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Abstract 31 

Background:  32 

Computerized decision support systems are becoming increasingly prevalent with advances in data 33 

collection and machine learning algorithms. However, they are scarcely used for empiric antibiotic 34 

therapy. Here we accurately predict the antibiotic resistance profiles of bacterial infections of 35 

hospitalized patients using machine learning algorithms applied to patients’ electronic medical records. 36 

Methods:  37 

The data included antibiotic resistance results of bacterial cultures from hospitalized patients, alongside 38 

their electronic medical records. Five antibiotics were examined: Ceftazidime (n=2942), Gentamicin 39 

(n=4360), Imipenem (n=2235), Ofloxacin (n=3117) and Sulfamethoxazole-Trimethoprim (n=3544). We 40 

applied lasso logistic regression, neural networks, gradient boosted trees, and an ensemble combining 41 

all three algorithms, to predict antibiotic resistance. Variable influence was gauged by permutation tests 42 

and Shapely Additive Explanations analysis. 43 

Results:  44 

The ensemble model outperformed the separate models and produced accurate predictions on a test 45 

set data. When no knowledge regarding the infecting bacterial species was assumed, the ensemble 46 

model yielded area under the receiver-operating-characteristic (auROC) scores of 0.73-0.79, for different 47 

antibiotics. Including information regarding the bacterial species improved the auROCs to 0.8-0.88. The 48 

effects of different variables on the predictions were assessed and found consistent with previously 49 

identified risk factors for antibiotic resistance. 50 

Conclusions:  51 

Our study demonstrates the potential of machine learning models to accurately predict antibiotic 52 

resistance of bacterial infections of hospitalized patients. Moreover, we show that rapid information 53 

regarding the infecting bacterial species can improve predictions substantially. The implementation of 54 

such systems should be seriously considered by clinicians to aid correct empiric therapy and to 55 

potentially reduce antibiotic misuse.  56 

 57 

 58 

 59 
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Introduction 61 

Antibiotic resistance is a major threat to public health. Substantial increases in antibiotic resistance rates 62 

have sprung concerns and bleak estimates as to the future of effective antibiotic treatment [1]. The 63 

emergence of antibiotic resistance is mainly shaped by the evolutionary forces of genetic variation (i.e. 64 

mutations and horizontal gene transfer) and selection exerted by antibiotic usage. Correspondingly, 65 

antibiotic consumption has been repeatedly correlated with increases in antibiotic resistance rates [2]. 66 

However, decreases in antibiotic consumption can revert bacterial populations to antibiotic 67 

susceptibility, likely due to the fitness cost that antibiotic resistance incurs [3]. Hence, a straightforward 68 

intervention to reduce the burden of antibiotic resistance is to decrease antibiotic consumption, for 69 

example by reducing inappropriate antibiotic use during empiric therapy [4]. 70 

Empiric antibiotic therapy is the commencement of antibiotic therapy before a patient’s precise 71 

etiology, source of infection, or antibiotic resistance profile of the infecting pathogen, are confirmed [5]. 72 

It is both crucial, as immediate action might be necessary, and by definition based on educated guesses, 73 

as it is mostly derived from partial data available to doctors. Two main types of errors occur during 74 

empiric therapy – the prescription of inefficient antibiotics (i.e. the antibiotics prescribed do not clear 75 

the bacterial pathogen due to its resistance to them), or prescription of antibiotics with too broad of a 76 

coverage (i.e. antibiotics with lower coverage would suffice to treat the infection).  77 

The first type of error has more immediate and obvious consequences: treatment with inefficient 78 

antibiotics will allow bacteria to keep infecting the patient, putting them at higher risk [6-8]. 79 

Furthermore, patients with incorrectly treated infections may be able to keep spreading antibiotic 80 

resistance bacteria, causing even greater harm in the future [9]. The second type of error is perhaps not 81 

as immediately pronounced but could be detrimental to public health in the long-run. High frequency 82 

usage of broad-spectrum antibiotics is likely to increase the frequency of resistance to such antibiotics in 83 

the population, as has been observed repeatedly [10-13], rendering these antibiotics less efficient due 84 

to accumulated levels of resistance in the population. In turn, this can increase the rate of incorrect 85 

empiric therapy of the first kind [14, 15], and lead to increased broad-spectrum antibiotic usage, forming 86 

a positive feedback loop of frequent broad-spectrum antibiotic prescription and increased resistance 87 

