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Abstract  1 

The ability of the brain to actively cope with neuropathological insults is known as neural 2 

compensation. It explains the delayed appearance of cognitive symptoms in neurodegenerative 3 

diseases. In contrast to the neural signature of compensation, its cognitive counterpart is largely 4 

unknown due to the difficulty of identifying cognitive dysfunctions concealed by compensation 5 

mechanisms. We combined computational modelling and neuroanatomical analysis to explore 6 

cognitive compensation. We used Huntington’s disease (HD) as a genetic model of 7 

neurodegenerative disease allowing to study compensation in premanifest mutation carriers 8 

(preHDs) free from overt cognitive deficits despite incipient brain atrophy. 9 

Twenty preHDs, 28 HD patients and 45 controls performed a discrimination task. We 10 

investigated the processes underlying cognitive compensation using drift diffusion models. 11 

They assume that the discrimination process relies on the accumulation of evidence at a certain 12 

rate and terminates when a response threshold is reached. 13 

HD patients’ performances were lower than controls’ and explained by a higher response 14 

threshold and a lower accumulation rate compared to controls. PreHDs performed similarly to 15 

controls but had a response threshold between those of controls and HD patients. This nascent 16 

increase in response threshold predicted the accumulation rate, which was faster than controls. 17 

This suggests that the higher accumulation rate conceals the nascent deficit in response 18 

threshold corroborating the capacity of the brain to resist neuropathological insults in preHDs. 19 

The higher accumulation rate was associated with parietal hypertrophy in mutation carriers, and 20 

with higher hippocampal volumes in preHDs suggesting that cognitive compensation may rely 21 

on attentional capacities.  22 
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Significance statement 1 

Enhancing mechanisms compensating brain degeneration in neurodegenerative diseases might 2 

allow to delay their onset and progression. Yet, the cognitive mechanisms of compensation 3 

remain to be identified. In order to explore this issue, we used Huntington’s disease as a genetic 4 

model of neurodegenerative diseases and combined computational modelling (drift diffusion 5 

models) and neuroanatomical data analysis. In the early stage of the disease, before the 6 

appearance of overt cognitive symptoms, we showed the involvement of the left superior 7 

parietal cortex and hippocampus in maintaining normal behavioural performances. This 8 

suggests that attention is used to compensate for brain atrophy early in the disease. This work 9 

describes promising means of measuring and understanding compensation mechanisms in 10 

neurodegenerative diseases and might help developing new therapies. 11 

Keywords 12 

Premanifest, Huntington’s disease, Attention, Cognitive compensation, Drift diffusion models 13 

Abbreviations 14 

DDMs = Drift Diffusion Models 15 

earlyHDs = Huntington’s disease patients at an early stage of the disease 16 

preHDs = participants with premanifest Huntington’s disease 17 
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Introduction 1 

Brain atrophy precedes intellectual deterioration in neurodegenerative diseases (Tabrizi et al., 2 

2009). Normal behaviour is maintained until the pathological load becomes too great, leading 3 

to the appearance of clinical symptoms (Papoutsi et al., 2014; Gregory et al., 2018; Soloveva 4 

et al., 2018). The ability of the brain to actively cope with neuropathological insults underlies 5 

the cognitive reserve, which depends on lifetime intellectual activities and environmental 6 

factors. It is based on the brain’s capacity to increase the efficiency of an existing yet 7 

deteriorating network (neural reserve) and/or to recruit other regions when performing a task 8 

(neural compensation) (Barulli and Stern, 2013; Soloveva et al., 2018). Neurodegenerative 9 

diseases do not affect all brain parts and functions equally and simultaneously; some cognitive 10 

functions may compensate for others impacted earlier. Whereas the concept of compensation 11 

is widely accepted (Papoutsi et al., 2014; Gregory et al., 2018), the cognitive functions 12 

underlying it are still unknown mainly because methods for studying and measuring them are 13 

lacking.  14 

Assessing cognitive dysfunction concealed by cognitive compensation requires the 15 

identification and the disentanglement of underlying cognitive dysfunction and compensation 16 

mechanisms. Generally, neurodegenerative diseases remain undiagnosed until disease 17 

manifestation – a point at which it is difficult to study cognitive compensation since 18 

compensation mechanisms are no longer effective. Huntington’s disease is an inherited, 19 

monogenetic (expanded CAG repeat in the huntingtin gene), dominant, and fully penetrant 20 

neurodegenerative disease (Tabrizi et al., 2011). Individuals with more than 40 CAG repeats 21 

will develop the disease. This allows for identifying premanifest Huntington’s disease gene 22 

carriers (preHDs) before the clinical onset of the disease and motor, cognitive and psychiatric 23 

deterioration (Ross et al., 2019). Therefore, Huntington’s disease is a particularly well-suited 24 
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neurodegenerative model for studying compensation mechanisms from genetic diagnosis to 1 

onset of overt clinical manifestations (Tabrizi et al., 2011; Malejko et al., 2014; Gregory et al., 2 

2018).  3 

In this study, we used drift diffusion models (DDMs) (Ratcliff and Mckoon, 2008; Mulder et 4 

al., 2014) to decipher cognitive dysfunction from compensation mechanisms that we would 5 

otherwise be unable to study separately (Wiecki et al., 2016; Zhang et al., 2016; Anders et al., 6 

2017). DDMs unravel the different steps of the decision process when having to choose between 7 

two alternatives (A or B). They rely on the hypothesis that one needs to accumulate a certain 8 

amount of sensory evidence in order to decide between the two alternatives. The amount of 9 

evidence accumulated and its rate of accumulation are obtained by fitting the distributions of 10 

responses (alternative A or B) and response time combined. 11 

We applied DDMs to preHDs without overt cognitive symptoms, patients at an early stage of 12 

Huntington’s disease (earlyHDs), and controls. PreHDs perform at least as well as healthy 13 

participants in most cognitive tasks, despite displaying incipient atrophy of the striatum 14 

(Snowden et al., 2002; Tabrizi et al., 2009; Stout et al., 2012) and functional changes (Feigin et 15 

al., 2006; Klöppel et al., 2009; Wolf et al., 2012) suggesting the deployment of compensation 16 

mechanisms in most cognitive domains. Yet, language impairments have been reported in 17 

preHDs in small cohorts of participants (de Diego Balaguer et al., 2008; Németh et al., 2012; 18 

Hinzen et al., 2018). We therefore designed a language discrimination task in which participants 19 

were asked to decide whether two pseudowords were identical or different. This task relies on 20 

an automatic linguistic process that does not require any learning procedure (Näätänen et al., 21 

