configuration 

Seasonal 

forcing peak  

Unreported 

[%] 

 Physical 

distancing 

Coefficient

𝜿𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍 

Susceptibil

ity among 

age-group 

0-19[y] 

𝜷𝟎−𝟏𝟗 

Susceptibil

ity among 

age-group 

20-39[y] 

𝜷𝟐𝟎−𝟑𝟗 

Susceptibil

ity among 

age-group 

40-59[y] 

𝜷𝟒𝟎−𝟓𝟗 

Susceptibilit

y among 

age-group 

60+[y] 

𝜷𝟔𝟎+ 

Likelihood 

of 

calibration 

to data 

− 𝐥𝐨𝐠(𝒍) 

Full model No-

seasonality 
69 

0.248 0.094 0.054 0.042 0.311 -25.766 

 

Full model No-

seasonality 

85 0.232 0.119 0.053 0.052 0.166 -25.743 

Full model No-

seasonality 

89 0.234 0.057 0.076 0.047 0.116 -25.494 

Full model No-

seasonality 

93 0.246 0.119 0.036 0.054 0.184 -25.876 

Full model December 

21 
69 

0.272 0.038 0.023 0.020 0.128 -25.856 

Full model December 

21 

85 0.306 0.044 0.021 0.024 0.109 -25.862 

Full model December 

21 

89 0.355 0.025 0.021 0.025 0.144 -25.998 

Full model December 

21 

93 0.274 0.058 0.015 0.023 0.083 -25.917 

Full model January 21  69 0.364 0.043 0.025 0.024 0.151 -25.835 

Full model January 21  85 0.420 0.049 0.027 0.024 0.148 -25.787 

Full model January 21 89 0.349 0.035 0.031 0.029 0.167 -25.957 

Full model January 21 93 0.295 0.059 0.020 0.030 0.112 -25.898 

Full model February 21 69 0.347 0.063 0.039 0.033 0.248 -25.822 

Full model February 21 85 0.464 0.051 0.036 0.034 0.199 -25.813 

Full model February 21 89 0.417 0.052 0.045 0.041 0.229 -25.916 

Full model February 21 93 0.411 0.100 0.030 0.034 0.157 -25.827 

Without 

mobility 

January 21 85 0.127 0.022 0.035 0.022 0.162 -25.129 

Without 

mobility 

January 21 89 0.133 0.031 0.029 

  

0.022 0.133 -25.206 

  

Without 

mobility 

January 21 93 0.098 

  

0.049 

  

0.030 

  

0.023 

  

0.121 

  

-25.139 

Without 

fertility 

January 21 85 0.633 0.056 0.027 0.018 0.013 -25.311 
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 962 

4. Further simulation results    963 

We found that a global lockdown strategy had a larger temporal effect than local lockdowns and 964 

had by greater oscillations (Figure S4). We present here a model with seasonal forcing. Our model 965 

projections suggested that global lockdowns were less efficient and effective compared to a 966 

strategy that targets locally the elderly. However, due to high variability between the 250 regions 967 

considered, some regions undergo multiple lockdowns, while others will not undergo lockdowns. 968 

Local lockdowns that specifically target children decreases the local morbidity, but in the long run 969 

increases mortality, while lockdowns of individuals at high-risk has a moderate impact on 970 

transmission but decreases mortality. 971 

These findings where robust across all settings considered (Table S3 and Table S5), when we 972 

accounted for seasonal forcing (Main text Figures 4 and 5), and without seasonal forcing (Figure 973 

S5).  974 

 975 
Figure S4. Model demonstration for a threshold of 1 per 10000 for the lockdown strategies with seasonal forcing 976 

peaking on January 21. (A – C) projected daily new reported cases for different lockdown strategies. (D – F) 977 

Projected daily percentage of population under lockdown. (A, D) for a unreported cases of 85%. (B, E) for 89%, and 978 

(C, F) for 93%. 979 

 980 
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 981 
Figure S5. Effectiveness and efficiency of temporal-local lockdowns without seasonal forcing. Median and 982 

interquartile values of model projections after implementation of strategies (A, C, E, G) after one year and (B, D, F, 983 

H) after three years. (A, B, E, F) The thresholds for lockdowns in a local region are 1/10,000 [cases/individuals] and 984 

(C, D, G, H) 5/10000 [cases/individuals]. Effectiveness (A – D), efficiency (E – G). 985 

 986 
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