[16, 17]. Moreover, patients treated with broad-spectrum antibiotics can have a substantial part of their 88 

microbiome eliminated, enabling subsequent colonization by dangerous and persistent pathogens such 89 

as Clostridium difficile [18, 19]. 90 

A major possible improvement of empiric therapy can stem from using the large amounts of medical 91 

data, which are becoming more accessible, in conjunction with machine learning (ML) algorithms. This 92 
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approach of integrating ML models based on big medical datasets into medical decision making is 93 

gaining traction lately and is recognized likely being a part of future treatment in many medical fields 94 

[20]. Various studies have identified risk factors for antibiotic resistant infections based on patient 95 

comorbidities, demographics, previous received treatments and other patient characteristics [21]. 96 

However, identification of risk factors is not necessarily equivalent to highly accurate prediction. Indeed, 97 

substantially fewer works have produced models trying to predict antibiotic resistance of infecting 98 

bacteria based on patient data. Despite the high quality of many of these studies, they often lacked 99 

large datasets [22-24], were limited to a specific types of infection [24-27], pertained only to few 100 

bacterial species [23], or only to outpatients [25].  101 

In this work we used electronic medical records of patients hospitalized in Rabin Medical Center, Israel, 102 

to predict the antibiotic resistance of bacterial infections. The dataset contained over 16,000 antibiotic 103 

resistance tests of bacterial cultures of hospitalized patients with various types of infections, bacterial 104 

species, and examined antibiotics. We applied three ML models, and an ensemble combining their 105 

results, to predict antibiotic resistance of five antibiotics commonly tested for resistance – Ceftazidime, 106 

Gentamicin, Imipenem, Ofloxacin and Sulfamethoxazole-Trimethoprim. We show that accurate 107 

antibiotic resistance prediction is possible by using electronic medical records, and that a substantial 108 

increase in prediction accuracy occurs if information regarding the infecting bacterial species is 109 

available. Finally, we compare the different variables most influencing antibiotic resistance prediction, 110 

and explore their effects on resistance probability using two forms of variable influence analysis of the 111 

ML models.  112 

 113 
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Results 115 

We retrieved medical records of patients which had positive bacterial culture results, from Rabin 116 

Medical Center in Israel, from the period between May 2013 and December 2015. The dataset included 117 

the bacterial species isolated from the patients and their resistance profiles to the antibiotics tested, as 118 

well as the patients’ demographics, comorbidities, hospitalization records and previous antibiotic usage 119 

within the hospital (see Methods).  In this study we focused on predicting resistance to the five 120 

antibiotics most commonly tested for resistance in our dataset: Ceftazidime, Gentamicin, Imipenem, 121 

Ofloxacin and Sulfamethoxazole-Trimethoprim (Sul-Trim). All data in the table are aggregated across 122 

unique samples.   123 

 124 

  Ceftazidime Gentamicin Imipenem Ofloxacin 
Sulfamethoxazole-

Trimethoprim 

Samples, n 2942 4360 2235 3117 3544 

Resistance, % 42 32 16 47 50 

Age, mean 

(sd), years 
72 (16) 72 (16) 72 (16) 72 (17) 72 (16) 

Female, % 42 41 40 43 42 

Most common 

bacterial 

species 

Escherichia 

coli (29%) 

Escherichia coli 

(20%) 

Escherichia 

coli (22%) 

Escherichia coli 

(22%) 

Escherichia coli 

(24%) 

Second-most 

common 

bacterial 

species 

Klebsiella 

pneumoniae 

(18%) 

Klebsiella 

pneumoniae 

(12%) 

Pseudomonas 

aeruginosa 

(18%) 

Staphylococcus 

coag. neg. 

group (16%) 

Klebsiella 

pneumoniae (15%) 