1997; Dehaene-Lambertz and Baillet, 1998). We first analysed behavioural data, assuming that 22 

preHDs would not show overt deficits whereas earlyHDs should have some, assuming that their 23 

compensation mechanisms would no longer be effective. We then used DDMs to identify 24 
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subclinical deficits and cognitive compensation mechanisms in preHDs. Finally, in order to 1 

explore the correlation between cognitive compensation mechanisms and brain structure, we 2 

assessed the neuroanatomical correlates of these mechanisms.  3 
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Materials and methods 1 

Participants and clinical assessment 2 

We recruited 93 native French-speaking participants between December 2013 and July 2017. 3 

Forty-eight were Huntington’s disease mutation carriers evaluated with the Unified 4 

Huntington’s Disease Rating Scale (Huntington Study Group, 1996), the Mattis Dementia 5 

Rating Scale (Mattis, 1976), forward digit span and categorical fluency. Twenty-eight were at 6 

an early stage of the disease (earlyHDs; stages I and II of the classification based on the total 7 

functional capacity score of the Unified Huntington’s Disease Rating Scale), and the other 20 8 

were at the premanifest stage (preHDs; total functional capacity score of 13 and total motor 9 

score below five (Tabrizi et al., 2009) and no overt cognitive deficits (Ross et al., 2019)). Forty-10 

five were healthy participants recruited as controls and matched with the earlyHDs and preHDs 11 

for demographic variables, such as sex, handedness, years of education, and age (all p>0.05). 12 

The two mutation carrier groups were also matched for demographic variables (all p>0.05) 13 

except for age (p<0.05). The participants had no neurological or psychiatric disorders other than 14 

Huntington’s disease in the mutation carriers. The demographic and clinical description of 15 

participants are summarised Table 1 and Table 2. 16 

This study was performed in accordance with the Declaration of Helsinki (2008). Participants 17 

were recruited from a clinical biomarker study (NCT01412125) in outpatients approved by the 18 

ethics committee of Henri Mondor Hospital (Créteil, France). Participant inclusion ended when 19 

45 valid brain MRI scans had been obtained from mutation carriers. All participants gave 20 

written informed consent and were tested at Henri Mondor Hospital or at the Ecole normale 21 

supérieure (Paris, France). 22 
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Table 1. Demographic and clinical data for participants 1 

 controls preHDs earlyHDs 

Number of participants 45 20 28 

Number of MRI scans — 20 26 

Sex 26F / 19M 13F / 7M 16F / 12M 

Handedness 38R / 7L 19R / 1L 25R / 3L 

Age in years 45.4±6.1 41.4±10.3 49.6±11.4 

Education in years 13.4±2.1 14.1±2.4 13.1±3.2 

Number of CAG repeats — 43±2.5 45.3±4.8 

Total Functional Capacity score — 13±0 11.7±1 

Total Motor Score — 0.6±1.2 27.5±11.2 

Burden score — 297.1±86.1 444.4±110.2 

Estimated age from onset — 8.4±10.1 — 

Mattis Dementia Rating Scale — 141.8±2.8 132.9±9.1 

preHDs: premanifest participants; earlyHDs: Huntington’s disease patients at an early stage of the 2 

disease; number of CAG repeats: pathological threshold > 35; Burden Score= (CAG-35.5) x age; 3 

Estimated age from onset = age diagnosis estimation – age, with age diagnosis estimation = 21.54 + 4 

exp(9.556 - (0.146 x number of cag repeats)) (Langbehn et al., 2004); Mattis Dementia Rating Scale: 5 

pathological score below 136/144; F: female; M: male; R: right; L: left; mean±standard deviation. 6 

 7 

Experimental design 8 

We designed a language discrimination task, using pseudowords, in which participants had to 9 

determine whether two pseudowords were identical or different (Fig. 1A). 10 
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 1 

Figure 1. Discrimination task and hierarchical drift diffusion model.  2 

(A) Participants heard two pseudowords (A and X) separated by the 100 ms and had to decide whether 3 

they were identical or not. The response time (RT) is the sum of the non-decision time (Ter) and the 4 

decision processes (Td): RT=Ter+Td. (B) Example of the trajectory of the drift diffusion model for a 5 

“same” trial in which the correct response was delivered. Two decision boundaries (0 and a) represent 6 

the “same” and “different” decisions. The drift rate, v, represents the rate of evidence accumulation. The 7 

diffusion process starts between the two boundaries at zr (= 0.5 if not biased toward one of the 8 

alternatives) and continues until it reaches one of the two boundaries. The predicted response time is the 9 

sum of the durations of the diffusion process called decision time and the non-decision time 10 

encompassing stimulus pre-processing and motor planning and execution. 11 

 12 
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The pseudowords had one to three syllables and zero to two consonant clusters. Items consisted 1 

of a pair of pseudowords presented 100 ms apart. The two pseudowords were identical in half 2 

the items and differed by a single consonant (e.g. /tiplysk/ and /tipʁysk/) in the other half. The 3 

location of the consonant that differed was varied between trials to prevent expectation. Twelve 4 

items were presented per number of syllables (one to three), consonant cluster (0 to two) and 5 

type of trial (“same/different”), resulting in 216 trials in total. A female native French speaker 6 

(the last author) pronounced the pseudowords for the recording, with each pseudoword lasting 7 

1030±165 ms.  8 

The participants sat in a quiet room, in front of an Apple MacBook Pro (AZERTY keyboard), 9 

wearing headphones adjusted for hearing comfort. They were asked to press the “s” key labelled 10 

“P” for “pareil” (same) if the two sequences were identical, or the “l” key labelled “D” for 11 

“différent” (different) if they differed. The experiment began with a training session of four 12 

trials with feedback, followed by the experimental trials without feedback. Response 13 

(“same/different”), accuracy (correct or incorrect response) and response time were recorded 14 

after each item. The response triggered the presentation of the next trial, 1000 ms later. The 15 

task lasted less than 10 minutes in total. Except for the training session, trials were randomized 16 

within two blocks separated by a break. 17 

Statistical analyses of behavioural data 18 

Clinical cognitive assessment 19 

We analysed the effect of group on the forward digit span, categorical fluency and Unified 20 

Huntington’s Disease Rating Scale cognitive scores using ANOVAs with group as a between-21 
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participants factor and age as a covariate to control for the difference in age between the 1 

mutation carrier groups.  2 

Analyses of response times and accuracy 3 

The training trials were not included in the analyses. Trials in which participants withdrew 4 

temporarily from the experiment and answered before the end of the trial item were removed, 5 

resulting in a 0.06% loss of data. Accuracy analyses were run on the remaining trials after 6 

calculating the mean accuracy by subject. Response time analyses were run on correct trials 7 