Third-most 

common 

bacteria 

species 

Pseudomonas 

aeruginosa 

(14%) 

Staphylococcus 

coag. neg. 

group (12%) 

Klebsiella 

pneumoniae 

(16%) 

Klebsiella 

pneumoniae 

(13%) 

Staphylococcus 

coag. neg. group 

(14%) 

Latest 

hospitalization 

duration, 

6.1 (10.4) 6.1 (10.2) 7.1 (11.4) 6.1 (10.4) 5.9 (10.1) 
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mean (std), 

days 

 125 

Table 1. Summary statistics of the dataset. 126 

 127 

We split the data into a training set and a test set. The first 85% of each dataset (according to the 128 

sample date) were used for training the models while the rest 15% were used for testing the models. 129 

We found varying frequencies of antibiotic-resistance, between antibiotics and different bacterial 130 

species. The frequencies of antibiotic-resistance also fluctuated through time, yet average resistance 131 

frequencies remained similar in the training and test sets (see Figure 1). 132 

 133 

 134 

Figure 1. Frequency of antibiotic resistance. (a) A heatmap showing the frequencies of antibiotic 135 

resistance for each antibiotic and bacterial species combination. Empty cells represent combinations for 136 

which there were fewer than 100 data points. (b)  A time series plot of the frequency of antibiotic 137 

resistance observed in each month, for each antibiotic, across all bacterial species. Horizontal dashed 138 

lines represent the average resistance frequencies of each antibiotic, separately for the training set and 139 

the test set. 140 

 141 

We applied ML algorithms to the data in order to generate models for predicting antibiotic resistance of 142 

bacterial cultures. We used a supervised ML approach to classify each isolated bacterial culture as either 143 

susceptible or resistant to each antibiotic (see Methods and Supplementary Material 2). The final model 144 

chosen for predicting antibiotic resistance was an ensemble, composed of three sub-models: L1 145 
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regularized logistic regression (LASSO), gradient-boosted decision trees and neural network. Each sub-146 

model was trained separately, and the ensemble provided a prediction based on the average predictions 147 

of the sub-models. We examined the success of the ensemble in predicting antibiotic resistance in two 148 

data conformations: one where the ensemble was trained and evaluated separately on each antibiotic, 149 

and another where the ensemble was trained and evaluated on data containing all five antibiotics, 150 

combined. In addition, training and testing of the ensemble was performed once on a dataset that 151 

included the identity of the isolated bacterial species, and once on the same data, barring the identity of 152 

the isolated bacterial species. 153 

The ensemble achieved high classification success both in terms of area under the receiver-operating-154 

characteristic curve (auROC) and balanced accuracy (i.e., the unweighted average of the sensitivity and 155 

specificity rates; see Figures 2 and 3). In addition, the ensemble was found to slightly outperform the 156 

sub-models in most scenarios, especially when the identity of the isolated bacterial species was included 157 

in the data (see Figure 3).  158 

 159 

 160 

Figure 2. Receiver operating characteristic (ROC) curves of the ensemble. ROC curves of the ensemble 161 

are presented seperately for each antibiotic and for all antibiotics combined, for the datasets excluding 162 

(a) and including (b) the bacterial species’ identity. The legends show the area under the ROC curve 163 

(auROC) for each antibiotic, ordered from highest to lowest. 164 

 165 
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 166 

Figure 3. auROC and balanced accuracy scores of the ensemble and its sub-models. The auROC (a, b) 167 

and the balanced accuracy (c, d) of the ensemble and its three sub-models, based on data including the 168 

identity of the bacterial species (a, c) and on data excluding it (b, d). The legends show the score of each 169 

model, averaged over the five antiobiotics, ordered from highest to lowest.  170 

 171 

In contrast to classic statistical methods such as regression analysis, the influence of variables on model 172 

output is often difficult to gauge in ML models such as boosted trees and neural networks. We thus 173 

performed two types of analysis to determine the influence of variables on our ensemble model 174 

predictions. First, we performed a permutation-based variable importance analysis (see Methods). 175 

Briefly, each variable was randomly permuted to break its association with the outcome. Then, 176 

predictions were made using the new dataset with the permuted variable, and the change in the 177 

ensemble’s auROC was recorded. Variables for which permutations resulted in substantial decreases in 178 

auROC were deemed important. This analysis revealed that the two variables with the highest average 179 
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effect (across all five antibiotics) were the proportion of past antibiotic resistance infections: previous 180 

same-bacterial species resistance to the same antibiotic (previous resistance - specific), and to any 181 

antibiotic (previous resistance - general) when including information of the bacterial species; previous 182 

any-bacterial species resistance to the same antibiotic (previous any-bacteria resistance – specific), and 183 

to any antibiotic (previous any-bacteria resistance – general) when excluding information about the 184 

infecting bacterial species (see Supplementary Material 3 and Supplementary tables S1 and S2). 185 

Furthermore, we performed a Shapley Additive Explanations (SHAP) analysis [28] (see Methods). The 186 

SHAP analysis allowed us to estimate the marginal contribution of each variable to the final prediction of 187 

the ensemble. We performed the SHAP analysis separately for each of the five antibiotics tested, both 188 

with and without the information regarding the infecting bacterial species. We present the variables 189 

having a substantial contribution to prediction of antibiotic resistance (as defined in the Methods) for all 190 

five antibiotics in Figure 4. When information regarding the bacterial species was excluded, the two top-191 

contributing variables were consistent with the permutation-based importance analysis – previous any-192 

bacteria resistance - specific and general. These were followed by variables indicating whether the 193 

infection was nosocomial or community acquired, and whether the patient was previously treated in the 194 

hospital with antibiotics of the same family (antibiotics were categorized into: beta-lactams, 195 

fluoroquinolones, aminoglycosides, sulfonamides). Other important variables were the patients’ 196 

functioning and independence levels, and previous hospitalization duration. Similarly, when including 197 

data regarding the bacterial species, the average previous resistance of the same bacteria to the 198 

same/any antibiotic (previous resistance – specific/general, respectively) remained in the top-most 199 

affecting variables, alongside indicator-variables of the infecting bacterial species. 200 

The SHAP analysis also allowed us to investigate whether the different variables in our model act to 201 

decrease or increase the probability of antibiotic resistance (Figure 4b,d). Reassuringly, the probability 202 

of resistance in our model increased in accordance to known risk factors of antibiotic resistance: 203 

previous antibiotic resistant infections, previous hospitalizations, nosocomial infections, previous 204 

antibiotic usage, location of sample derivation, and contraindications of patient independence (e.g. 205 

nursing home residence and dependence in feeding) [23, 25, 27, 29, 30]. When including information of 206 

the infecting bacterial species, additional patterns emerge. For example, while the presence of 207 

Acinetobacter Baumannii in cultures increases the probability of resistance, Staphylococcus Aureus 208 

decreases it. The patients’ sex was found to have only a minor effect over the resistance probability, 209 

with increased probability of resistance for males. The sample date, which was coded as a numeric 210 
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variable from the date of the earliest culture in the dataset, was also found to have some effect, 211 

probably due to the fluctuating resistance frequencies through time captured by our model.   212 

  213 

 214 

Figure 4. Variable importance analysis using Shapley Additive Explanations (SHAP). (a, c) The absolute 215 

marginal contribution to predicted probabilities, normalized by the predicted population resistance 216 

prevalence (x-axis) is plotted for each antibiotic (color-coded), both for data excluding information on 217 

the bacterial species (a) and including it (c). The presented variables are those with an effect of at least 218 

0.05 in any of the five antibiotics. (b, d) The marginal changes in predicted resistance probability derived 219 

from the same variables shown in (a, c), respectively, are plotted for all antibiotics combined, both for 220 

data excluding information on the infected bacterial species (b) and including it (d). Each row in panels 221 

(b,d) shows the distribution of the data in two dimensions, and each dot represents one sample: The 222 

color represents the value of the variable in a schematic scale from low value to high value (binary 223 

variables are represented by the two colors on the edges of the color-bar); the position on the x-axis 224 

represents the marginal change in probability of antibiotic resistance due to the variables’ value. 225 