(3.9% loss) lasting more than 150 ms (8.1% loss) and after logarithmic transformation to ensure 8 

a normal distribution. 9 

We analysed the effect of group on mean accuracy using a linear model and response time using 10 

a linear mixed effects model (models that can deal with unbalanced data sets and missing data 11 

contrary to ANOVAs). We focused on three group comparisons of interest: preHDs/controls, 12 

earlyHDs/controls and preHDs/earlyHDs using the package “multicomp” with single-step 13 

correction from R version 3.4.0. We included age as a covariate in both analyses. In the response 14 

time analyses, the maximum random structure allowing convergence without over fitting 15 

included participant and item as random intercepts. 16 

Model fit and selection 17 

We used DDMs (Ratcliff and Mckoon, 2008; Mulder et al., 2014) to analyse the mechanisms 18 

underlying the forced decision between “same” and “different”. These models assume that 19 

sensory evidence is accumulated at a certain speed, called the drift rate (v), up to a response 20 

threshold (a) triggering the motor response. Accumulating evidence takes time. It is a noisy 21 

process requiring multiple evidence samples to extract information from the stimulus before 22 
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enough evidence is collected to make a decision. The time required for non-decisional 1 

processes, such as stimulus processing, motor preparation and execution, is captured in the non-2 

decision time (Ter). The a priori bias towards one of the alternatives is called the relative bias 3 

(zr) (Fig. 1 B). These four parameters (v, a, Ter and zr) are obtained by fitting the distribution 4 

of responses (“same” or “different”) and the corresponding response time at each trial. In our 5 

task, the participant hears two pseudowords. First, the acoustic information is transformed into 6 

neural information (stimulus processing). Then, the phonological distance between them is 7 

assessed in the brain at a certain speed (drift rate of evidence accumulation). According the 8 

participant’s conservatism, the amount of evidence required to decide will be more or less 9 

elevated (response threshold). Once the decision is taken, the participant presses the 10 

corresponding key (motor preparation and execution). 11 

We used Bayesian hierarchical DDMs (Wiecki et al., 2013), currently the most efficient method 12 

for dealing with small numbers of observations (Ratcliff and Childers, 2015). This approach 13 

assumes that individual parameter estimates are random samples of group-level distributions. 14 

It provides probability distributions for parameters, called posterior distributions, rather than 15 

single-value estimates. Data were cleaned as in behavioural analyses, but Bayesian hierarchical 16 

DDMs use both correct and incorrect responses and response times without logarithmic 17 

transformation. We assumed the same absolute drift rate value for both answers (“same” and 18 

“different”), allowing for a possible relative bias. 19 

We tested two variants of the Bayesian hierarchical DDMs, with different group-level 20 

parameters.  21 

In the first model (full model), each parameter had three group-level distributions, 22 

corresponding to the three groups of participants (controls, preHDs, earlyHDs). The second 23 

model (parsimonious model), assumed that only the response threshold and drift rate had 24 
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different group-level distributions. Using the recommended procedures to fit and assess model 1 

convergence (Wiecki et al., 2013) (Supplementary Methods 1), we selected the parsimonious 2 

model; as the full one did not capture any additional data patterns (Supplementary Methods 2 3 

and Supplementary Table 1). 4 

Analysis of model parameters 5 

We analysed the effect of group on the parameters with group-level distributions: response 6 

threshold and drift rate. The hierarchical structure of the model violates the independence 7 

assumption of classical frequentist statistics. Bayesian statistics were used for direct 8 

comparisons of group posterior distributions. Bayesian probabilities are denoted P(hypothesis) 9 

and express the probability of a hypothesis being true. As a mock example, we can test the 10 

hypothesis that earlyHDs have a higher drift rate than controls (P(vearlyHDs>vcontrols)). A 11 

probability of 0.95 would indicate that there is 95% chance that it is true, while a probability of 12 

0.05% would indicate that there is 95% chance that earlyHDs have instead a lower drift rate 13 

compared to controls (P(vearlyHDs>vcontrols) = 1-P(vearlyHDs<vcontrols)). A probability of 0.5 would 14 

indicate that both hypotheses (higher or lower drift rate) are equally probable. 15 

Statistical analysis of structural imaging data 16 

Forty-six brain MRI scans were obtained within about three months of behavioural data 17 

acquisition in gene carriers (20 preHDs and 26 earlyHDs). They were compared with 30 scans 18 

from external healthy participants (imaging controls), matched with the mutation carriers for 19 

age and sex (46.1 ± 13.9 years old, 15 females). We first studied the differences in subcortical 20 

and cortical structure between the mutation carriers and imaging control groups. We then 21 
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studied the relationship between brain structure and the behavioural measures (response time, 1 

accuracy, drift rate and response threshold) for the mutation carriers. 2 

MRI acquisition and preprocessing 3 

Three-dimensional T1-weighted structural scans were acquired with a MP-RAGE sequence on 4 

a Siemens symphony 1.5 Tesla whole-body scanner (Henri Mondor Hospital, Paris, France) 5 

with a 12-channel head coil (TR=2400 ms, TE=3.72 ms, TI=1000 ms, FA=8°, FOV=256*256 6 

mm2, 1-mm isotropic voxel, slice thickness=1 mm, no inter-slice gap, 160 sagittal sections). 7 

MRI scans were preprocessed with Freesurfer (http://surfer.nmr.mgh.harvard.edu/) (Fischl et 8 

al., 2002). The procedure included the removal of non-brain tissue, normalization of the 9 

intensity of the grey/white matter boundary, automated topology correction, and surface 10 

deformation. The following subcortical structures were automatically segmented: thalamus, 11 

caudate, putamen, pallidum, hippocampus, amygdala and the nucleus accumbens. Cortical 12 

thickness (in mm) was calculated as the shortest distance between the grey/white matter 13 

boundary and the pial surface at each vertex across the cortical mantle (Fischl and Dale, 2000). 14 

All reconstructed data were visually checked for segmentation accuracy by a neuropsychologist 15 

(ML) trained to brain structural segmentation analysis and reviewed by an expert neurologist 16 

blinded to participants genetical status. The spherical cortical thickness data for all subjects 17 

were mapped onto an “average” subject by surface-based registration methods (Fischl et al., 18 

1999), to match morphologically homologous cortical locations between subjects. We used a 19 

10 mm full-width at half-maximum Gaussian kernel to smooth maps of cortical thickness. 20 
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Neuroanatomical differences between groups 1 