 226 

  227 
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Discussion 228 

ML is widely applied in various fields of medicine and is likely to become an invaluable part of medical 229 

decision making and treatment [20]. However, ML is scarcely used in aiding the decision of empiric 230 

antibiotic therapy. Only a handful of studies have previously utilized the prediction abilities of machine 231 

learning models for the rapid detection of antibiotic resistance from patient medical records.  232 

 Our work demonstrates the ability to predict antibiotic resistance from patient medical records with 233 

high accuracy, and extends previous research in the field in several ways: Rather than relying on a single 234 

algorithm, we use an ensemble combining several algorithms substantially differing in their underlying 235 

prediction methods (logistic regression, boosted decision trees and neural networks) to produce high-236 

accuracy, robust results. Importantly, we perform a controlled procedure of hyper parameter selection 237 

on a training subset of the data and then continue to test our predictions on a disjoint, previously 238 

unexplored subset of the data. Furthermore, we predict antibiotic resistance on a large and 239 

heterogeneous dataset. It comprises more than 16,000 antibiotic resistance tests of bacterial cultures of 240 

hospitalized patients, tested for various antibiotics, and containing multiple bacterial species and 241 

infection sites. 242 

Despite the heterogeneity of our data, we were able to train models that achieved highly competitive 243 

results: if information regarding the infected bacterial species was excluded we obtained auROC scores 244 

in the range of 0.73-0.79, while including the bacterial species yielded an even higher auROC scores in 245 

the range of 0.8-0.88. Previous studies which included information regarding the infecting bacterial 246 

species obtained auROC scores in the ranges of 0.6-0.83 for antibiotics comparable to those examined in 247 

our dataset [27, 31]. Other studies, restricted to one bacterial species or to only one type of infection, 248 

had auROC scores in the range of 0.7-0.83 [23-25]. Even when previous auROC results were comparable 249 

to those achieved in our study, previous studies did not have such a heterogenic dataset, containing 250 

patients with different infections, bacterial species and antibiotics. This added a substantial challenge, 251 

which was successfully tackled by our models, and is likely to decrease predictive power of methods 252 

used in other studies.  253 

Finally, despite the complex nature of the models used, further complicated by their combination into 254 

an ensemble model, we were able to provide interpretation of the influence of different variables on the 255 

ensemble’s predictions. Reassuringly, most of the variables found influential in our analysis have been 256 

previously identified as increasing risk for antibiotic resistant infections. In addition to further validating 257 

our model against prior knowledge, understating which variables are influential can help indicate 258 

important drivers of antibiotic resistance. For example, the variables consistently highly ranked as 259 
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important in our models were those pertaining to previously resistant bacterial cultures. The importance 260 

of those variables might imply the persistence of resistant bacterial flora in patients, and may warrant 261 

further investigations into treatments restoring the normal bacterial flora after antibiotic treatments, 262 

especially in patients at risk for re-hospitalization [32]. However, such conclusions should be further 263 

investigated in other settings before concrete conclusions can be reached.  264 

An especially important variable in our models was the identity of the bacterial species causing the 265 

infection. It is plausible that inherent biological differences, combined with different exposures to 266 

antibiotics, produce the substantial observed differences between resistance frequencies of different 267 

bacterial species (Figure 1), and hence rendered this information predictive in our models. Although not 268 

routinely performed in most hospitals, very rapid identification of the infecting bacterial species is 269 

possible, e.g. through PCR-based methods [33]. If our predictive model is to be implemented in real time 270 

in clinical settings, adding such rapid bacterial species identification tools might be cost-beneficial, given 271 

the improvement in our prediction results, and the major cost incurred by antibiotic resistant infections 272 

[34]. 273 

Additional potentially important variables are various community-derived risk factors for antibiotic 274 

resistant infections such as antibiotic use outside the hospital [25, 35, 36], patient location of residency 275 

[12], and other factors as microbiome composition, diet and exercise [37-40]. Unfortunately, these were 276 

not available to us and hence not included in our analysis. Our results can likely be improved by 277 

inclusion of such data, and future work should consider their inclusion when available. 278 

To conclude, our results present an ML approach to predict antibiotic resistance of bacterial infections 279 

of hospitalized patients, using the patient’s electronic medical record. Our method autonomously 280 

identified known risk factors of antibiotic resistance, and provided high-accuracy predictions based on 281 

the complex interactions between them and other patient information. Applying our approach, and 282 

further developing it by incorporating additional patient data is paramount for achieving highly 283 

informed, personalized empiric antibiotic therapy. Such therapy should result in less antibiotic misuse, 284 

and hopefully aid the fight against antibiotic resistance.  285 

 286 

  287 
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Methods 288 

Data processing and variable engineering 289 

We processed the datasets described in the Results section and in Table 1, and created variables that 290 

were fed into the machine learning models. All categorical variables were one-hot encoded as dummy 291 

variables. A total of 322-448 variables were included in the processed dataset (depending on the 292 

categorical variables in each dataset, and on whether bacterial species information was included). A 293 

description of the variables that were concluded most important is available at Supplementary material 294 

1. We considered intermediate resistance results as resistant for both simplicity of classification and 295 

under a conservative rationale, as is common practice [25].  296 

 297 

Machine learning models 298 

We used an ensemble model, composed of three sub-models: L1 regularized logistic regression (LASSO), 299 

gradient-boosted decision trees and neural network. Each sub-model was trained separately on the data 300 

and for each data point it provided a prediction: a number in the range 0-1. The ensemble prediction is 301 

the average of the predictions of these three models (Supplementary Material 2). 302 

Each data point input into the models contained the abovementioned variables as well as the 303 

susceptible or resistant binary label for a single antibiotic as the predicted variable. For each antibiotic, 304 

the data were divided to distinct training and test sets based on dates, so that the early 85% of the data 305 

were assigned to the training set. 306 

 307 

Model evaluation 308 

After performing the hyperparameter tuning and variable selection on the training set (using cross 309 

validation), the chosen models were applied to the test set. The ensemble’s predictions were compared 310 

to the actual resistance class of each data point to derive the auROC score. 311 

When computing the balanced accuracy score, we used the first 85% of the training set in order to train 312 

the ensemble, and the remaining 15% of the training set (validation set) in order to find the optimized 313 

prediction threshold 𝜌 ∈ (0,1), under which each prediction was assigned to 1 if above 𝜌 and to 0 if 314 

below 𝜌. The thresholds were chosen to maximize the balanced accuracy score on the validation set. We 315 

then trained the ensemble on the entire training set and used it to predict results on the test set. We 316 

then compared the ensemble’s predictions to the actual class of each data point, and derived the 317 

balanced accuracy score. 318 

 319 
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14 
 

Variable importance analysis – permutation tests 320 

Each variable’s values were randomly permuted in the test set, while other variables kept as they were. 321 

After a permutation was performed, the auROC of the ensemble’s prediction on the test set was re-322 

calculated. The absolute difference of the resulting auROC from that obtained on the original test set 323 

was recorded. This was repeated 100 times (for each variable) and the average result was deemed as 324 

each variable’s importance score.  325 

 326 

Variable influence analysis – Shapley Additive Explanations (SHAP) 327 

We applied the SHAP analysis to the training sets, performing the analysis separately for each sub-328 

model, and then averaging the results to obtain the ensemble’s scores (supplementary material 3). The 329 

SHAP values can be interpreted as the marginal change in the probability of resistance of each 330 

observation, derived for each variable.  331 

 332 

Software used 333 

All analyses were performed using Python 3.6. 334 

 335 

 336 

 337 

Competing interests 338 

We declare we have no competing interests. 339 

 340 

Funding 341 

This project was supported by the Clore Foundation Scholars Programme (OLE). 342 

 343 

Acknowledgements 344 

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU 345 

used for this research. 346 

347 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.03.20120535doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.03.20120535
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