We analysed the neuroanatomical differences between imaging controls, preHDs and 2 

earlyHDs.  3 

For each subcortical volume normalized to the total intracranial volume, we performed an 4 

ANOVA, with group as a main effect and age as covariate. ANOVA’s p-values were divided 5 

by seven to correct for multiple comparisons on the seven subcortical structures (Bonferroni 6 

correction). 7 

In the cortex, vertex-wise comparisons of cortical thickness values between groups were 8 

performed in Freesurfer with generalised linear models, with cortical thickness as the dependent 9 

variable, group as the predictive factor, and age as covariates. At each vertex, F-statistics were 10 

calculated to test the hypothesis of a difference in cortical thickness for each group comparison 11 

(two-tailed test). We corrected for multiple comparisons by family-wise error cluster-based 12 

correction, using Monte Carlo simulations with 10,000 iterations.  13 

Relationship between brain structure and behavioural measures in mutation carriers 14 

We explored the relationship between the neuroanatomical structure and behavioural measures 15 

(mean accuracy, mean response time, drift rate and response threshold) in mutation carriers 16 

depending on the disease stage (preHDs or earlyHDs). 17 

For each subcortical structure/measure combination, we fitted a linear model with the measure 18 

as the dependant variable, the subcortical volume normalized to the intracranial volume and 19 

disease stage as predictive variables, and age as covariate. We tested the interactions between 20 

disease stage and the subcortical volume. P-values were Bonferroni-corrected for multiple 21 

comparisons over the seven subcortical structures. If the interaction was not significant, the 22 
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disease stage was removed from the analysis before testing the effect of the volume on the given 1 

measure.  2 

In the cortex, we fitted one generalised linear model for each measure with the cortical thickness 3 

as the dependant variable, the measure and the disease stage as predictive variables, and age as 4 

covariates. At each vertex, F-statistics were calculated to test the hypothesis of an interaction 5 

between cortical thickness and disease stage. We corrected for multiple comparisons by family-6 

wise error cluster-based correction, using Monte Carlo simulations with 10,000 iterations. If 7 

there was no cluster with a significant interaction, the disease stage was removed from the 8 

analysis before testing the hypothesis of the non-null relationship (two-tailed test) between the 9 

measure and the cortical thickness. The analyses described being conservative, we performed 10 

one-tailed test (t-statistics) testing the hypothesis of a positive or negative relationship. We 11 

report the results in the supplementary material (Supplementary Fig. 1 and Supplementary 12 

Table 2). 13 

Finally, in order to locate preHDs and earlyHDs compared to healthy participants in the 14 

significant clusters, we used the clusters identified by the generalised linear model analyses as 15 

regions of interest, from which we extracted cortical thickness values for imaging controls and 16 

mutation carriers. We tested for differences in cortical thickness between preHDs and imaging 17 

controls and earlyHDs and imaging controls by performing an ANOVA on the mean cortical 18 

thickness for each significant cluster. 19 

  20 
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Results 1 

Analysis of behavioural data 2 

Clinical cognitive assessment 3 

ANOVAs showed significant main effects of group (controls, preHDs, earlyHDs) for the 4 

forward digit span, the categorical fluency and each cognitive scores of the Unified 5 

Huntington’s Disease Rating Scale. Tukey’s post-hoc analyses revealed that the earlyHDs were 6 

impaired on each test compared to preHDs and controls (all p<0.05), whereas preHDs 7 

performances were similar to controls (all p>0.05) (Table 2).  8 

Analysis of response times and accuracy  9 

EarlyHDs were less accurate and slower than controls and preHDs ([earlyHDs/controls] 10 

accuracy: b=-0.011±0.002, 95%CI=[-0.015,-0.007], t=-6.8, p<0.001; response time: 11 

b=0.060±0.007, 95%CI=[0.044,0.076], z=8.7, p<0.001. [earlyHDs/preHDs] accuracy: b=-12 

0.006±0.001, 95%CI=[-0.008,-0.004], t=-5.9, p<0.001; response time: b=0.032±0.004, 13 

95%CI=[0.022,0.042], z=7.5, p<0.001). By contrast, preHDs performed as well as controls 14 

(accuracy: b=0.001±0.002, 95%CI=[-0.004,0.005], t=0.3, p=0.97; response time: b=-15 

0.003±0.008, 95%CI=[-0.021,0.015], z=-0.4, p=0.93) (Fig. 2A-B). 16 

  17 
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Table 2. Cognitive assessment 1 

 Descriptive statistics Group comparisons 

 controls* preHDs earlyHDs preHDs/controls earlyHDs/controls preHDs/earlyHDs 

Forward digit span 6.4±1 6.5±1.3 5.6±1 [-0.7,0.7], p=0.99 
[-1.4,-0.1], 

p=0.016 

[0.01,1.5], 

p=0.0454 

Categorical fluency 33.8±8.1 37.6±7.1 21.8±9.1 [-2.6,9.5], p=0.37 
[-16.7,-5.5], 

p<0.001 

[8.5,20.7], 

p<0.001 

Verbal fluency 75.6±22.8 68.3±22.9 36.5±16 
[-23.1,7.8], 

p=0.47 

[-51.0,-23.1], 

p<0.001 

[13.8,45.0], 

p<0.001 

Stroop colour 83.6±11.2 75.7±14 48.6±13.7 
[-18.5,1.0], 

p=0.09 

[-38.9,-21.6], 

p<0.001 

[11.9,31.3], 

p<0.001 

Stroop interference 47.5±10.5 47.2±10.2 29.9±12 [-8.9,7.0], p=0.96 
[-21.0,-7.0], 

p<0.001 

[5.2,20.9], 

p<0.001 

Stroop word 104.7±16.8 98.4±15.8 66.7±12.3 
[-18.4,4.8], 

p=0.35 

[-45.3,-24.7], 

p<0.001 

[16.7,39.7], 

p<0.001 

Symbol digit 

modalities Test 
49.5±7.7 54±11.1 28.7±7.8 [-3.5,9.9], p=0.50 

[-23.7,-11.4], 

p<0.001 

[14.1,27.3], 

p<0.001 

Forward digit span, categorical fluency and Unified Huntington’s Disease Rating scale cognitive scores. 2 

Descriptive statistics report mean±standard deviation for each group. Group comparisons report Tukey’s 3 

post-hoc test [95% confidence interval], p-value for each group comparison when there was a main 4 

effect of group. preHDs: premanifest participants; earlyHDs: Huntington’s disease patients at an early 5 

stage of the disease; * Cohort of controls restricted to 27 participants. 6 

 7 

Analysis of model parameters 8 

The group probability distribution (posterior estimates) of response threshold and drift rate are 9 

displayed in Figure 2C and 2D. The results are schematically represented Figure 2E. The 10 

earlyHDs had a higher response threshold (P(aearlyHDs>acontrols)=0.98) and a lower drift rate than 11 
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controls (P(vearlyHDs<vcontrols)=1). EarlyHDs therefore needed to accumulate more evidence to 1 

discriminate between “same” and “different”, and they accumulated it slower than the other 2 

groups. 3 

The response threshold for preHDs was between earlyHDs’ (P(apreHDs<aearlyHDs)=0.80) and 4 

controls’ (P(apreHDs>acontrols)=0.83). PreHDs’ drift rate was higher than both controls 5 

(P(vpreHDs>vcontrols)=0.99) and earlyHDs (P(vpreHDs>vearlyHDs)=1), indicating faster evidence 6 

accumulation. 7 

Post-hoc, we fit a Bayesian linear model (Goodrich et al., 2020) to predict the drift rate based 8 

on the response threshold and the group. Age was used as a covariate. The effect of response 9 

threshold on the drift rate was positive (b=0.29, P(b>0)=0.98) and similar for earlyHDs and 10 

controls (P(bearlyHDs>bcontrols)=0.46). The effect of response threshold was stronger in preHDs 11 

(bpreHDs=0.76, P(bpreHDs>0)=1, interaction P(bpreHDs>bcontrols)=0.99). This indicates that an 12 

increase in response threshold predicted an increase in drift rate which is similar in controls and 13 

earlyHDs but stronger in preHDs (Fig. 2F).  14 

  15 
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Figure 2. Results of behavioural 1 

data analyses. 2 

Boxplots of (A) Accuracy and (B) Response 3 

time (s) for each group. In boxplots, the 4 

middle hinge corresponds to the median, the 5 

lower and upper hinges correspond 6 

respectively to the first and third quartiles. 7 

The whiskers extend from the hinge to the 8 

largest value no further than 1.5*inter-9 

quartile range of the hinge. Diamonds 10 

represent the means, ***: p<0.001, ns: non-11 

significant. (C) Group probability 12 

distribution (posterior estimates) of the 13 

response threshold, a, and (D) drift rate, v. 14 

Bayesian probabilities are reported. (E) 15 

Schematic representation of model 16 

parameters for each group. (F) Relationship 17 

between the drift rate (y-axis) and the 18 

response threshold (x-axis). Points represent 19 

individual values, lines and shades around 20 

them represent the linear fit and the 21 

confidence interval. Controls are 22 

represented in grey, premanifest 23 

participants (preHDs) in blue and 24 

Huntington’s disease patients at an early 25 

stage of the disease (earlyHDs) in red.  26 
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Analysis of structural imaging data 1 

Neuroanatomical differences between groups 2 

There was a main effect of group on the volumes of caudate, putamen, accumbens , pallidum 3 

and thalamus (all p-values<0.05) (Fig. 3A). On these structures, Tukey’s post-hoc analyses 4 

revealed that earlyHDs had a lower grey matter volume than imaging controls and preHDs (all 5 

p-values<0.05). PreHDs also displayed atrophy relative to imaging controls (all p-values<0.05) 6 

except in the thalamus (p=0.99). There was no main effect of group on the volumes of the 7 

hippocampus and amygdala (all p-values>0.05). 8 

EarlyHDs showed a cortical thinning in the left angular gyrus, the left occipital superior cortex, 9 

the right caudal part of the middle frontal cortex and the right lateral occipital lobe relatively to 10 

imaging controls (Fig. 3B, Table 3). EarlyHDs also had a thinner right lateral occipital cortex 11 

than preHDs (Fig. 3C, Table 3). Cortical thickness was similar in preHDs and imaging controls. 12 

  13 
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 1 

Figure 3. Neuroanatomical differences between groups 2 

(A) Boxplots of the subcortical differences between groups. For representational purposes, volumes 3 

normalized by the total intracranial volume (tiv) are multiplied by 100 for all structures and by an 4 

additional 10 for the accumbens. In boxplots, the middle hinge corresponds to the median, the lower and 5 

upper hinges correspond respectively to the first and third quartiles. The whiskers extend from the hinge 6 

to the largest value no further than 1.5*inter-quartile range of the hinge. *: p<0.05, ns: non-significant. 7 

Imaging controls are represented in grey, premanifest participants (preHDs) in blue and Huntington’s 8 

disease patients at an early stage of the disease (earlyHDs) in red. (B) Cortical maps of differences 9 

between earlyHDs and imaging controls. Each cluster is represented in a different colour and identify a 10 

significant thinner cortex in earlyHDs compared to imaging controls. Blue: left angular gyrus, purple: 11 

left occipital superior, orange: right lateral occipital, yellow: right caudal middle frontal. (C) Cortical 12 

maps of differences between earlyHDs and controls. The cluster identifies a significant thinner cortex 13 

in earlyHDs compared to imaging controls. Yellow: right lateral occipital. In the cortical maps of panels 14 

(B) and (C), light grey represents gyrus and dark grey represents sulcus. 15 
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 1 

Table 3. Cortical thickness differences between groups 2 

Cortical Cluster size MNI coordinates Cluster-wise 

region (mm2) (x y z) p-value 

 earlyHDs < imaging controls 

L angular gyrus 68.16 -29 -50 37 0.02050 

L occipital superior 206.24 -23 -85 27 0.00020 

R lateral occipital 63.40 28 -83 14 0.02560 

R caudal middle frontal 76.32 39 21 45 0.01600 

 earlyHDs < preHDs 

R lateral occipital 102.15 31 -87 13 0.00610 

L: left; R: right; preHDs: premanifest participants; earlyHDs: Huntington’s disease patients at an early 3 

stage of the disease. 4 

 5 

Relationship between brain structure and behavioural measures in mutation carriers 6 

Accuracy  7 

Lower mean accuracies were predicted by lower accumbens volumes (p=0.005) independently 8 

of the diseases stage (no interaction, p=0.15). There was no significant cortical clusters 9 

associated with the mean accuracy (for one-tailed test see Supplementary Fig. 1A, 10 

Supplementary Table 2). 11 

Reaction times 12 
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Slower mean reaction times were predicted by lower volumes of the accumbens, the putamen, 1 

the thalamus, the hippocampus and the pallidum (all p-values<0.05) independently of the 2 

disease stage (no interactions, all p-values>0.05)   3 

Slower mean reaction times were also associated to a thinner cortex in clusters located in the 4 

left lateral and superior occipital cortex extending to the precuneus, and the right occipital 5 

cortex (all p-values<0.05), independently of the disease stage (no significant clusters with 6 

interaction, all p-values>0.05) (Supplementary Fig. 1B, Supplementary Table 2).   7 