References 348 

1. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and 349 

therapeutics 2015; 40(4): 277. 350 

2. Bell BG, Schellevis F, Stobberingh E, Goossens H, Pringle M. A systematic review and meta-351 

analysis of the effects of antibiotic consumption on antibiotic resistance. BMC infectious 352 

diseases 2014; 14(1): 13. 353 

3. Melnyk AH, Wong A, Kassen R. The fitness costs of antibiotic resistance mutations. Evolutionary 354 

applications 2015; 8(3): 273-83. 355 

4. Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance—the need for global solutions. The 356 

Lancet infectious diseases 2013; 13(12): 1057-98. 357 

5. Mandell G, Dolin R, Bennett J. Mandell, Douglas, and Bennett's principles and practice of 358 

infectious diseases: Elsevier, 2009. 359 

6. Paul M, Shani V, Muchtar E, Kariv G, Robenshtok E, Leibovici L. Systematic review and meta-360 

analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrobial agents 361 

and chemotherapy 2010; 54(11): 4851-63. 362 

7. Oshima T, Kodama Y, Takahashi W, et al. Empiric antibiotic therapy for severe sepsis and septic 363 

shock. Surgical infections 2016; 17(2): 210-6. 364 

8. Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH. The influence of inadequate antimicrobial 365 

treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 2000; 118(1): 366 

146-55. 367 

9. Obolski U, Stein GY, Hadany L. Antibiotic restriction might facilitate the emergence of multi-drug 368 

resistance. PLoS computational biology 2015; 11(6). 369 

10. Paterson DL. “Collateral damage” from cephalosporin or quinolone antibiotic therapy. Clinical 370 

Infectious Diseases 2004; 38(Supplement_4): S341-S5. 371 

11. Vernaz N, Huttner B, Muscionico D, et al. Modelling the impact of antibiotic use on antibiotic-372 

resistant Escherichia coli using population-based data from a large hospital and its surrounding 373 

community. Journal of Antimicrobial Chemotherapy 2011; 66(4): 928-35. 374 

12. Low M, Neuberger A, Hooton TM, et al. Association between urinary community-acquired 375 

fluoroquinolone-resistant Escherichia coli and neighbourhood antibiotic consumption: a 376 

population-based case-control study. The Lancet Infectious Diseases 2019; 19(4): 419-28. 377 

13. Pantosti A, Moro ML. Antibiotic use: the crystal ball for predicting antibiotic resistance. The 378 

University of Chicago Press, 2005. 379 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.03.20120535doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.03.20120535
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

14. Merli M, Lucidi C, Di Gregorio V, et al. The spread of multi drug resistant infections is leading to 380 

an increase in the empirical antibiotic treatment failure in cirrhosis: a prospective survey. PLoS 381 

One 2015; 10(5). 382 

15. Carrara E, Pfeffer I, Zusman O, Leibovici L, Paul M. Determinants of inappropriate empirical 383 

antibiotic treatment: systematic review and meta-analysis. International journal of antimicrobial 384 

agents 2018; 51(4): 548-53. 385 

16. Kollef MH. Appropriate empirical antibacterial therapy for nosocomial infections. Drugs 2003; 386 

63(20): 2157-68. 387 

17. Murthy R. Implementation of strategies to control antimicrobial resistance. Chest 2001; 119(2): 388 

405S-11S. 389 

18. Crowther GS, Wilcox MH. Antibiotic therapy and Clostridium difficile infection–primum non 390 

nocere–first do no harm. Infection and drug resistance 2015; 8: 333. 391 

19. Fridkin S, Baggs J, Fagan R, et al. Vital signs: improving antibiotic use among hospitalized 392 

patients. MMWR Morbidity and mortality weekly report 2014; 63(9): 194. 393 

20. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. New England Journal of Medicine 394 

2019; 380(14): 1347-58. 395 

21. Control CfD, Prevention. Antibiotic resistance threats in the United States, 2013: Centres for 396 

Disease Control and Prevention, US Department of Health and …, 2013. 397 

22. Oonsivilai M, Mo Y, Luangasanatip N, et al. Using machine learning to guide targeted and locally-398 

tailored empiric antibiotic prescribing in a children's hospital in Cambodia. Wellcome open 399 

research 2018; 3. 400 

23. Sullivan T, Ichikawa O, Dudley J, Li L, Aberg J. The rapid prediction of carbapenem resistance in 401 

patients with Klebsiella pneumoniae bacteremia using electronic medical record data. In: Open 402 

forum infectious diseases: Oxford University Press US, 2018:ofy091. 403 

24. Dan S, Shah A, Justo JA, et al. Prediction of fluoroquinolone resistance in Gram-negative bacteria 404 

causing bloodstream infections. Antimicrobial agents and chemotherapy 2016; 60(4): 2265-72. 405 