In all these significant cortical clusters, earlyHDs had a thinner cortex compared to imaging 8 

controls (all p-values<0.001) while there was no difference between preHDs and imaging 9 

controls (all p-values>0.05). 10 

Drift rate 11 

Lower drift rates were predicted by lower volumes of the accumbens, putamen and pallidum 12 

(all p-values<0.05) independently of the disease stage (no interactions, all p-values>0.05). In 13 

contrast, there was an interaction with the disease stage in the hippocampus (t(41)=-3.2, 14 

p=0.0026): a higher volume of the hippocampus predicted a higher drift rate in preHDs 15 

(t(41)=3.31, p=0.002) but not in earlyHDs (t(41)=-0.85, p=0.40) (Fig. 4A-B).   16 

Lower drift rates were also associated to a thinner cortex in clusters located in in the left superior 17 

parietal cortex and the right superior temporal gyrus (all p-values<0.05), independently of the 18 

disease stage (no significant clusters with interaction, all p-values>0.05) (Fig. 4C-D).   19 

In these two significant cortical clusters, earlyHDs had a thinner cortex compared to imaging 20 

controls (all p-values<0.001) while there was no significant difference between preHDs and 21 

imaging controls (all p-values>0.05). Yet, preHDs tended to have a thicker cortex compared to 22 

imaging controls. Post-hoc, we identified two preHDs close to clinical onset with a negative 23 

estimated age from onset (Langbehn et al., 2004) (all other preHDs had a positive estimated 24 
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age from onset) and a close to threshold total motor score of four (Tabrizi et al., 2009) (all other 1 

preHDs had a total motor score of one or zero). When we removed these two participants, we 2 

found that the preHDs had a thicker cortex in the left superior parietal cluster (b=0.12, 3 

95%CI=[0.001,0.24], p<0.05) (Fig. 4E). 4 

Response threshold 5 

There was neither significant relationships between the neuroanatomical structure (subcortical 6 

and cortical) and the response threshold nor significant interaction with the disease stage (all p-7 

values >0.05). 8 

 9 
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Figure 4. Relationship between brain structure and drift rate. 1 

(A) Hippocampus (yellow). X and Z are MNI coordinates of the sagittal and coronal views. A: anterior, 2 

P: posterior, R: right, L: left. (B) Relationship between the hippocampus volume normalized by the total 3 

intracranial volume (tiv) (x-axis) and the drift rate (y-axis). For representational purposes, the x-axis is 4 

multiplied by 100. (C) Cortical maps of significant clusters with a positive correlation between the 5 

cortical thickness and the drift rate. Light grey represents gyrus and dark grey represents sulcus. Yellow: 6 

left superior parietal cluster (152.71 mm2, MNI coordinates: [-34, -55, 59]); Orange: right superior 7 

temporal cluster (112.72 mm2, MNI coordinates: [63, -16, -1]). The black squares identify the cluster 8 

containing the data displayed in panels (D) and (E). (D) Relationship between the mean cortical 9 

thickness in the yellow cluster of interest (panel (C)) (x-axis) and the drift rate (y-axis). (E) Boxplots of 10 

the mean cortical thickness in the yellow cluster (panel (C)). In boxplots, the middle hinge corresponds 11 

to the median, the lower and upper hinges correspond relatively to the first and third quartiles. The 12 

whiskers extend from the hinge to the largest value no further than 1.5*inter-quartile range of the hinge. 13 

*: p<0.05, ***: p<0.001. Imaging controls are represented in grey, premanifest participants (preHDs) in 14 

blue and Huntington’s disease patients at an early stage of the disease (earlyHDs) in red. In (B) and (D), 15 

points represent individual values, lines and shades around them represent the linear fit and the 16 

confidence interval. The blue squares represent the two preHDs identified as closest to the disease onset.  17 
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Discussion 1 

In this study, we aimed to identify the mechanism underlying cognitive compensation in 2 

neurodegenerative diseases using Huntington’s disease as a model. To address this issue, we 3 

used DDMs to gain insight into the decision processes involved in a language discrimination 4 

task (Fig. 1). As expected, analyses of behavioural performances based on accuracy and 5 

response times showed an absence of impairment in preHDs relative to controls (Fig. 2A-B). 6 

However, analyses of DDMs parameters highlighted a different profile in preHDs, with a 7 

nascent increase in response threshold predicting a faster drift rate of evidence accumulation 8 

(Fig. 2C-F). This faster rate of evidence accumulation presumably accounts for the observed 9 

compensation, by maintaining response times and accuracy at values similar to those of 10 

controls. In contrast, earlyHDs displayed impairment in both behavioural and DDMs analyses, 11 

suggesting that compensatory mechanisms were absent or insufficient to counterbalance the 12 

decline in these individuals. Both a higher response threshold and a slower rate of evidence 13 

accumulation resulted in lower accuracy and longer response times in this group (Fig. 2). As 14 

previously reported (Tabrizi et al., 2009), striatal atrophy was observed not only in earlyHDs 15 

but also in preHDs (Fig. 3A), while only earlyHDs presented a cortical thinning (Fig. 3). In 16 

preHDs, the spared thalamus (Fig. 3A), the relationship between the drift rate and both the 17 

volume of the hippocampus (Fig. 4B) and the superior parietal cortical hypertrophy, (Fig. 4E) 18 

suggest that the compensatory mechanism might be based on an increase in attention allocation. 19 

A higher response threshold leads to more cautious and slower decision-making in perceptual 20 

decisions. In our task, the response threshold increased across disease stages suggesting a 21 

gradient of impairment during disease progression (Fig. 2C). Forstmann et al. (2010) showed 22 

that the flexible variation of the DDMs response threshold depended on the strength of the 23 

connections between the cortex and striatum inhibiting the subthalamic nucleus. The indirect 24 
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pathway from the striatum to the thalamus through the external globus pallidus and subthalamic 1 

nucleus is more strongly affected in earlyHDs than in preHDs (André et al., 2010). Stimulation 2 

of the subthalamic nucleus in patients with Parkinson’s disease results in more impulsive 3 

choices and a decrease in response threshold (Cavanagh et al., 2011). According to the André 4 

et al. model (André et al., 2010), disruption of the indirect pathway and a decrease in the number 5 

of white matter fibres extending between the striatum and the cortex (Marrakchi-Kacem et al., 6 

2013; Poudel et al., 2014) in Huntington’s disease increase inhibition of the subthalamic 7 

nucleus. This may account for the higher response threshold in mutation carriers and could 8 

explain why we did not find neuroanatomical correlates of the response threshold. Diffusion 9 

MRI data would be needed to further investigated this hypothesis. 10 

This increase in response threshold might be expected to alter behavioural performances, as 11 

was observed in earlyHDs. However, the preHDs performed similarly to controls (Fig. 2A-B). 12 

We hypothesise that the higher drift rate in preHDs is a compensatory mechanism that preserves 13 

normal accuracy and response times (Fig. 2E). The association between the increase in response 14 

threshold and the increase of the drift rate of accumulation is consistent with compensation 15 

between these two processes (Fig. 2F). The stronger relationship in preHDs compared to 16 

earlyHDs and controls, together with the inability of earlyHDs to maintain normal behavioural 17 

performances, are consistent with models assuming that compensation mechanisms become 18 

less effective as the disease progresses and the pathological load increases, leading to 19 

observable cognitive impairments (Papoutsi et al., 2014; Gregory et al., 2018). Drift rate may 20 

therefore constitute a measurable cognitive marker of compensation. 21 

Imaging seems appropriate to reveal neural compensation mechanisms. Indeed, active 22 

compensation mechanisms may depend on either an increase in the activity of a deficient 23 

network or the recruitment of alternative networks with available resources (Barulli and Stern, 24 
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2013). Both have been observed in preHDs, where functional imaging studies show changes in 1 

BOLD responses in task-dependent regions, despite similar behavioural performances to 2 

controls (Klöppel et al., 2009; Wolf et al., 2012). Although changes in connectivity, structure, 3 

or activation can provide information about the link between the disease and neural 4 

reorganisation, this link may be pathological rather than compensatory if not correlated to better 5 

performances (Papoutsi et al., 2014; Soloveva et al., 2018). Here, we observed left superior 6 

parietal cortex hypertrophy in preHDs (Fig. 4E). In addition, an increase in cortical thickness 7 

was associated with better performances (shorter response times, better accuracy, and higher 8 

drift rates) (Supplementary Fig. 1, Supplementary Table 2, Fig. 4C-D), strengthening the 9 

hypothesis of a successful compensation. Hyperactivation of the superior parietal cortex has 10 

been associated with motor compensatory mechanisms (Feigin et al., 2006). In a post-hoc 11 

analysis, the two preHDs closest to disease onset did not present this pattern of cortical 12 

thickening, further supporting the hypothesis of a compensatory mechanism failing as the 13 

pathological load increases. Previous studies on Alzheimer’s disease (Fortea et al., 2010) and 14 

Huntington’s disease (Nopoulos et al., 2010) have reported a preclinical stage of hypertrophy 15 

preceding atrophy in patients with symptoms. This may reflect an experience-dependent 16 

increase in neural volume (Luders et al., 2009; Suh et al., 2019) due to attempts to compensate 17 

for the dysregulation of brain regions and the striatum. 18 

Drift rate is linked to attention in healthy subjects (Mulder et al., 2014) and patients with 19 

attention deficit and hyperactivity disorder (Ziegler et al., 2016). Individuals with higher 20 

attentional capacities accumulate evidence faster in a noisy perceptual decision task (Nunez et 21 

al., 2015). Here, independently of the disease stage, drift rate correlated positively with cortical 22 

thickness in the left superior parietal and the right superior temporal cortex – regions which are 23 

associated with a better ability to sustain attention (Fig. 4C-D) (Fan et al., 2005; Kristensen et 24 

al., 2013; Mitko et al., 2019). This suggests that mutation carriers with better attentional 25 
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capacities have higher drift rates. Within this attentional network, the hippocampus plays a role 1 

in maintaining high-resolution representations in working memory when a complex and precise 2 

representation is required (Yonelinas, 2013), especially in online perception (Córdova et al., 3 

2019). The content of working memory automatically modulates attention by gating the 4 

information matching its content into awareness (Soto et al., 2008). In preHDs, a larger 5 

hippocampal volume predicted a higher drift rate (Fig. 4B). This raises the possibility that 6 

preHDs use the hippocampus to tune their attention to relevant stimulus features (fined-grained 7 

representation of pseudowords in our task), increasing information extraction and leading to 8 

faster rate of evidence accumulation. The structural modification (hypertrophy) (Fig. 4E) 9 

observed in preHDs suggests a daily-used mechanism not limited to our task. In contrast, 10 

hippocampal volume is not related to drift rate in earlyHDs. This suggests that attentional tuning 11 

allowing for drift rate adjustment is no longer efficient as the disease proceeds. The inability of 12 

earlyHDs to recruit sufficient additional attentional resources is consistent with their brain 13 

atrophy and the pattern of attention impairment observed in this disease. In our cohort, both the 14 

right caudal part of the middle frontal cortex and the thalamus are atrophied in earlyHDs, but 15 

spared in preHDs (Fig. 3). These structures are key components of the attentional network (Fan 16 

et al., 2005; Corbetta et al., 2008). The literature reports that preHDs are minimally affected in 17 

this domain, whereas earlyHDs present a wide range of attentional deficits (e.g. sustained 18 

attention (Hart et al., 2012)). The atrophy of earlyHDs in the left angular gyrus, a key structure 19 

involved in phonological discrimination (Jacquemot et al., 2003), has been previously reported 20 

(Macdonald et al., 1997). This might also prevent them from biasing their attention to fine 21 

grained phonological features present in our task.  22 

Despite this study’s small cohort size, DDMs detected differences between preHDs and controls 23 

and identified cognitive processes that may underlie compensation mechanisms in a language 24 

discrimination task. This demonstrates the added value of DDMs, combined with language 25 
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relatively, to classical neuropsychological tests, which rarely detect differences in preHDs, 1 

other than in cohorts of hundreds of participants (Paulsen et al., 2004; Tabrizi et al., 2009). 2 

Here, the use of a linguistic task was motivated by studies showing the sensitivity of language 3 

in detecting subtle disorders in small cohorts of preHDs (de Diego Balaguer et al., 2008; 4 

Németh et al., 2012; Hinzen et al., 2018). The duration of the task and its simplicity 5 

(pseudoword discrimination) make it easily adaptable and transferable to other languages. 6 

Showing the generality of the drift rate as a marker of compensation, and of attention allocation 7 

increase as a compensatory mechanism in preHDs would require assessing other cognitive 8 

domains. Structural imaging provides a hint into the attentional network. Yet, studying the 9 

functional correlates of the drift rate in Huntington’s disease would provide a greater 10 

understanding of online allocation of attentional resources as a compensatory mechanism. 11 