25. Yelin I, Snitser O, Novich G, et al. Personal clinical history predicts antibiotic resistance of urinary 406 

tract infections. Nature medicine 2019; 25(7): 1143-52. 407 

26. Dickstein Y, Geffen Y, Andreassen S, Leibovici L, Paul M. Predicting antibiotic resistance in 408 

urinary tract infection patients with prior urine cultures. Antimicrobial agents and 409 

chemotherapy 2016; 60(8): 4717-21. 410 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.03.20120535doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.03.20120535
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

27. Vazquez-Guillamet MC, Vazquez R, Micek ST, Kollef MH. Predicting resistance to piperacillin-411 

tazobactam, cefepime and meropenem in septic patients with bloodstream infection due to 412 

Gram-negative bacteria. Clinical Infectious Diseases 2017; 65(10): 1607-14. 413 

28. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. In: Advances in 414 

neural information processing systems, 2017:4765-74. 415 

29. Chatterjee A, Modarai M, Naylor NR, et al. Quantifying drivers of antibiotic resistance in 416 

humans: a systematic review. The Lancet Infectious Diseases 2018; 18(12): e368-e78. 417 

30. MacFadden D, Coburn B, Shah N, et al. Utility of prior cultures in predicting antibiotic resistance 418 

of bloodstream infections due to Gram-negative pathogens: a multicentre observational cohort 419 

study. Clinical Microbiology and Infection 2018; 24(5): 493-9. 420 

31. Tandan M, Timilsina M, Cormican M, Vellinga A. Role of patient descriptors in predicting 421 

antimicrobial resistance in urinary tract infections using a decision tree approach: A 422 

retrospective cohort study. International journal of medical informatics 2019; 127: 127-33. 423 

32. Francino M. Antibiotics and the human gut microbiome: dysbioses and accumulation of 424 

resistances. Frontiers in microbiology 2016; 6: 1543. 425 

33. Järvinen A-K, Laakso S, Piiparinen P, et al. Rapid identification of bacterial pathogens using a 426 

PCR-and microarray-based assay. BMC microbiology 2009; 9(1): 161. 427 

34. Dadgostar P. Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance 428 

2019; 12: 3903. 429 

35. Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD. Effect of antibiotic prescribing in primary 430 

care on antimicrobial resistance in individual patients: systematic review and meta-analysis. Bmj 431 

2010; 340: c2096. 432 

36. Pouwels KB, Freeman R, Muller-Pebody B, et al. Association between use of different antibiotics 433 

and trimethoprim resistance: going beyond the obvious crude association. Journal of 434 

Antimicrobial Chemotherapy 2018; 73(6): 1700-7. 435 

37. Sommer MO, Church GM, Dantas G. The human microbiome harbors a diverse reservoir of 436 

antibiotic resistance genes. Virulence 2010; 1(4): 299-303. 437 

38. Baron SA, Diene SM, Rolain J-M. Human microbiomes and antibiotic resistance. Human 438 

Microbiome Journal 2018; 10: 43-52. 439 

39. Corpet DE. Antibiotic resistance from food. The New England journal of medicine 1988; 318(18): 440 

1206. 441 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.03.20120535doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.03.20120535
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

40. Mascaro V, Capano MS, Iona T, Nobile CGA, Ammendolia A, Pavia M. Prevalence of 442 

Staphylococcus aureus carriage and pattern of antibiotic resistance, including methicillin 443 

resistance, among contact sport athletes in Italy. Infection and drug resistance 2019; 12: 1161. 444 

 445 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.03.20120535doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.03.20120535
http://creativecommons.org/licenses/by-nc-nd/4.0/