Focusing on the role of the superior parietal cortex and hippocampus seems promising in 12 

Huntington’s disease but would need to be replicated in other neurodegenerative diseases and 13 

studied over time.  14 
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Figure legends 1 

Figure 1. Discrimination task and hierarchical drift diffusion model.  2 

(A) Participants heard two pseudowords (A and X) separated by the 100 ms and had to decide 3 

whether they were identical or not. The response time (RT) is the sum of the non-decision time 4 

(Ter) and the decision processes (Td): RT=Ter+Td. (B) Example of the trajectory of the drift 5 

diffusion model for a “same” trial in which the correct response was delivered. Two decision 6 

boundaries (0 and a) represent the “same” and “different” decisions. The drift rate, v, represents 7 

the rate of evidence accumulation. The diffusion process starts between the two boundaries at 8 

zr (= 0.5 if not biased toward one of the alternatives) and continues until it reaches one of the 9 

two boundaries. The predicted response time is the sum of the durations of the diffusion process 10 

called decision time and the non-decision time encompassing stimulus pre-processing and 11 

motor planning and execution. 12 

 13 

Figure 2. Results of behavioural data analyses. 14 

Boxplots of (A) Accuracy and (B) Response time (s) for each group. In boxplots, the middle 15 

hinge corresponds to the median, the lower and upper hinges correspond respectively to the 16 

first and third quartiles. The whiskers extend from the hinge to the largest value no further than 17 

1.5*inter-quartile range of the hinge. Diamonds represent the means, ***: p<0.001, ns: non-18 

significant. (C) Group probability distribution (posterior estimates) of the response threshold, 19 

a, and (D) drift rate, v. Bayesian probabilities are reported. (E) Schematic representation of 20 

model parameters for each group. (F) Relationship between the drift rate (y-axis) and the 21 
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response threshold (x-axis). Points represent individual values, lines and shades around them 1 

represent the linear fit and the confidence interval. Controls are represented in grey, premanifest 2 

participants (preHDs) in blue and Huntington’s disease patients at an early stage of the disease 3 

(earlyHDs) in red.  4 

Figure 3. Neuroanatomical differences between groups 5 

(A) Boxplots of the subcortical differences between groups. For representational purposes, 6 

volumes normalized by the total intracranial volume (tiv) are multiplied by 100 for all structures 7 

and by an additional 10 for the accumbens. In boxplots, the middle hinge corresponds to the 8 

median, the lower and upper hinges correspond respectively to the first and third quartiles. The 9 

whiskers extend from the hinge to the largest value no further than 1.5*inter-quartile range of 10 

the hinge. *: p<0.05, ns: non-significant. Imaging controls are represented in grey, premanifest 11 

participants (preHDs) in blue and Huntington’s disease patients at an early stage of the disease 12 

(earlyHDs) in red. (B) Cortical maps of differences between earlyHDs and imaging controls. 13 

Each cluster is represented in a different colour and identify a significant thinner cortex in 14 

earlyHDs compared to imaging controls. Blue: left angular gyrus, purple: left occipital superior, 15 

orange: right lateral occipital, yellow: right caudal middle frontal. (C) Cortical maps of 16 

differences between earlyHDs and controls. The cluster identifies a significant thinner cortex 17 

in earlyHDs compared to imaging controls. Yellow: right lateral occipital. In the cortical maps 18 

of panels (B) and (C), light grey represents gyrus and dark grey represents sulcus. 19 
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Figure 4. Relationship between brain structure and drift rate. 1 

(A) Hippocampus (yellow). X and Z are MNI coordinates of the sagittal and coronal views. A: 2 

anterior, P: posterior, R: right, L: left. (B) Relationship between the hippocampus volume 3 

normalized by the total intracranial volume (tiv) (x-axis) and the drift rate (y-axis). For 4 

representational purposes, the x-axis is multiplied by 100. (C) Cortical maps of significant 5 

clusters with a positive correlation between the cortical thickness and the drift rate. Light grey 6 

represents gyrus and dark grey represents sulcus. Yellow: left superior parietal cluster (152.71 7 

mm2, MNI coordinates: [-34, -55, 59]); Orange: right superior temporal cluster (112.72 mm2, 8 

MNI coordinates: [63, -16, -1]). The black squares identify the cluster containing the data 9 

displayed in panels (D) and (E). (D) Relationship between the mean cortical thickness in the 10 

yellow cluster of interest (panel (C)) (x-axis) and the drift rate (y-axis). (E) Boxplots of the 11 

mean cortical thickness in the yellow cluster (panel (C)). In boxplots, the middle hinge 12 

corresponds to the median, the lower and upper hinges correspond relatively to the first and 13 

third quartiles. The whiskers extend from the hinge to the largest value no further than 1.5*inter-14 

quartile range of the hinge. *: p<0.05, ***: p<0.001. Imaging controls are represented in grey, 15 

premanifest participants (preHDs) in blue and Huntington’s disease patients at an early stage 16 

of the disease (earlyHDs) in red. In (B) and (D), points represent individual values, lines and 17 

shades around them represent the linear fit and the confidence interval. The blue squares 18 

represent the two preHDs identified as closest to the disease onset. 19 

  20 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.03.20121079doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.03.20121079
http://creativecommons.org/licenses/by-nd/4.0/


 
46 

Table legends 1 

Table 1. Demographic and clinical data for participants 2 

preHDs: premanifest participants; earlyHDs: Huntington’s disease patients at an early stage of 3 

the disease; number of CAG repeats: pathological threshold > 35; Burden Score= (CAG-35.5) 4 

x age; Estimated age from onset = age diagnosis estimation – age, with age diagnosis estimation 5 

= 21.54 + exp(9.556 - (0.146 x number of cag repeats)) (Langbehn et al., 2004); Mattis 6 

Dementia Rating Scale: pathological score below 136/144; F: female; M: male; R: right; L: left; 7 

mean±standard deviation. 8 

 9 

Table 2. Cognitive assessment 10 

Forward digit span, categorical fluency and Unified Huntington’s Disease Rating scale 11 

cognitive scores. Descriptive statistics report mean±standard deviation for each group. Group 12 

comparisons report Tukey’s post-hoc test [95% confidence interval], p-value for each group 13 

comparison when there was a main effect of group. preHDs: premanifest participants; 14 

earlyHDs: Huntington’s disease patients at an early stage of the disease; * Cohort of controls 15 

restricted to 27 participants. 16 

 17 

Table 3. Cortical thickness differences between groups 18 

L: left; R: right; preHDs: premanifest participants; earlyHDs: Huntington’s disease patients at 19 

an early stage of the disease. 20 

 21 
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